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Abstract

This report comprises the first contributions from different partners on Federated Learning (FL). After
a preliminary introductory section where the fundamental procedures and limitations are described,
we detail the wellknownmathematical foundation of Federated Learning for convex problems. In this
case, we present a key algorithm, Alternating Direction Multipliers Method (ADMM), which is able
to implement in a distributed way some fundamental problems such as regression (Ridge and LASSO)
and classification (Logistic Regression and Support Vector Machines (SVM)). This procedure shares
the fundamental approach of FL which consists of performing some local processing, sharing some
intermediate information and updating the local information with some global innovation. In a second
step we introduce the extension of this approach to nonconvex problems using Bayesian Neural Net
works (BNN) where the update is based on the cooperative construction of the posterior of weights
from different architectures. Several sections follow where different partners provide different con
tributions describing our first initiatives on the topic. Some preliminary code from all partners has
been uploaded to a common repository to start creating a pool of methods and tools to foster incoming
synergies.

Keywords

Federated Learning (FL), convex, nonconvex, Alternating Direction Multipliers Method (ADMM),
Neural Networks (NNs), Bayesian Neural Networks (BNNs), Machine Learning (ML), Partitioned
Variational Inference (PVI), Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANs), clustering, Cox, Transfer Learning, Ensemble Learning, Myelodysplastic Syndromes (MDS)

Document revision history

Version Date Description of change Contributor(s)
v0.1 02122021 1st version of deliverable Petros Kountouris (CING) and Maria Xenophontos (CING)
v0.2 09122021 2nd version of deliverable Gastone Castellani (UNIBO)

Disclaimer
The information, documentation and figures available in this deliverable are provided by the
GENOMED4ALL project’s consortium under EC grant agreement 101017549 and do not necessarily re
flect the views of the European Commission. The European Commission is not liable for any use that may
be made of the information contained herein.

Copyright notice
© GENOMED4ALL 20212024

2 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

Project cofunded by the European Commission in the H2020 Programme

Nature of the deliverable R

Dissemination level

PU Public, fully open. e.g., website

CL Classified information as referred to in Commission Decision 2001/844/EC

CO Confidential to GENOMED4ALL project and Commission Services

* Deliverable types:
R: document, report (excluding periodic and final reports).
DEM: demonstrator, pilot, prototype, plan designs.
DEC: websites, patent filings, press and media actions, videos, etc.
OTHER: software, technical diagrams, etc.

3 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

Table of contents

1 Executive summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Federated Learning. An overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Statistical Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Systems Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Convex optimization. Distributed implementation . . . . . . . . . . . . . . . . . . . . . 23
3.1 Brief definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Centralized ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Formulation of ADMM Lasso: an example . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Code guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Distributed ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Formulation Formulation of ADMM SVM: an example . . . . . . . . . . . . . . . 31
3.4.2 Code guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Federated learning interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 NonConvex optimization. Distributed implementation . . . . . . . . . . . . . . . . . . 36
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 A Centralized approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Theoretical derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Practical implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Example. Centralized MNIST classification. Formulation. . . . . . . . . . . . . . . 40
4.2.4 Code guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Distributed implementations. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Partitioned variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Example. Distributed MNIST classification. Formulation . . . . . . . . . . . . . . 46
4.3.3 Code guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Federated Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 RadialGAN fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 RadialGAN formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

5.2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 UPM contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Single node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2 Multiple nodes, Centralized solution . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Multiple nodes, Distributed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Are GMs a suitable architecture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.3 Supervised (semisupervised) learning . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.4 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Survival analysis using Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.1 Vanilla Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.2 ELBO expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.3 Survival Analysis Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.4 The initial approach: Survival Analysis VAE (SAVAE) . . . . . . . . . . . . . . . . 62
6.4.5 ELBO derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Procedures to couple the learning of different nodes in VAEs’ architectures . . . . . . . . . 64
6.5.1 Joint design of the prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5.2 Federated Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6 First results of FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6.1 How to evaluate the performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6.2 Preliminary tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 UniBO contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 MDS data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Federated Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 Results on MDS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4.1 Federated training of the DEC models . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4.2 Effect of parameters on model performances . . . . . . . . . . . . . . . . . . . . . 80
7.4.3 Comparison with the Hierarchical Dirichlet Process clustering . . . . . . . . . . . . 81

8 UniTO contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.1 CoxPH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.2 DeepCox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.1.3 Evaluating Survival Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Federated strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2.1 Federated CoxPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

8.2.2 Sequential Federated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2.3 Weights Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2.4 Ensemble Federated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2.5 Centrebased KFold CrossValidation . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3.1 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3.2 Federated settings and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Conclusions and further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 UCPH contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2 The deep generative decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.3 Missing values and imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.4 Representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.5 Integration in a federated implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10 FORTH contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.1 Gradient Tree Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.2 XGBoost on a Federated Learning setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

List of Figures

2.1 Federated learning general representation example [3] . . . . . . . . . . . . . . . . . . . . . 17

3.1 Federated learning ADMM distribution (convex optimization). . . . . . . . . . . . . . . . . 35

4.1 Test error using Gaussian prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Test error using Gaussian scale mixture prior . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Federated learning ADMM distribution (nonconvex optimization). . . . . . . . . . . . . . 45
4.4 BNN’s performance in federated environment . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Local information shared through latent space . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 RadialGAN schematic architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 RadialGAN schematic training process for two users . . . . . . . . . . . . . . . . . . . . . 52
5.4 RadialGAN schematic cycleconsistency process for two users . . . . . . . . . . . . . . . . 52

6.1 Original VAE algorithm scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Multiple nodes VAE algorithm scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Multiple nodes VAE distributed algorithm scheme. . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Multiple nodes architecture sharing information scheme. . . . . . . . . . . . . . . . . . . . 56
6.5 General scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.6 Vanilla VAE Bayesian model, where the shadowed circle refers to latent variable and white

circle to the observable. Note that the probabilities p and q denote, respectively, the gener
ative model pθ(x|z) and the variational approximation to the posterior qϕ(z|x), as the true
posterior p(z|x) is unknown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.7 Vanilla VAE implementation using DNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.8 SAVAEBayesianmodel, where the shadowed circle refers to latent variable and white circles

to the observables. Note that the probabilities p and q denote, respectively, the generative
models pθ1(x|z) and pθ2(t|z), and the variational approximation to the posterior qϕ(z|x), as
the true posterior p(z|x) is unknown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.9 SAVAE implementation using DNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.10 Original VAE algorithm scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.11 Multiple nodes architecture sharing information scheme. . . . . . . . . . . . . . . . . . . . 66
6.12 General scheme federated data augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.13 Imputation rate 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.14 Imputation rate 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.15 Imputation rate 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Diagram of the DEC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 SAE for the different models configurations with varying numbers of clusters . . . . . . . . 80

7 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

7.3 G metric for the different models configurations with varying numbers of clusters. One can
observe the difference between the models with normalization (c, d, e, f, and g) and those
without (a and b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4 Cycle accuracy for the different models configurations with varying numbers of clusters . . 81
7.5 SAE for the different number of federated clients with varying numbers of clusters . . . . . 82
7.6 G metric for the different number of federated clients with varying numbers of clusters. . . . 82
7.7 Cycle accuracy for the different number of federated clients with varying numbers of clusters 83
7.8 left: Silhouette score of both DEC and HDP for 6 cluster centroids with different federa

tion divisions; right: Agreement scores between DEC and HDP for 6 cluster centroids with
different federation divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.9 left: Silhouette score of both DEC and HDP for 8 cluster centroids with different federa
tion divisions; right: Agreement scores between DEC and HDP for 8 cluster centroids with
different federation divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 Examples of right censoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 DeepCox neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3 Example of masked risk set matrices in the balanced and unbalanced federated scenarios. . . 88
8.4 Sequential Federated architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Weights Averaging Federated architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.6 Ensemble Federated architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.1 Performance of the Deep Generative Decoder and the VAE on CIFAR10 and MNIST.(A)
Learning curves for the DGD and the VAE.(B) Test loss distributions for the VAE and the
DGD. (C) Image generation and reconstruction performance of the DCGAN,DGD andVAE,
tested on the CIFAR10 dataset. (DF) 2D representation space and random samples from
DGD models with priors. The models contain 20 mixtures (D), 30 mixtures (E) and 50
mixtures (F) on the representation layer. Figure modified with permission from [75] . . . . . 97

8 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

List of Tables

2.1 Characteristics of single distributed learning vs. federated learning approaches . . . . . . . . 16

4.1 Results obtained using different BNN methods. . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1 Parameters configurations for the tested models. . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1 NonFederated Centralized case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Federated IID centres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Federated NonIID centres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

