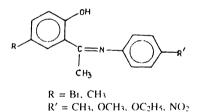
Complex formation of rare earths with some bidentate Schiff bases : A thermodynamic study

S. D. Naikwade, P. S. Mane and T. K. Chondhekar^{*}

Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004. India

Manuscript received 17 April 2000, regised 13 July 2000, accepted 5 September 2000

Proton-ligand stability constants of 1-(4'-methylphenyl)-2-methyl-2-(2'-hydroxy-5'-bromophenyl)imine (R₁), 1-(4'-nitrophenyl)-2-methyl-2-(2'-hydroxy-5'-bromophenyl)imine (R₂) and 1- $\frac{1}{2}$ '-chloro-5'-nitrophenyl)-2-methyl-2-(2'-hydroxy-5'-bromophenyl)imine (R₃) and tormation constants of their metal chelates with trivalent La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb and Ho have been determined at 25, 35 and 45" and $\mu = 0.1 M$ (NaClO₄) in 50 : 50 ethanol-water medium by Irving-Rossotti method. The log k^{11} and log K values are used to discuss the effect of substituent and the atomic size of the rare earth elements. The thermodynamic parameters for the formation of 1 : 1 and 1 : 2 complexes have been calculated.


The lanthanide complexes of Schiff bases derived from salicylaldehyde, substituted salicylaldehyde with various primary amines have been reported¹. No systematic study has been reported so far on the lanthanide complexes of Schiff bases derived from 5-bromoorthohydroxy-acetophenones, and mono- and disubstituted anilines. We report here the stability constants and thermodynamic parameters of rare earth complexes of the ligands (R₁, R₂ and R₃) in 50 : 50 ethanol-water medium at 25° and $\mu = 0.1$ *M* NaClO₄ ionic strength.

Results and Discussion

In the present ligands, protonation takes place in the initial stages of titrations because of the presence of azomethine nitrogen. The log $K_1^{\rm H}$ and log $K_2^{\rm H}$ were determined at $\overline{n}_{\rm A} = 1.5$ and 0.5, respectively. The values were further checked from the plots of log{ $(2-\overline{n}_{\rm A})/(\overline{n}_{\rm A}-1)$ } vs *B* and $\overline{n}_{\rm A}/(1-\overline{n}_{\rm A})$ vs *B* (*B* = pH meter reading) and are given in Table 1

Table 1. Values of $\log K_1^{H}$ and $\log K_2^{H}$ of the ligands at different temperatures								
Temp	Rı		R ₂	R3				
°C	$\log K_1^{11}$	$\log K_2^{11}$	$\log K_2^{H}$	$\log K_2^{H}$				
25	4 66	9 74	9 76	9 77				
35	4 54	9 60	9 63	9 64				
45	4 42	9 47	9 64	941				

Ligand R₁ shows log K_1^H which represents the deprotonation of NH group at azomethine nitrogen whereas it is absent in the remaining ligands. Schiff base R₂ bears NO₂ group at 4-position to azomethine nitrogen and it does not display log K_1^H value. The similar observation is noticed in case of R₃ which has NO₂ group at 4- and Cl at 2-position with respect to azomethine nitrogen. The absence of log $K_1^{\rm H}$ values in these ligands may be due to strong electronwithdrawing effect of NO₂ as well as Cl group. The electron density on the azomethine nitrogen is almost totally withdrawn by these groups, resulting in the generation of positive charge on the azomethine nitrogen. Due to this, protonation of azomethine nitrogen does not take place resulting in the absence of log $K_1^{\rm H}$ values. Thus the observed log $K_2^{\rm H}$ values of the Schiff bases are R₁ \approx R₂ \approx R₃.

The shielding of the 4*f*-electrons is exhibited in the stability constants of the present rare earth complexes, which shows very little difference in these values with the increase in atomic number. In these complexes the rare earth metal ions bind predominantly to oxygen and weakly to nitrogen in the Schiff bases². These complexes show a regular increase of stability constants from La^{III} to Eu^{III} with a discontinuity of Gd^{III} which is commonly known as gadolinium break. After Gd^{III}, stability constant increases up to Dy^{III} and then decreases for Ho^{III}. This shows occasional maxima and minima after gadolinium break.

In all cases, the Gd^{III} chelates have lower value of log K_1 in relation to those of Eu^{III} to Tb^{III} chelates. The change

