Synthetic and structural studies of the transition metal complexes of manganese-, cobalt- and zinc(II) with *m*-nitrobenzaldehyde-thiosemicarbazone and some neutral ligands

R. K. Parihari, R. K. Patel and R. N. Patel^{*}

Department of Chemistry, Regional Engineering College, Rourkela-769 008, India

Manuscript received 2 July 1999 revised 27 December 1999, accepted 26 February 2000

Complexes of the type MLL'2X₂, where $M = Co^{II}$, Mn^{II} , L = m-nitrobenzaldehydethiosemicarbazone (NBTS), L' = quinoline, isoquinoline, pyridine and γ -picoline, $X = C\Gamma$, Br^- and MLL'X, where $M = Zn^{II}$ have been synthesized. The Co^{II} and Mn^{II} complexes are paramagnetic and that of Zn^{II} diamagnetic. The ligand coordinates through N and S atoms. Octahedral geometry is suggested for Mn^{II} and Co^{II} complexes and tetrahedral for Zn^{II} complex.

Transition metal complexes with chelating ligands containing sulfur and nitrogen as donor atoms have attracted special attention¹ We report here some new complexes of Mn^{II} , Co^{II} and Zn^{II} with the ligand *m*-nitrobenzaldehydethiosemicarbazone (NBTS) and some neutral ligand.

Results and Discussion

The analytical and physical data of the complexes are given in Table 1. The low molar conductance values (4.2–8.3 Ω^{-1} cm² mol⁻¹) for the complexes indicate their nonelectrolyte nature. The elemental analysis data suggest the formula as MLL'₂X₂, where M = Mn^{II}, Co^{II} and MLL₁X₂, where M = Mn^{II}, L = NBTS, L' = neutral ligand, X = Cl⁻, Br⁻. The molecular weight (Rast) data suggest the manomeric nature of the complexes.

Table 1. Analytical and physical data of the complexes*			
Compd	Colour	Мр °С	Metal % Found(Calcd)
Ligand (NBTS)(C8H8N4O2S)	Yellow	246	
[Mn(NBTS)(y-pic)2Cl2]	White	260	10 94(10 24)
[Mn(NBTS)(Qn)2Cl2]	Buff	280	9 03(8 98)
[Mn(NBTS)(Py)2Cl2]	Red	260	11 00(10 81)
$[Mn(NBTS)(\gamma-pic)_2Bi_2]$	Red	>300	8 94(8 78)
[Mn(NBTS)(Qn)2Br2]	Pink	>300	8 01(7 87)
[Mn(NBTS)(Py)2B12]	Yellow	>300	9 60(9 20)
[Co(NBTS)(y-pic)2Cl2]	Pink	250	11 21(10 90)
[Co(NBTS)(Qn)2Cl2]	Pink	255	10 01(9 62)
[Co(NBTS)(γ-pic)2Cl2]	Purple	250	11 21(11 50)
$[Co(NBTS)(\gamma-pic)_2B_{12}]$	Violet	>275	9 86(9 36)
[Co(NBTSC)(Qn)2Br2]	Blue	>275	8 61(8 40)
[Co(NBTSC)(Py)2Br2]	Purple	>275	10 10(9 80)
[Zn(NBTSC)(γ-pic)Cl]	White	>250	16 0(15 63)
[Zn(NBTSC)(Qn)Cl]	White	>250	14 59(14 39)
[Zn(NBTSC)(Py)Cl]	White	>250	16 48(16 18)
*All complexes gave satisfacto	ry C, H, I	N, S and Cl ⁻ /B	r ⁻ analyses, Py =
pyridine. Qn = quinoline, γ -pic = γ -picoline			

The ligand shows IR bands at ~3350 and 3480 cm⁻¹ due to NH₂ group of the thiosemicarbazones². The ligand bands at 3100–3040 cm⁻¹ (aromatic C–H) remain unchanged in the complexes indicating the presence of free NH₂ group The broad ligand band at ~1630 cm⁻¹ (C=N of azomethine N) exhibits a negative shift by 15–25 cm⁻¹ in the complexes, indicating the coordination of metal through azomethine nitrogen³.