Abbreviations
ADMM Alternating Direction Multipliers Method
ALICE Adversarially Learned Inference with Conditional Entropy
AML Acute Myeloid Leukemia
BMB Bone Marrow Blasts
BNN Bayesian Neural Net works
BP BackPropagation

BYOC Bring Your Own Concepts
CI Concordance Index
DEC Deep Embedding for Clustering
DGD Deep Generative Decoder
DNN Deep Neural Networks
DP Differential Privacy
EFS Event Free Survival
ELBO Evidence Lower BOund
EP Expectation Propagation
FL Federated Learning
GAN Generative Adversarial Network
GBDT Gradient Boosting Decision Tree
GM Generative Model
GVI Global Variational Inference
HDP Hierarchical Dirichlet Process
HE Homomorphic Encryption
KL KullbackLeibler
KLD KullbackLeibler Divergence
LDA Latent Dirichlet Allocation
LFS Leukemia Free Survival
MAP Maximum A Posteriori
MDS Myelodysplastic Syndrome
ML Machine Learning
MoE Mixture of Experts
MPC MultiParty Computation
NN Neural Network
PoE Product of Experts
PVI Partitioned Variational Inference

10 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

SAE Stacked Autoencoder
SAVAE Survival Analysis Variational Autoencoder
SGD Stochastic Gradient Descent
SVM Support Vector Machine
TEE Trusted Execution Environments
tSNE Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection for dimension reduction
VAE Variational Autoencoder
ZKP ZeroKnowledge Proof

11 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

1 Executive summary
This document has several complementary objectives related to the description of the main contributions on
Federated Learning (FL) of all partners involved during the first year of the Genomed4All project. It has
different sections that we are going to describe in this summary.

The first chapter introduces the main concepts related to FLwhich can be summarized as follows: “Federated
Learning is a machine learning environment in which multiple entities collaborate in solving a machine
learning task, under the coordination of a central server or service provider´´. Each entity stores its raw
data locally and does not exchange or transfer it to the others; instead, they send updates to aggregate it
immediately so that the learning objective is achieved. These updates are limited in scope, so they consist of
the minimum necessary information that can be provided by the submitter entity. This configuration helps
with the privacy risks and costs inherent in centralised systems.

These ideas will be highlighted with an extended mathematical description of distributed processing. To do
so, we start by presenting the background of distributed convex optimisation using Alternating Direction
Multipliers Method (ADMM). This approach is very interesting because, although it is limited to solving
convex problems, we start by showing the principles in a centralised implementation and how we can extend
the ideas to the distributed version. The procedure is quite general because all federated steps related to local
processing, intermediate information exchange, global processing on the server and feedback back to local
nodes for iterative updates are explored.

In this document we have also described in full detail the concept of Partitioned Variational Inference as
a powerful general methodology to implement Bayesian estimation in a distributed way. This approach
allows the optimal computation of densities associated to nonconvex architectures as Neural Networks (NN)
applied to survival analysis, regression or classification.

Eventually, themain contribution of the paper is the proposal of a common pipeline thatmarks themain stages
in global processing ranging from local feature extraction, preprocessing, feature selection/importance and
visualisation to improve interpretability. In this process, imputation and learning procedures (e.g. regres
sion, classification, clustering, and survival analysis) have been particularly highlighted as the main benefits
obtained from federated implementation.

In the last section, different partners have presented some preliminary results describing their current initia
tives. Their contributions can be viewed and downloaded from a private Gitlab repository where the code
has been uploaded.

UPM has proposed an original survival analysis algorithm using variational autoencoders architectures
(SAVAE) with competitive results compared to other published work. The main highlight here is the com
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bination of generative processes and regression tasks (to be extended to classification and clustering in the
future). The motivation for including this latent space is the belief that forcing a consensus on the statistics
of this domain can be a very promising means of generating new federated architectures. At the moment,
UPM is investigating distributed implementation using modified variational autoencoders that explore a col
laborative learning procedure based on the joint design of the a priori distribution.

However, initial preliminary results have shown some limited performance which has motivated UPM to also
explore alternative implementations to come up with a simple idea: if the problem is the amount and variety
of data we have at small local sites, instead of moving real patient information that is forbidden we can share
some latent information that allows them to build virtual patients following similar statistics. Currently, they
are using generative adversarial networks (GANs) that address the two main challenges of trying to use data
from multiple sources: feature mismatching and distribution mismatching.

UNIBO is mainly dedicated to clustering as a technique that is nowadays widely used for patient strati
fication. In general, patients can be stratified according to some characteristics obtained by multiomics
measurements, like genomic and imaging, and, after this step, try to predict some clinical outcome. How
ever, most clustering methods cannot be directly extended in a federated setting, and even those that can may
need substantial changes to adapt to the different scenario.

The model they are developing is based on Deep Embedding for Clustering (DEC) implemented using the
Flower framework and extended for the MDS case. This model is inspired by parametric tSNE and exploits
the ability of autoencoders to project real data into the feature, or hidden, subspace with (usually) very low
dimensionality. They have shown that this model is able to simultaneously learn feature representations and
cluster assignments. The resulting model weights were aggregated using the FedAvg algorithm.

UNITO is currently exploring the latest techniques in Neural Networks and Machine Learning to develop
nonlinear survival analysis models, implementing them through a federated approach that extends Cox
proportional hazards, which is probably too simplistic an approach because in realworld clinical data, pa
tient characteristics could contribute through more complicated nonlinear functions to the definition of risk
scores. To capture this behaviour, the model replaces the linear predictor with the output of a neural network
with parameters to optimize.

To this end, three possible federated learning architectures, Sequential Federated, Weights Averaging and
Ensemble Federated, have been investigated and tested on an MDS patient survival dataset already de
scribed in the previous chapters in two possible scenarios, balanced or unbalanced centres, representing
a uniform/nonuniform distribution of patients across centres.

UCPH is working on representation learning combined with transfer learning. The idea of representation
learning is to learn a lowdimensional representation of highdimensional data, which can facilitate the subse
quent training of a classifier or a survival model. They have proposed a new approach called DeepGenerative
Decoder (DGD) as a generative neural network, which consists of a probability distribution over the latent
space (or representation space) and a neural network (the decoder), which maps the representations to the
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feature (output) space.

The model is very similar to the variational autoencoder (VAE) mentioned above, but does not have an en
coder. The main difference with the VAE is the Maximum A Posteriori (MAP) estimation instead of the
variational inference used in the VAE. They will implement the estimation of the model with missing data
as well as the imputation method and test it on real data. Very soon they will start with the implementa
tion of the federated framework and test the different ingredients of the model (missing values, imputation,
representation) in the tests developed for the project.

FORTH mainly focuses on Ensemble Learning as an interesting metalearning strategy in which a large
number of relatively weak simple models are combined in order to obtain a stronger ensemble prediction,
where the most prominent examples of such ensemble machine learning techniques are random forests. It
is known that in a centralised version, new base learners are selected according to their correlation with the
negative gradient of the loss function, associated to the whole ensemble.

However, the federated implementation is much more complicated and different approaches are currently be
ing studied based on the idea that the different nodes obtain the optimal split while the central node transmits
it to the nodes so that they can continue building the tree. Again, some information about the distribution
of the data can be deduced, but important information such as class values is not filtered out. Therefore,
after a split, each node can simply transmit these two sums to the central node. The central node adds up all
the sums and can calculate a solution update for all the leaves, which it transmits back to the clients. It is
important to note that during this federated process all nodes ”work” on building the same set of trees.
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2 Federated Learning. An overview
When speaking about huge amounts of data processing and deep learning algorithms combined, several
solutions have been implemented by researchers in the past years to make development easier, since massive
processing power and ability to handle different data layers are required. Some of these solutions have gained
a lot of interest among developers from over the world providing them with different tools, which enable
deep learning applications research and production.

Traditional deep learning tasks involve uploading data to a server and using it to train a model. In other
words, due to the complexity of the algorithms chosen and that of the project’s task, which requires a big
representative collection of samples, traditional ways of processing and training are not enough. In recent
years, researchers and developers have been provided with devices being able to have enormous amounts of
storage space but it never seems to be enough. It is quite normal too to own data on different devices and
having to spend lots of time and power to centralize that data in a single one, which will be used to train the
model. It can also become a problem with privacy centralizing personallyidentifiable information when it
comes to using data obtained from different users. These problems described referring to data quantity and
quality cannot be resolved using a traditional way of centralized training machine learning models. This is
where Federated Learning appears.

This chapter describes the main vision, along with its characteristics and challenges, of a federated learning
environment, identifying the most important limitations and considerations from existing research. It also
aims to highlight issues that are of both practical and theoretical interest.