Table 2. Stability constants of thermodynamic parameters of rare earth metal complex of Schift bases $(R_1, R_2 \text{ and } R_3)$											
Temp = 25 ± 0^{-10} , $\mu = 0 \pm M$ (NaClO ₄)											
Compd	$\log K_1$	$\log K_2$	$-\Delta G_1$	$-\Delta G_2$	$-\Delta H_1$	$-\Delta H_2$	ΔS_1	$\Delta \Sigma_2$			
			kJ mol ⁻¹		kJ mol ⁻¹		J K ⁻¹ mol ⁻¹				
$La^{III}R_{I}$	5 99	4 46	34 18	25 45	18 73	16 41	51.8	3() 3			
$La^{III}R_2$	6 07	4 46	34 64	26 59	13 06	12 22	72 4	48 2			
La ^{III} R 3	610	5 00	34 81	28 53	15 04	14 36	66 3	47 6			
Ce ^{III} R ₁	6 13	4 66	34 98	26 59	13 79	17 55	711	3() 3			
$Ce^{III}R_2$	6 30	471	35 95	26 88	15 49	14 47	68 7	41.6			
Ce ^{III} R ₃	6 1 5	5 04	35 09	28 76	15 12	14 86	67 ()	46 7			
Pi ^{III} R†	6 33	5 14	36 12	29 33	15 23	12 77	70 1	55.6			
Pi ^{III} R ₂	6 4 3	4 86	36 69	27 73	13 79	11 54	76 8	54 4			
Pr ^{III} R 3	6 19	5 10	35 32	39 10	17 41	14 63	60 1	48.6			
Nd ^{III} R1	6 39	5 23	36 46	29 84	15 41	17 04	70.6	430			
$Nd^{III}R_2$	661	5 20	37 72	29 67	16 38	12 57	71.6	574			
Nd ^{III} R3	6 29	5 28	35 89	30 13	13 76	16 75	74 3	44 9			
Sm ¹¹¹ R1	6 45	5 32	36 80	30 36	16 46	13 68	68 3	56 ()			
Sm ^{III} R ₂	6 68	5 28	38 12	30 13	13 85	13 40	814	56-1			
Sm ^{III} R3	6 47	5 65	36 92	32 24	11 40	13 16	856	64 0			
Eu ^{III} R1	6 58	5 59	37 55	31 90	11 58	17 68	87 1	47 7			
$Eu^{III}R_2$	671	5 40	38 29	30 81	12 27	16 99	87 3	46 4			
Eu ^{III} R3	6 65	5 77	37 95	32 92	16 29	11 40	70 3	72 2			
Gd ^{III} R⊥	6 17	5 26	35 21	30 01	14 91	19 97	68 I	337			
$Gd^{III}R_2$	6 28	5 22	35 83	29 79	14 36	10 81	72 1	637			
Gd ^{III} R3	6 41	5 32	36 58	30 36	15 33	13 77	70 6	56 ()			
Tb ^{III} R1	6 28	5 38	35 83	30 70	12 07	15 01	79 8	52.6			
$Tb^{III}R_2$	6 49	5 31	37 03	30 30	12 35	10 49	82.8	66 5			
Tb [™] R₃	6 46	5 42	36 86	30 93	10 64	9 12	88 0	73 2			
Dy ^{III} R1	6 62	5 87	37 77	33 50	15 96	12 64	73 2	70.0			
$Dy^{III}R_2$	6 60	5 64	37 66	32 18	12 60	16 65	84 1	52 1			
Dy ^{III} R3	6 53	5 51	37 26	31 44	15 96	10 90	715	68 9			
Ho ^{III} R1	6 25	5 36	35 66	30 58	13 96	18 53	72 8	40 5			
Ho ^{III} R ₂	6 50	5 51	37 ()9	31 44	12 57	12 49	82 3	636			
Ho ^{lll} R3	6 40	5 44	36 52	31 04	16 51	10 26	67 2	69 7			
*Standard deviation for log K_1 and log K_2 are ± 0.019 and ± 0.035 , respectively											

Table 2. Stability constants of thermodynamic parameters of rate earth metal complex of Schiff bases (R1, R2 and R3)

in free energy is directly related to the log K values. The thermodynamic parameters for lanthanide complexes with Schiff bases were obtained from log K_1 and log K_2 at different temperatures. From Table 2 it seems that the log K_1 and log K_2 values decrease with the increase in temperature, indicating that the high temperature does not favour the formation of stable complexes. The ΔH_1 and ΔH_2 values are all negative, while ΔS_1 and ΔS_2 are all positive. The resulting ΔG_1 and ΔG_2 values are all negative. The more negative values of ΔG_1 and ΔG_2 indicate that the 1 : 1 and 1 : 2 complex formation is thermodynamically favoured The negative values of ΔH_1 and ΔH_2 also lead to the same inference. The entropy effect is found to be predominant over the enthalpy effect which is indicated by the high positive values of entropy.

Experimental

All the chemicals used were of A.R. grade. The Schiff

bases were synthesized by the reported method³ Solutions of the rare earth nitrates were prepared in double-distilled water and standardized⁴. The initial ionic strength of all the solutions was maintained at 0.1 *M* by NaClO₄. An Elico LI-120 pH meter in conjunction with a combined electiode was used. The measurements were made at 25, 35 and 45° (±0.01°) and $\mu = 0.01 M$ NaClO₄ in 50% aqueous ethanol The log K^H and log K values were computed by half-integral method, pointwise calculations and also by the method of least-squares The average log K values were used to calculate ΔG from the van't Hoff's isotherm The ΔH and ΔS values were calculated from the van't Hoff's isochore and the equation $\Delta G = \Delta H - T\Delta S$, respectively

Acknowledgement

Two of the authors (S.D N and P.S M.) are thankful to U.G.C., New Delhi, for the award of Teacher Fellow-ships.

References

 M. S. Mayadeo, S. S. Purohit and S. H. Hussain, J. Indian Chem. Soc., 1982, 59, 894; L. A. Khan, K. S. Siddiqui, N. H. Khan, R. I. Kureshy and S. A. Azaidi, Indian J. Chem., Sect. A, 1987, 26, 969; P. Sanyal and G. P. Sen Gupta, J. Indian Chem. Soc., 1990, 67, 342; 1991, 68, 405; P. Sanyal, N. N. Ghosh and G. P. Sen Gupta, J. Indian Chem. Soc., 1990, 67, 765.

- 2. V. Mishra and M. C. Jain, J. Indian Chem. Soc., 1988, 65, 380.
- T. K. Chondhekar and D. D. Khanolkar. Indian J. Chem., Sect. A, 1986, 25, 868.
- 4. H. Flaschka, Michrochim. Acta, 1955, 55.