The ligand band at ~1395 cm⁻¹ is blue-shifted by 80–85 cm⁻¹ in the complexes indicating the coordination through S-atom of C=S group⁴. The ligand bands at ~1540 and ~1340 cm⁻¹ (nitrogen at *meta*-position of benzene ring) remain unchanged in the spectra of the metal complexes. The shifting of the band⁵ at ~780 cm⁻¹ to the lower frequency by 50–60 cm⁻¹ further suggests the coordination of C=S group

The Mn^{II} complexes show electronic spectral bands at 13500, 16000 and 19000 cm⁻¹, which can be assigned to transitions ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g} ({}^{4}G)$, ${}^{6}A_{1g} \rightarrow {}^{4}T_{2g} ({}^{4}G)$ and ${}^{6}A_{1g} \rightarrow {}^{4}T_{g} {}^{4}A_{1g} ({}^{4}G)$, respectively. These transitions and magnetic moment values (5.9–6.1 B.M) suggest high-spin octahedral geometry around the metal ion The bands at 8800 – 9120 and 18100–18500 cm⁻¹ of the Co^{II} complexes may be assigned to the transitions ${}^{4}T_{1g} (F) \rightarrow {}^{4}T_{2g} (F) \gamma_{1}$ and ${}^{4}T_{1g} (F) \rightarrow {}^{4}A_{2g} (F) \gamma_{2}$, suggesting octahedral geometry⁶. The magnetic moment values (4.01–4.38 B.M.) support the octahedral geometry for the Co^{II} complexes⁷. A tetrahedral geometry is suggested for the Zn^{II} complexes⁸.

Experimental

All chemicals used were of A.R. grade The ligand

(NBTS) was prepared by reacting thiosemicarbazide (0.1 mol) dissolved in hot water in presence of glacial acetic acid (~3 drops) and sodium acetate solution with a solution of *m*-nitrobenzaldehyde (0.1 mol) in ethanol. The mixture was stirred for 0.5 h and the resulting light yellow crystal-line solid was washed with water, dried (80–100°) and crystallised from metahnol, m.p. 246°. It was found insoluble in water but soluble in a few common organic solvents.

The complex was prepared by refluxing a mixture of ethanolic solution of the metal salts, NBTS and pyridine, quinoline, isoquinoline and γ -picoline in 1 : 1 : 2 molar ratio for 0.5 h and the resulting solid was washed with ethanol and dried under reduced pressure.

The metals were analyzed by standard procedure. C, H, N were analyzed by using a CE-440 analyzer. The molar conductance (10^{-3} *M* nitrobenzene) was measured on a Systronic 303 conductivity bridge. IR spectra were recorded on an Unicam sp-200 spectrophotometer and electronic spectra on an Unicam sp-500 spectrophotometer. Magnetic susceptibility was measured at room temperature by Guoy's method using diamagnetic correction with Pascal constant.

References

- S. Padhye and G. B. Kauffman, *Coord. Chem. Rev.*, 1985, 127, 63;
 S. D. Dhunwad, K. B. Gudasi, T. R. Goudar, C. T. Goudar and M. P. Chitnis, *Indian J. Chem., Sect. A*, 1995, 34, 38.
- K. Nakamota, "Infrared and Raman Spectra of Inorganic and Coordination Compounds", 3rd. ed., Wiley Interscience, New York, 1978; J. R. Dyer, "Applications of Absorption Spectroscopy of Organic Compounds", 3rd. ed., Prentice-Hall of India Ltd., New Delhi, 1974.
- B. Samvel, R. Smaith, C. Sumeford and K. Wade, J. Chem. Soc. (A), 1970, 2019.
- 4. G. B. Aitken, J. L. Dumcam and G. P. Mcqillen, J. Chem Soc. (A), 1971, 2965.
- 5. M. L. Patel and P. B. Jani, J. Indian Chem. Soc., 1986, 63, 276.
- A. B. P. Lever, "Inorganic Electronic Spectroscopy", Elsevier, Amsterdam, 1968; A. Razik and A. K. A. Hadi, *Transition Met. Chem.*, 1994, 19.
- 7. B. N. Figgis, "Introduction to Ligand Field", Wiley Eastern, New Delhi, 1976.
- B. M. Keshari and L. K. Mishra, *Indian J. Chem., Sect. A*, 1981, 20, 883.