2.1 Definition
This learning approach makes it possible for several algorithms to achieve knowledge and experience from
a huge spectrum of information stored in distinct locations, without having to share sensitive data with each
other. It was first introduced by [1] in 2016 as an “unbalanced and nonIID (identically and independently
distributed) way of partitioning data across a huge number of unreliable devices with limitations such as
bandwidth”. In other words, the term federated learning was initially introduced referring to mobile or
edge device tasks, but an interest in applying it to other applications rapidly increased. For example several
organizations or companies collaborating to develop a solution to a problem. These two different federated
learning settings are lately classified in “crossdevice” and “crosssilo” respectively.

[2] suggests a broad definition for this term which might help with the theoretical understanding of the
concept: “Federated learning is a machine learning setting where multiple entities collaborate in solving a
machine learning task, under the coordination of a central server or service provider”. Each entity stores
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its raw data locally and does not exchange or transfer it to others; instead, they send updates to aggregate
them immediately so that the learning target is achieved. These updates are limited in terms of scope so that
they consist on the minimum information needed about the user. This setting helps with the privacy risks
and costs that are inherent to centralized systems. Table 2.1 contrasts some other different characteristics
given a single centralized setting and both federated learning approaches defined before.

Single Data center CrossDevice CrossSilo

Setting
Clients belong to a single cluster

(flat dataset)
Clients are organizations

(siloed data)
Clients are a massive number of

IoT devices

Information
Disposal

Stored in a central server
so it becomes balanced

and accessible

Locally stored and decentralized (cannot read from other clients.
NonIID)

Composition Centrally orchestrated Main server coordinates not seeing raw data
Availability Almost always available Unreliable (Only a number of clients available at a time)
Reliability Few client failures Unreliable (5% clients fail)

Table 2.1: Characteristics of single distributed learning vs. federated learning approaches

2.2 Architecture
To put us in the picture of how this setting works, figure 2.1 shows a schematic representation of the learning
process in a health field, where the entities are hospital and medical centers, among others. Over the years,
medical organizations had to have confidence on their own siloed information even though it could have
been biased or have had to pool information from other institutions, with the limitations and consequences
that this entails mainly due to privacy. Obviously, algorithms deployed in these scenarios to perform some
kind of task need to reach clinicalgrade accuracy, and thus to meet this standard the problem should be fed
a large and diverse number of cases or information. So, federated learning makes the tasks dispersed by
abolishing the need to pool data into a unique location and training in multiple entities using their stored
data. The consequent model will be sent after a few iterations to a server (in case of a clientserver federated
approach), then the global model is updated by aggregating local contributions and finally it is shared back
with the participants, as figure 2.1 shows.

As it can be seen, three major components in this system can be differentiated taking into account their
functionality: the parties or entities, the manager and the communicationcomputation framework where the
training takes places. Depending on which kind of task and the solution desired, as well as the facilities
available, each component will trigger different results and challenges, that will be described in section 2.3.

Talking about the system itself, the federated learning growing claim has gathered some help in the form of
frameworks and tools to make its development and simulation easier, dealing with issues that do not arise in
the entity research like the efficient processing of the partitioned data. There are several platforms that can
be highlighted:
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Figure 2.1: Federated learning general representation example [3]

1. FATE[4]: Framework which aims to provide services to the entities or organizations. It is structured
in six modules that manage different areas, such as secure protocols, storage or the inference between
clients. It also provides a visualization tool to track the job execution and performance. There is
also detailed documentation but, since it provides interfaces for the algorithm development, the users
should change the code to develop their own desired tasks. The code is available in [5].

2. PaddelFL[6]: Based on four components in the compile time that include federated learning strate
gies, models and algorithms with a distributed configuration while training. This setting only includes
horizontal algorithms. which uses data from the same feature space across all devices, but it is meant
to include vertical ones too (different datasets of different feature space) in the near future. Three main
factors can be highlighted in the runtime: two of them coincide with the functionalities of the parties
and the manager, and the third one selects who participates in each iteration. Since its development is
still at an early stage, there are few and unclear documents. The code is available in [7].

3. PySyft[8]: Python library for developing deep learning in a secure way, that provides interfaces to
implement the respective algorithm separating private data from the model training by making use
of differential privacy and multiparty computation. It works with PyTorch and TensorFlow but only
supporting FedAvg[1] too, which is the basic framework where, in each iteration, the updated models
from each party are sent to the main server to average the information and get a new global model.
However, although it provides tutorials, there is no detailed document. The code is available in [9].

4. TensorFlow Federated[10]: It provides construction blocks for federated learning based on Tensor
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Flow, including models, data and federated computation constructors (averaging algorithm). Devel
opers are able to make use of the different Python interfaces and define new functionalities too, since
it is quite easy to use. It also only supports FedAvg but, in this case, it does not come with privacy
technology and it can only be set up on a single device. The code is available in [11].

5. IBM Federated Learning Framework[12]: In this case, a proprietary framework is described. IBM
research[13] announced at the ICMLFederated Learningworkshop a framework for federated learning
that focuses on enterprise use cases providing an architecture that integrates well with current machine
learning libraries like Keras and TensorFlow. It has APIs for algorithm development and secure multi
party computation (SMC) approaches in terms of privacy. The code can be found in [14] and there is
some extra information to help with the installation in [15].

6. NVIDIA Clara [16]: This is the last proprietary framework described. It is a healthcare framework
dedicated for AIpowered imaging, genomics and smart sensors. It implements a centralized scheme
having some builtin solutions with privacy mechanisms, which can be improved by developers by
using the bringyourownconcepts (BYOC) method even though it is not an open source platform. It
supports GPU, unlike the previous platforms, requiring the support of CUDA 6.0 or higher.

Finally, to guide the federated learning system research, a comparison evaluationmakes some sense to review
how the setting is working. It requires some kind of metrics, like counting the bytes downloaded or uploaded
in each client, the client dropout rate or an statistical evaluation to check the system privacy, for example.
LEAF[17] is a benchmark proposed in [18] that provides evaluation capabilities, not including efficiency or
privacy ones, but federated data and some reference implementations. It is the only open source benchmark
available, although it is not exhaustive enough.

2.3 Challenges
As discussed in the previous section the problem of federated learning can be tackled by a number of so
lutions, however, FL poses core challenges as exposed in [19]. Thus, accounting for these challenges will
only increase the performance of the whole system.

2.3.1 Statistical Heterogeneity

Data variability is a major challenge/factor, inherited from the fact that data are not identically distributed
(nonIID) and exist on different distributed clients and are often generated and collected in ways that may
not match across the network. The paradigm of data generation adds complexity while analyzing and mod
eling increasing the likelihood of stragglers. The presence of nonIDD data can be the principal challenge
when trying to address efficiency and effectiveness, which can happen due to each entity having data that
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corresponds to a specific user, a specific time window or location. Therefore, differences in data distribution
on each client need to be considered, since it might be a good way to start with the analysis. Real datasets
contain a mixture of different nonidentical client distributions, such as different features owning the same
label or vice versa, and skewed distributions for both feature and labels. Each of those might need a par
ticular mitigation strategy: for example, when there are different labels for the same features, some type
of personalized learning could be key to learn the true labeling functions. When dealing with the type of
data, recent studies propose in some applications to augment data in order to make it more similar across
the different clients or to make a small dataset to be shared (not privacy sensitive). Another natural solution
is creating or modifying algorithms changing e.g, the hyperparameters, in order to make the setting more
effective.

Also, the convergence behaviour of this kind of settings has to be analyzed, since techniques such as FedAvg
have demonstrated to diverge in different practices [1][20]. Recent works like FedProx[20] make a modifi
cation to the previous one, FedAvg, to ensure convergence in heterogeneous environments. There exist also
heuristic approaches that try to deal with statistical heterogeneity [21], but this would mean sharing local
data violating the privacy assumption of federated learning.

But, overall, there is one question that arises if the clients own the capability to train locally: is training
a single model the right target? Maybe, it is feasible for each entity to own a model customized for itself
turning the problem to a feature of the model. This will also help addressing the changes in client availability.
The “multimodel” approach will be addressed in the following sections.

2.3.2 Privacy

In the case of FL model configuration, one of the most important benefits is that it is able to give a level of
privacy to the different clients by never letting raw data out of the device and just sending updates of the
obtained models from the client to the main server. In other words, the updates do not contain additional
user information. However, there is still no guarantee that this updates might not be leaked and, therefore,
someone could infer data of the training process by, for example, taking into account a model and the gradient
update. For example, [22] shows that one can extract patterns from a network.

Beyond this kind of attacks concerning user privacy, there are some others, such as preventing a model from
being learned or biasing the model, that should be taken into account. Reaching the privacy characteristics
desired for this setting is going to require using the techniques that are described below but maintaining
a cheap computation, efficient communication whilst not compromising accuracy. This section will try to
review recent methods that try to preserve the settings privacy.

Although there are several definitions for privacy in federated learning, they can be separated into three
different groups.
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1. Secure computations: The way the learning result is computed and how the information flows during
the process need to be considered. In these cases, technologies such as Secure MultiParty Computa
tion (MPC) and Trusted Execution Environments (TEEs) are used to address the former.

(a) The first one is a field of cryptography that tries to make the parties compute a particular function
using their private inputs but just revealing the output. Recent advances in MPC are attributed to
transfer protocols[23] and homomorphic encryption (HE), which allowsmathematical operations
to be performed on texts encrypted. HE can range from fully homomorphic encryption [24] to
more efficient variants [25] (code available in [26]). A review of HE software can be found in
[27]. In the federated learning field, a problem occurs when deciding who knows how to decrypt
the scheme. An external party or a distributed encryption scheme can be explored as solutions.

(b) TEEs provide facilities for establishing confidentiality, integrity and measuring that the code has
been executed privately. However, it is necessary to take into account other aspects like how to
structure the code so that it does not reveal anything about data.

2. PrivacyPreservingDisclosures: It is important to checkwhat or howmuch information about a party
is being revealed. The main technique used is differential privacy (DP)[28] that brings uncertainty to
the model so that the contribution of any party is hidden. It is quantified by privacy loss parameters
(smaller parameters mean increased privacy). Several techniques have been brought over the years
for this technique where the server is a trusted implementer of it, although it would be optimal not to
rely on a trusted party.

3. Verifiability: This problem[29] addresses the capacity of the parties to show that they have performed
correctly. In this context, federated learning would allow the main server to show that the different
parties worked faithfully and to enable the clients to prove that the server did so also. There are two
main technologies to to verify that key functions are running on the orchestration device: remote
attestation and zeroknowledge proofs (ZKPs).

(a) Remote Attestation[30]: Might be helpful to verify functions that are key running on the
orchestration device. In addition, it may allow a server attest requirements from the entities
training.

(b) ZKPs: Cryptographic primitive that enables one entity to prove statements to another, that de
pend on data known just to the first one not revealing those to the second one. In the recent
years, several applications have used this technique motivated by block chains. Yet it remains a
challenge in federated learning settings.

2.3.3 Systems Heterogeneity

As it is obvious, in the federated learning network, clients could differ in hardware, connectivity and battery,
among others. To handle this heterogeneity recent works suggest three different techniques based on [19]
and described in the following:
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1. Asynchronous communication: This schemes are attractive to mitigate stragglers in devices that
show different characteristics, in particular, in sharedmemory systems such as [31]. Nonetheless, this
systems rely on the assumption of a limited delay to control the staleness, which is a bit unpractical in
federated learning because the delay is not bounded, being this hours or days.

2. Active device sampling: Since just a few number of clients engage in each round due to any reason,
it could be an approach to actively select which devices participate at each round[32] based on re
sources, for example. Withal, these technique assume a static system, in other words, a system whose
characteristics remain the same.

3. Fault tolerance: Finally, since it is not uncommon for some participants to fail at some point during
the execution process of a federated system, fault tolerance has been studied extensively in machine
learning workloads. There are several techniques such as ignoring the failure (bias) and coded com
putation, where algorithmic redundancy is introduced [33], but this violates the FL rule of not sharing
data across devices.

2.3.4 Communication

Finally, the last but not least important challenge, depending on the system desired, is this key bottleneck:
communication. This happens specially in crossdevice settings where connectivity may operate at a lower
rate than data centers or directly drop. As the previous challenge, there are three directions exposed in recent
works to handle this situation, although it remains ambiguous if the cost of communication can be decreased
without affecting accuracy in federated learning.

1. Local Updates: Recent methods propose increasing competence in communication by updating in
a variable way the local models on each device providing a more flexible system[34]. The most
commonly used technique is FedAvg, already mentioned (no convergence guarantees).

2. Compression schemes: Limited resources (computation and memory) of the devices in the system
motivate these. There are several situations such as gradient compression, model broadcast compres
sion and local computation reduction, being them defined in [35]. In the situation of a federated learn
ing approach, recent works show that enforcing a lowrank on the updating models by using Golomb
[36] encoding or techniques such as lossy compression and dropout to reduce the communication links
[35], could work.

3. Decentralized training: Decentralized topologies, where there is only communication between neigh
bors, have shown that they are faster than centralized ones in low bandwidth networks[37]. Works like
[38] have shown that decentralized settings perform well for heterogeneous data and locally updated
models however they are limited to linear situations. There are also papers discussing hierarchical
communication patterns [39], but they rely on a cloud server to aggregate updates.
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2.4 Conclusion
Over the past few years, federated learning has become an explosive topic of interest, both in research and
industry fields, since it enables distributed clients to learn and share a model in a collaborative way whilst
keeping the inout data private. The huge amount of reviews referred to this study show that it is gaining
attraction in several disparate areas even though there are several constraints or challenges imposed by the
system itself, requiring efficiency and effectiveness, among others. There are many open problems in this
approach that are being discussed in several works but not yet solved, showing that this field is in constant
growth and researchers or developers have to investigate which characteristics they desire for their settings
and, more important, for their type of data and task to be implemented.

22 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

3 Convex optimization. Distributed imple
mentation

This chapter presents the main ideas related to convex optimization. Very briefly we will talk about some
wellknown convex problems in supervised learning such as Ridge Regression, Lasso, Logistic Regression
and SVM formulated from a common perspective emphasizing the effect of function differentiability. We
will solve all of them under a common algorithm known as Centralized ADMM because this kind of algo
rithms is suitable for distributed implementations. Then, in a second section we will describe distributed
implementations following the same ADMM principles.

3.1 Brief definition
As [40] defines, a convex optimization problem is one where the functions to minimize f0, ..., fm : Rn → R

are convex, i.e., satisfy

fi(αx + βy) ≤ α fi(x) + β fi(y) (3.1)

for all x, y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0. This implies at most one global minimum:
either there is one optimal solution or no feasible solution to the problem. This is the basic difference between
convex and nonconvex optimization problems: nonconvex ones can have multiple locally optimal points,
being timeconsuming to identify whether the problem has no solution or it is globally optimal.

3.2 General formulation
The most popular algorithms used in Machine Learning can be presented by a unifying formula:

min
w∈Rd,b∈R

(
1
N

N

∑
i=1

l(wTvi + b, yi)

)
(3.2)

where vi represents the vector inputs while yi are the outcomes. w, b represent the parameters to be optimized
as an affine combination of the input variables. In practice, we will use an equivalent definition compacting
x = [ w b ]T and u = [ v 1 ]T. In addition, an extra term R(x) is usually added to include some
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desired feature of the solution:

min
x∈Rd+1

(
1
N

N

∑
i=1

l(xTui, yi) + R(x)

)
(3.3)

We assume that both l and R are convex and x is a (d + 1)× 1 vector as the unknown vector variable to be
obtained. The first term is referred as empirical loss functionwhereas the second is the Regularizer. The loss
function typically represents the objective of the machine learning application as regression, classification,
features selection, compress sensing and basis pursuit, among others. The regularizer on the other hand adds
an extra contribution that penalizes / enforces certain characteristics of the variable x (as its energy or its
sparsity) although you may notice that some bias is included. Typically this term is a norm as L1 or L2.

The Ridge for instance is given by the linear regression formulation with an L2 norm

min
x∈Rd+1

1
N

N

∑
i=1

(xTui − yi)
2 +

λ

2
∥x∥2

2 (3.4)

while the Lasso uses an L1 norm

min
x∈Rd+1

(
1
N

N

∑
i=1

(xTui − yi)
2 + λ∥x∥1

)
(3.5)

Regarding classification, the most popular algorithms are Logistic regression

min
x∈Rd+1

(
1
N

N

∑
i=1

ln(1 + exp(−yi(xTui))) +
λ

2
∥x∥2

2

)
(3.6)

and SVMs

min
x∈Rd+1

(
1
N

N

∑
i=1

max(1 − yi(xTui), 0) +
λ

2
∥x∥2

2

)
(3.7)

If the functions are differentiable, standard procedures are based on iterative gradient (firstorder or quasi
Newton) algorithms. However, it can be observed that Lasso (and any implementation of L1) and SVM are
not differentiable and this fact complicates the analysis. Note that, in general, subgradient methods produce
undesirable oscillations and that, alternatively, the solution is obtained by proximal algorithms.

Among the variety of convex optimisation solutions we will describe only the ADMM which scales very
well and is therefore very attractive for big data scenarios. In fact, it can be implemented in a fully distributed
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way making it a strong candidate for solving convex problems in noncentralised scenarios. Let’s start with
the centralised case to understand the main ideas and then we will consider the distributed case.

3.3 Centralized ADMM
The following ideas are reflected from [41]. We start from a convex optimization problem with equality
constraints

min f (x)
s.t.: Ax = b

(3.8)

The Lagrangian for that problem is

L(x, y) = f (x) + yT(Ax − b) (3.9)

To guarantee convergence without assuming strict convexity of f we define the augmented Lagrangian:

Lρ(x, y) = f (x) + yT(Ax − b) +
ρ

2
∥Ax − b∥2

2 (3.10)

where ρ is called the penalty parameter. Note that including the term ∥Ax− b∥2
2 guarantees strong convexity

improving the convergence characteristics. This problem is clearly equivalent to the original one and can be
solved by the dual ascent method which is known in this case as the method of multipliers where the penalty
parameter is used as the fixed step size.

xk+1 = arg min
x

Lρ(x, yk)

yk+1 = yk + ρ(Axk+1 − b)
(3.11)

because this choice of ρ guarantees the convergence of the primal residual to 0.

The ADMM algorithm is strongly based on this simple procedure, although in its more general perspective
it solves problems in the form:

min g(x) + h(z)
s.t.: Ax + Bz = c

(3.12)

where g and h are convex and a new variable z is proposed. The augmented Lagrangian is:
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Lρ(x, z, y) = g(x) + h(z) + yT(Ax + Bz − c) +
ρ

2
∥Ax + Bz − c∥2

2 (3.13)

and ADMM consists of the iterations:

xk+1 = arg min
x

Lρ(x, zk, yk)

zk+1 = arg min
z

Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c)

(3.14)

Although (x, z) can be updated simultaneously, ADMM proposes a sequential form in alternating directions.
This is precisely what allows the decomposition when g or h are separable. These equations can be written
more adequately by combining the linear and quadratic terms in the augmented Lagrangian and scaling the
dual variable. Defining the residual r = Ax + Bz − c, we have:

yTr +
ρ

2
∥r∥2

2 =
ρ

2

∣∣∣∣∣∣∣∣r + 1
ρ

y
∣∣∣∣∣∣∣∣2

2
− 1

2ρ
∥y∥2

2 =
ρ

2
∥r + w∥2

2 −
ρ

2
∥w∥2

2 (3.15)

where w = 1
ρ y is the scaled dual variable. Finally, ADMM looks like:

xk+1 = arg min
x

(g(x) + ρ
2∥Ax + Bzk − c + wk∥2

2)

zk+1 = arg min
z

(h(z) + ρ
2∥Axk+1 + Bz − c + wk∥2

2)

wk+1 = wk + Axk+1 + Bzk+1 − c

(3.16)

If g and h are closed, proper and convex and strong duality is satisfied, the ADMM satisfies convergence
guarantees.

Let us recall the original problem that we have proposed in terms of the loss function and the regularizer:

min
x

f (x) = min
x
(g(x) + h(x)) (3.17)

It can be seen that we can express it in terms of the ADMM formulation very easily

min
x,z

(g(x) + h(z))

s.t. : x − z = 0
(3.18)

If we particularise the equation in the above optimization problem we get
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xk+1 = arg min
x

(g(x) + ρ
2∥x − zk + wk∥2

2)

zk+1 = arg min
z

(h(z) + ρ
2∥xk+1 − z + wk∥2

2)

wk+1 = wk + xk+1 − zk+1

(3.19)

which are the equations to be implemented.

3.3.1 Formulation of ADMM Lasso: an example

As we have seen, ADMM solves problems in the general form:

min g(x) + h(z)
s.t.: Ax + Bz = c

(3.20)

where g and h are convex and a new variable z is proposed. In our case, we want to solve the Lasso problem:

min( 1
N∥Ax − b∥2

2 + λ∥z∥1)

s.t.: x − z = 0
(3.21)

where g(x) = 1
N∥Ax − b∥2

2 h(z) = λ∥z∥1. The augmented Lagrangian is:

Lρ(x, z, y) =
1
N
∥Ax − b∥2

2 + λ∥z∥1 + yT(x − z) +
ρ

2
∥x − z∥2

2 (3.22)

After some manipulations and using the scaled dual variable, ADMM consists of the iterations:

xk+1 = arg min
x

(Lρ(x, zk, wk)) =
(

2
N AT A + ρI

)−1(
2
N ATb − ρ(zk − wk)

)
zk+1 = arg min

z
(Lρ(xk+1, z, wk)) = Soft

(
xk+1 + wk, λ

ρ

)
wk+1 = wk + xk+1 − zk+1

(3.23)

where soft refers to the Soft Thresholding operation:

soft(a, b) = (a − b)+ − (−a − b)+ (3.24)

where (·)+ = max{0, ·}.

A sketch of ADMM can be seen in Algorithm 1.
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Algorithm 1 Centralized ADMM Lasso algorithm
1: We are given A, b, λ and ρ.
2: Initialize x1, z1 and w1 as a zero vectors.
3: for k=1: Number of iters do
4: Obtain xk+1 using the first expression from (3.23).
5: Obtain zk+1 using the second expression from (3.23).
6: Obtain wk+1 using the third expression from (3.23).
7: end for

3.3.2 Code guide

The provided implementation of ADMM is tested on Python 3.6. There are two scripts, where the first one is
«admm_toolbox.py» which implements the code needed to run a centralized (or distributed) ADMM based
version of two classification problems (SVM and logistic regression), and two regression problems (LASSO
and ridge). The second script, «admm.py», contains an example on how to run each problem. Also, note
that we include two example datasets: the housing dataset for regression purposes and the banknote dataset
for classification.

To run the problems, the following steps should be followed:

1. First of all, a Python 3.6+ environment is required.

2. The environment requirements should be installed. To do so, PIP is a package management system
used to install and manage software packages written in Python:

(a) pip install r requirements.txt

3. Note that a required package is CVX optimization toolbox, that is only required to evaluate how good
the solution given by ADMM is. The toolbox could be modified to not use this package, as it is only
needed for visualization and debugging purposes.

4. Run the main script by using python admm.py. Note that this will solve all problems in a distributed
and centralized way, and show the results through the screen.

You can also run your own script for your concrete problem. In order to do so, prepare a python script that
contains the following commands:

1. Load the ADMM solver using cent_solver = AdmmCentralized(data_in, data_out, problem), where
data_in denotes the dataset features, data_out the regression target or labels, and problem is a string
"ridge", "lasso", "svm" or "logistic" depending on the problem we want to solve. This function creates
an instance of the AdmmCentralized class, which is used to optimize. Note that this class implements
three functions x_update, y_update and z_update that correspond to equations 3.23.
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2. We can train by using cent_solver.train(niter), where niter is the number of iterations of the solver.
The train() method calls the different update methods implemented in the class.

3. The results can be seen by using cent_solver.plot()

Note that we provide four example problems for illustration purposes: the code is commented so that it
facilitates incorporating other problems to the toolbox.

3.4 Distributed ADMM
Let us consider a global problem f (x) that can be split into a set of local separable problems gi(x) (for
simplicity we currently skip the regularizer effect to be included later):

min
x

f (x) = min
x

Nb

∑
i=1

gi(x) (3.25)

where x ∈ Rd+1 and gi : Rd+1 → R ∪ {+∞} are convex. The goal now is to solve this problem in such a
way that each term can be handled by its own processing element. This problem can be rewritten with local
variables xi ∈ Rd+1 and a common global variable z :

min
xi

Nb

∑
i=1

gi(xi)s.t.:xi − z = 0 i = 1, · · · , Nb (3.26)

This formulation is called as theGlobal Consensus Problem, since the constraint is that all the local variables
should agree. ADMM can be derived directly for an arbitrary number of nodes Nb including the correspond
ing Lagrange multipliers yi and the quadratic term to ensure strong convexity:

Lρ(x1, · · · , xNb , z, y1, · · · yNb) =
Nb

∑
i=1

(
gi(xi) + yT

i (xi − z) +
ρ

2
∥xi − z∥2

2

)
(3.27)

Making a similar development as in the centralized ADMM described in previous section, we obtain the
following algorithm:
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xi,k+1 = arg min
xi

(
gi(xi) + yT

i,k(xi − zk) +
ρ

2
∥xi − zk∥2

2

)
zk+1 =

1
Nb

Nb

∑
i=1

(
xi,k+1 +

1
ρ

yi,k

)
yi,k+1 = yi,k + ρ(xi,k+1 − zk+1)

(3.28)

Let us now show the case where the regularization effect has to be included in the analysis:

min
x,z

Nb

∑
i=1

gi(xi) + h(z)s.t.:xi − z = 0 i = 1, · · · , Nb (3.29)

where Nb again refers to the number of blocks we are splitting our data.

The resulting ADMM algorithm is:

xi,k+1 = arg min
xi

(
gi(xi) + yT

i,k(xi − zk) +
ρ

2
∥xi − zk∥2

2

)
zk+1 = arg min

z

(
h(z) +

Nb

∑
i=1

(−yT
i,kz +

ρ

2
∥xi,k+1 − z∥2

2)

)
yi,k+1 = yi,k + ρ(xi,k+1 − zk+1)

(3.30)

In many cases it is simpler and easier to work with the scaled form (it is the same procedure as in previous
section). Defining the residual r = (xi − zk), we have that the two last terms in previous equations become:

yT
i,kr +

ρ

2
∥r∥2

2 =
ρ

2

∣∣∣∣∣∣∣∣r + 1
ρ

yi,k

∣∣∣∣∣∣∣∣2
2
− 1

2ρ
∥yi,k∥2

2 =
ρ

2
∥r + wi,k∥2

2 −
ρ

2
∥wi,k∥2

2 (3.31)

where wi,k =
1
ρ yi,k is the scaled dual variable. ADMM finally looks like:

xi,k+1 = arg min
xi

(gi(xi) +
ρ
2∥xi − zk + wi,k∥2

2)

zk+1 = arg min
z

(h(z) + Nbρ
2 ∥z − x̄k+1 − w̄k∥2

2)

wi,k+1 = wi,k + xi,k+1 − zk+1

(3.32)

where x̄k =
1

Nb

Nb

∑
i=1

xi,k and w̄k =
1

Nb

Nb

∑
i=1

wi,k.
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These are the equations to be implemented. Note that xi,k+1 and wi,k+1 are local variables that are computed
on isolated nodes and shared as intermediate variables with the server that calculates the global variable zk+1

and shares it again with all nodes.

3.4.1 Formulation Formulation of ADMM SVM: an example

As we have seen, distributed ADMM can be used to solve problems in the following way:

min
x,z

Nb

∑
j=1

gj(xj) + h(z)

s.t.: xj − z = 0 j = 1, · · · , Nb

(3.33)

where Nb is the number of workers, indexed by j. Note that we assume that each worker has its own set of
points Aj,bj. In our case, we want to solve the next problem as a distributed SVM classifier:

min
x,z

Nb

∑
j=1

1
N

N

∑
i=1

max
(
1 − bj,iaT

j,ixj, 0
)
+

λ

2
∥z∥2

2

s.t.: xj − z = 0 j = 1, · · · , Nb

(3.34)

assuming that we have i samples at every node. The augmented Lagrangian is:

Lρ(xj, z, yj) =
Nb

∑
j=1

( 1
N

N

∑
i=1

max
(
1 − bj,iaT

j,ixj, 0
))

+
λ

2
∥z∥2

2

+
Nb

∑
j=1

yT
j (xj − z) +

Nb

∑
j=1

ρ

2
∥xj − z∥2

2

(3.35)

and ADMM consists of the iterations:

xj,k+1 = arg min
xj

(Lρ(xj, zk, yj,k))

zk+1 = arg min
z

(Lρ(xj,k+1, z, yj,k))

wj,k+1 = wj,k + xj,k+1 − zk+1

(3.36)

where w is y scaled by ρ. In this case, we can easily obtain the subgradient of Lρ, and use it to update xj :
this subgradient is:
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δ(xj) = ρ(xj − z + wj) +
1
N

N

∑
i=1

 0

−bj,iaj,i

i f bj,iaT
j,ixj > 1

i f bj,iaT
j,ixj < 1

(3.37)

And the update equation of subgradient descent method was:

xj,k+1 = xj,k − µδ(xj,k) (3.38)

where µ is the step size. Regarding the update of the z term, we can derivate the Lagrangian to obtain the
following expression:

∂Lρ(xj, z, wj)

∂z
= λz −

Nb

∑
j=1

ρ(xj − z + wj) = z (λ + Nbρ)− ρ
Nb

∑
j=1

(xj + wj) = 0 (3.39)

Therefore, we have that:

zk+1 = ρ

Nb

∑
j=1

xj,k+1 + wj,k

λ + Nbρ
(3.40)

Thus, note that in this case, we update xj locally using subgradient steps, then update z globally using the
information from all workers, and then update wj locally. A sketch of ADMM can be seen in Algorithm 2.

Algorithm 2 Distributed ADMM SVM algorithm
1: Each worker knows Aj, bj, λ, ρ, µ and Nb.
2: Initialize xj,1, z1 and wj,1 as a zero vectors for each worker j = 1, .., Nb.
3: for k=1:Number of iters do
4: for j = 1 : Nb do
5: for Number of subgradient steps do
6: Obtain the local subgradient δ(xj) using (3.37).
7: Update xj,k+1 using (3.38).
8: end for
9: end for
10: Obtain zk+1 using (3.40).
11: for j = 1 : Nb do
12: Update wj,k+1 using the third expression from (3.23).
13: end for
14: end for
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3.4.2 Code guide

We can use the same code described in the centralized ADMM case for the distributed ADMM problem.
We use the same two scripts as in the centralized case, where the first one is «admm_toolbox.py» which
implements the code needed to run a centralized and distributed ADMM based version of two classification
problems (SVM and logistic regression), and two regression problems (LASSO and ridge). The second
script, «admm.py», contains an example on how to run each problem. By running the main script by using
python admm.py, the program solves all problems in a distributed and centralized way, and shows the results
through the screen.

You can also run your own script for your concrete problem. In order to do so, prepare a python script that
contains the following commands:

1. Load the ADMM solver using dist_solver = AdmmDistributed(data_in, data_out, problem), where
data_in denotes the dataset features, data_out the regression target or labels, and problem is a string
"ridge", "lasso", "svm" or "logistic" depending on the problem we want to solve. Note that in this
case, data_in and data_out must be lists of elements, where each element in the list contains the private
dataset for each node; also note that the number of nodes is automatically set to the number of private
datasets. This function creates an instance of the AdmmDistributed class, which is used to optimize.
Note that this class implements three functions x_update, y_update and z_update that correspond to
equations 3.23.

2. We can train by using dist_solver.train(niter), where niter is the number of iterations of the solver. The
train() method calls the different update methods implemented in the class.

3. The results can be seen by using dist_solver.plot()

Note that we provide four example problems for illustration purposes: the code is commented so that it
facilitates incorporating other problems to the toolbox.

3.5 Federated learning interpretation
Let us have a look at the previous main equations now from a more illustrative perspective. As we have
seen, the centralized ADMM can be summarized by the following equations:

xk+1 = arg min
x

(g(x) + ρ
2∥x − zk + wk∥2

2)

zk+1 = arg min
z

(h(z) + ρ
2∥xk+1 − z + wk∥2

2)

wk+1 = wk + xk+1 − zk+1

(3.41)
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where we can have analytical or gradient based solutions depending on the expression of g(x) or h(z). If
we denote all these variables with a common notation:

θk =

xk

zk

wk

 (3.42)

ADMM represents an iterative (coordinate descent) algorithm with convergence guarantees:

θ∗ = lim
k→∞

θk (3.43)

If we now revisit the distributed algorithm, we obtain:

xi,k+1 = arg min
xi

(gi(xi) +
ρ
2∥xi − zk + wi,k∥2

2)

zk+1 = arg min
z

(h(z) + Nbρ
2 ∥z − x̄k+1 − w̄k∥2

2)

wi,k+1 = wi,k + xi,k+1 − zk+1

(3.44)

where x̄k = 1
Nb

Nb

∑
i=1

xi,k and w̄k = 1
Nb

Nb

∑
i=1

wi,k. Following the same notation as before, we have that at each

node we have

θi,k =

xi,k

zk

wi,k

 (3.45)

where some components are obtained locally, (xi,k, wi,k) while the other is obtained in a centralized form zk

in order to guarantee that the individual optimization problems provide the same solution as the centralized
one:

θ∗ = lim
k→∞

θi,k, ∀i (3.46)

It is also interesting to mention that we only share the part of the local model (xi,k, wi,k) but the data remain
private. Schematically, we have:
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Figure 3.1: Federated learning ADMM distribution (convex optimization).
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4 NonConvex optimization. Distributed im
plementation

4.1 Motivation
The main conclusion from the previous section is that for convex problems, ADMM is a very efficient proce
dure to implement federated architectures. As the cost function is forced to be strongly convex, convergence
is usually very fast. In this chapter we will try to extend these ideas to nonconvex optimization scenarios.
The motivation is that previous methodologies are limited to linear architectures that in most of the cases
are not able to adequately express the statistical dependencies of complex data, such as in medical records,
to satisfactorily perform regression or classification requests. In this sense, we know that neural networks
(NNs) are universal approximators meaning that they are able to approximate any function in deep architec
tures with an adequate number of neurons. However, we also know that cost optimizations become highly
nonconvex. Therefore, if we want to use NNs we have to deal with nonconvex optimization principles.
The main problem to consider so far is that simply averaging the updates of the weights of the NNs at dif
ferent locations does not work because, as they are driven by different data, gradient BackPropagation (BP)
updates will put the coefficients in quite different states and therefore any operation on these values will not
guarantee the desired behaviour.

It is clear that we have to follow a different perspective which is going to be based on a random description
of the weights. This formulation is very suitable because this way all users will contribute to the expression
of the joint distribution according to the available data. These architectures are known as Bayesian Neural
Networks and typically have to be solved using approximations. We are fortunate because, as we will see,
these approximations can also be built in a distributed way. We are going to focus on the discriminative
model where we have some data and also we have labels that can be real variables (estimation) or categorical
(classification).

The main point is that now our derivations will be motivated by the calculation of the posterior predictive
distribution. Assuming that we have the training data D = {xn, yn}N

n=1 where {xn}N
n=1 correspond to the

input data and {yn}N
n=1 will be the labels, and that we want to characterize a new sample y∗ for a certain

input x∗, we need to evaluate:

p (y∗ | D, x∗) (4.1)

Notice that the result of this analysis is not a particular value but a distribution that can be continuous (re
gression) or discrete (classification). This fact is very important because the mode will provide the highest

36 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

probability value (the mean will also be very informative) but also we have the convariance matrix that will
provide information about the concentration of the probability or in other words, how much we can trust our
result.

Using standard probability principles, the posterior predictive distribution can be expressed as:

p (y∗ | D, x∗) =
∫

p (y∗ | x∗, w) p (w | D) dw (4.2)

where w represents the model variables that transform {xn}N
n=1into {yn}N

n=1and also x∗ → y∗. As we have
already said, w are treated as random variables with a certain prior p (w). You can immediately recognize
the posterior p (w | D) and the likelihood p (y∗ | x∗, w). The posterior can be further derived as:

p (w | D) =
p (w) p (y | w, x)

p (y | x)
(4.3)

where we have used the shorthand notation:

x = {xn}N
n=1 , y = {yn}N

n=1 (4.4)

Typically, the likelihood p (y | x, w) is well known and expressed even analytically. On the other hand,
usually the posterior p (w | D) is intractable mainly due to the denominator.

The most standard approach to calculate the posterior is based on the Maximum A Posteriori (MAP) criteria
where:

wMAP = arg max
w

ln p (w | D) = arg max
w

(ln p (y | w, x) + ln p (w)) (4.5)

approximating

p (w | D) ≈ δ (w − wMAP) (4.6)

The above optimisation problem can be solved analytically (not very often), but mostly using gradient tech
niques.

Under this analysis, the predictive distribution simplifies:

p (y∗ | D, x∗) =
∫

p (y∗ | x∗, w) p (w | D) dw =

=
∫

p (y∗ | x∗, w) δ (w − wMAP) dw = p (y∗ | x∗, wMAP)
(4.7)
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In high dimensional problems with arbitrary distributions this approximation is unfeasible and we have to
resort to some approximations based on Variational Inference principles. As we will see, this approach will
allow us to find a distributed implementation.

4.2 A Centralized approach.

4.2.1 Theoretical derivations

Variational inference intends to find an approximate (variational) distribution q (w) such that

p (w | D) ≈ q (w) (4.8)

with some amenable structure (it will usually be parameterized). For discriminative configuration, the pos
terior can be expressed as in terms of the individual likelihoods:

p (w | D) =
p (w) p (y | w, x)

p (y | x)
=

p (w)
N
∏

n=1
p (yn | w, xn)

p (y | x)
(4.9)

If we proceed with the expression of the log marginal likelihood

ln p (y | x) = ln
∫

p (w) p (y | w, x) dw (4.10)

that can be properly bounded

ln p (y | x) = ln
∫

p (w) p (y | w, x) dw ≥
∫

q (w) ln
p (w) p (y | w, x)

q (w)
dw (4.11)

where

FGVI (q (w)) =
∫

q (w) ln
p (w) p (y | w, x)

q (w)
dw (4.12)

is the Evidence Lower BOund (ELBO) and notation Global Variational Inference (GVI) is convenient to
compare with further results on distributed implementations. Note that if we maximize the ELBO, we are
also minimizing the KullbackLeibler (KL) divergence with the posterior:
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FGVI (q (w)) =
∫

q (w) ln
p (w) p (y | w, x)

q (w)
dw = −KL (q (w) || p (w | D)) (4.13)

The ELBO can be expanded in a more interpretable form:

FGVI (q (w)) = −KL (q (w) || p (w)) +
N

∑
n=1

∫
q (w) ln p (yn | w, xn) dw (4.14)

where the variational problem is usually stated as:

q∗ (w) = arg max
q(w)

FGVI (q (w)) (4.15)

In practice, the variational distributions often parameterized in a simple way to facilitate the analysis. For
instance, we can assume the Mean Field approach and Gaussian model for each independent component:

q (w) ≈
N

∏
i=1

qθi (wi) =
N

∏
i=1

N
(
wi; µi, σ2

i
)

(4.16)

where θi =
{

µi, σ2
i
}
.

So, the idea is that instead of calculating the posterior p (w | D) to generate the weights, we will use a
surrogate distribution (the variational approximation). Note that the calculation of this surrogate function
has been posed as an optimization problem that usually we will present in terms of the adjustment of certain
θ parameters:

q (w) → qθ (w) (4.17)

4.2.2 Practical implementations

Solving this problem typically requires finding condition

∇θF (qθ (w)) = 0 (4.18)

where
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F (qθ (w)) =
∫

qθ (w) ln
p (w) p (y | w, x)

qθ (w)
dw =

=
∫

qθ (w) ln p (w) p (y | w, x) dw −
∫

qθ (w) ln qθ (w) dw
(4.19)

can be expressed in an alternative way using expectations

F (qθ (w)) = Eqθ(w) [ln p (w) p (y | w, x)− ln qθ (w)] = Eqθ(w) [ f (w, θ)] (4.20)

where f (w, θ) = ln p (w) p (y | w, x)− ln qθ (w).

There are several practical implementation of this optimization problem, for instance [42] proposes the
Bayesian BP algorithm that extends the applicability of standard BP to NN weights represented by random
variables. Subsequently, it is very remarkable the result of [43] following an alternative approach where the
weights are generated by a deterministic operation and adding some random effect or just using BlackBlock
optimization techniques. The latter approach has been selected for implementation in the next section.

Once we have the variational distribution and we can generate samples from it, we obtain the following
approximation for the predictive distribution using MonteCarlo techniques:

p (y∗ | D, x∗) =
∫

p (y∗ | x∗, w)︸ ︷︷ ︸
likelihood

p (w | D)︸ ︷︷ ︸
posterior

dw ≈

≈
∫

qθ∗ (w)︸ ︷︷ ︸
Variational

p (y∗ | x∗, w)︸ ︷︷ ︸
likelihood

dw ≈ 1
S

S

∑
s=1

p
(

y∗ | x∗, w(s)
) (4.21)

where we can generate S samples as follows w(s) ∼ qθ∗ (w).

4.2.3 Example. Centralized MNIST classification. Formulation.

We are going to study a problem using the previous ideas [43]. As it has been said, in this case, the variational
learning tries to find the θ parameters of a neural network weight distribution, which is done by minimising
the KL divergence with the true Bayesian posterior on the weights of the model. In this way, the intractable
problem of bayesian inference, where infinitely many expectations under the posterior distribution over the
weights must be computed, is solved by approximation.

To get a more practical view of the variational approach and to present some empirical evaluation of this
method described before, the BP approximationmade by Blundell has been implemented to solve theMNIST
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classification problem obtaining a similar performance to the dropout implementation from [44] converging
at similar rates. This could mean that uncertainty in the weights captures the most suitable neural network
leading to a regularisation technique.

This implementation provides a PyTorch interface using Python 3.6+. The MNIST dataset has been trained
using 60.000 pixel images of size 28x28 on a network which consisted of two hidden layers each one with
1200 rectified linear units and a softmax output layer of 10 units (10 classes), and tested using 10.000 pixel
images of the same size. From those 60.000 samples to train, 10.000 were separated to pick the best hyper
parameters.

Although the scheme referred to in the paper allows for interleaving combinations of priors/posterior, the
algorithm proposes to use a Gaussian prior or a scaled mixture of two Gaussian densities as a prior. The
latter one gives the first component a larger variance than the second causing, firstly, a heavy tail in the
prior density and, secondly, many of the weights concentrate around zero. In combination with this prior, a
Gaussian variational posterior is proposed.

Method #Units/Layer Test Error (%)
[44] SGD 1200 1.88%

[44] SGD, dropout 1200 1.36%
[43] BBB, Gaussian 1200 2.04%

[43] BBB, Scale Mixture 1200 1.32%
[Implementation] Gaussian 1200 1.82%

[Implementation] Scale Mixture 1200 1.8%

Table 4.1: Results obtained using different BNN methods.

Table 4.1 shows a comparison between the results using either a Gaussian or Gaussian scale mixture prior
obtained in [44][43] and the implementation proposed based on this latter one too. As it can be seen, the clas
sification error results show similar values, being higher the ones obtained in our implementation, compared
to the original one. This might happen due to the fact that [43] uses a really small variance for the distribu
tion, in other words, almost a delta, which would mean the value of the weights is close to the traditional
one, a concrete value, not a distribution. Finally, the next figures show this classification error convergence
through all the epochs during the training process for a learning rate of 1e5, showing that the one using a
Gaussian scale mixture prior converges a little bit before than the other one.
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Figure 4.1: Test error using Gaussian prior Figure 4.2: Test error using Gaussian scale mix
ture prior

4.2.4 Code guide

There are two scripts implemented to carry out the classification problem, «bnn.py» and «bnn_toolbox.py»,
and «requirements.txt» that specifies the different libraries needed for the environment on which it will be
executed. As a general overview, the code provides a simple interface designed to learn a probability distri
bution on the weights of a NN and allowing to modify the dataset used through a simple user implementation.
The first script, «bnn.py», loads the MNIST dataset, preprocesses the data and initializes the model and its
training; the second one, «bnn_toolbox.py», has the whole network implemented, with the steps to follow
while training and evaluating the results.

To run the problem, the following steps should be followed:

1. First of all, a Python 3.6+ environment is required.

2. The environment requirements should be installed. To do so, PIP is a package management system
used to install and manage software packages written in Python:

(a) pip install r requirements.txt

3. Talking about data, the main script, «bnn.py», downloads the MNIST data, which is already provided
in the repository, and saves it both in raw and processed ways in the path data\MNIST\. There are sev
eral datasets provided in the «torchvision» library, which are subclasses of «Dataset» owning methods
like __geitem__ and __len__. Hence, they can be passed to a «Dataloader», useful to load multiple
samples in parallel and specifying the batch size or whether to shuffle the data or not, for example. It
is easy enough, therefore, to change the dataset required by the user, since PyTorch facilities, such as
the modules «Datasets» and «Dataloader», have been used.
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4. Finally, the main script should be run by setting the arguments desired.

(a) To check which arguments can be set: python bnn.py help
(b) To run the code using a scale mixture of two Gaussian densities as the prior and 1200 hidden

units (default), for example: python bnn.py
(c) To run the code using a Gaussian prior and 600 hidden units, for example: python bnn.py  model

gaussian_prior  hidd_units 600

5. The final results (model, .csv file with metrics and figures) will be stored in the following path: results\

4.3 Distributed implementations. Fundamentals
Recalling the expression of the posterior where we have now specified the local and global likelihoods, we
have

p (w | D) =
p (w)∏

n
p (yn | w, xn)

p (y | x)
∝ p (w)︸ ︷︷ ︸

prior

∏
n

p (yn | w, xn)︸ ︷︷ ︸
local likelihood︸ ︷︷ ︸

Global likelihood

(4.22)

4.3.1 Partitioned variational inference

4.3.1.1 Basic ideas

The basic idea is that we are going to approximate the target posterior by a factorized distribution as follows

p (w | D) ∝ p (w)︸ ︷︷ ︸
prior

∏
n

p (yn | w, xn)︸ ︷︷ ︸
local likelihood︸ ︷︷ ︸

Global likelihood

≈ g (w) ∝ g0 (w)
N

∏
n=1

gn (w) (4.23)

where g0 (w) ≈ p (w) is calculated at a fictitious node, for instance at the server. Clearly, each term of
g (w) will intend to approximate the corresponding local likelihood

gn (w) ≈ p (yn | w, xn) (4.24)

It is important now to introduce the following notation because we will need it in the forthcoming analysis:
we define the cavity distribution (to be used as prior in some implementations) for an arbitrary node i.
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g−i (w) =
g (w)

gi (w)
= ∏

n ̸=i
gn (w) (4.25)

4.3.1.2 Main definitions

Reference [45] provides an interesting result providing a strong procedure for solving the GVI in a distributed
way. Recalling the definition of the GVI

FGVI (q (w)) = −KL (q (w) || p (w)) +
N

∑
n=1

∫
q (w) ln p (yn | w, xn) dw (4.26)

it is shown that the optimization of this ELBO expression is equivalent if at each node n the following Local
ELBO expression is optimized, which they call the Partitioned VI problem (PVI)

F n
PVI (q (w)) = −KL

q (w) || qn
−n (w)︸ ︷︷ ︸

Local prior

+ Eq(w)

ln p (yn | w, xn)︸ ︷︷ ︸
Local likelihood

 (4.27)

interpreting that the cavity distribution at node n qn
θ,−n (w) acts as a local prior. They proved that the con

vergence of the PVI algorithm leads to the optimal solution of GVI because:

FGVI (q (w)) =
N

∑
n=1

F n
PVI (q (w)) (4.28)

i.e., the PVI fixed point is an optimum of the GVI. So,

q∗ (w) = arg max
q(w)

F n
PVI (q (w)) , ∀n → q∗ (w) = arg max

q(w)

FGVI (q (w)) (4.29)

Therefore, the procedure can be summarized as follows. Suppose that an arbitrary node i at a certain instant
time t has a local copy of q (w) that we denote as qi,t (w) that has been provided by the server. We calculate

1. Cavity distribution: qi,t
−i (w) = qi,t

0 (w) ∏
n ̸=i

qi,t
n (w) =

qi,t(w)

qi,t
i (w)

2. Solve PVI: qi,t+1 (w) = arg min
q(w)

F i (q (w))

3. Sending to the server: q̃i,t+1
i (w) =

qi,t+1(w)

qi,t
i (w)
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4. At the server generate qt+1 (w) =
qt(w)q̃i,t+1

i (w)

q̃i,t
i (w)

, ∀i and share with other nodes.

You can see that this procedure is a particular implementation of the Expectation Propagation (EP) algorithm.
The main procedure is based on the fact that locally we have to solve

F n (qθ (w)) = −KL

qθ (w) || qn
−n (w)︸ ︷︷ ︸

Local prior

+ Eqθ(w)

ln p (yn | w, xn)︸ ︷︷ ︸
Local likelihood

 =

=
∫

qθ (w) ln
qn
−n (w) p (yn | w, xn)

qθ (w)
dw =

∫
qθ (w) ln

qn
\n (w)

qθ (w)
dw =

= Eqθ(w)

[
ln qn

\n (w)− ln qθ (w)
]

(4.30)

Also, notice that operations based on multiplications and divisions of distributions remain at the core of the
procedure as a non trivial task except for conjugate exponential models.

The following picture illustrates the idea for the distributed implementation:

Figure 4.3: Federated learning ADMM distribution (nonconvex optimization).

Different practical implementations are proposed in [46] and also in [47]. This last one is particularly inter
esting because it introduces an efficient procedure using a modified cost function and a twoloop update that
has convergence guarantees (recall that standard EP does not). Clearly, the latter reference is a very strong
candidate for general EP methods. Another method related to PVI, although obtained independently, is the
one proposed in [48] called VIRTUAL that has been selected for practical implementation.
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4.3.2 Example. Distributed MNIST classification. Formulation

Let us apply VIRTUAL to the same MNIST classification problem used in the centralized setting. In this
case, the variational learning tries to find the θ parameters of a weight distribution of a neural network, which
is done by minimising the KL divergence with the true Bayesian posterior on the weights of the model. The
algorithm proposed by [48] is named VIRTUAL and is a distributed version of Blundell’s ideas, as we have
already mentioned.

To get a more practical view of the variational approach and to present some empirical evaluation of this
method, we adapt the author code and show how it solves the MNIST classification problem. The imple
mentation provided only uses the common factor from the prior, i.e., the weights of the neural networks are
parameterized by θ only. It could be possible to add also the private weights ϕi by using the bias of the neural
network or setting the flag «hierarchical» to True in the provided code. The code uses a TensorFlow interface
tested on Python 3.6. The MNIST dataset has been trained using 60.000 pixel images of size 28x28 on a
network which consisted of two hidden layers each one with 100 rectified linear units and a softmax output
layer of 10 units (10 classes), and tested using 10.000 pixel images of the same size. With these parameters,
we obtain an accuracy of 97.15 % in the server, and an average error of 96.94% in the clients.

4.3.3 Code guide

The main script to be used is named «main_federated_bayesian.py» and it contains the instructions to run
VIRTUAL algorithm. We also provide a «requirements.txt» that specifies the different libraries needed for
the environment on which it will be executed. To run the problem, the following steps should be followed:

1. First of all, a Python 3.6+ environment is required.

2. The environment requirements should be installed. To do so, PIP is a package management system
used to install and manage software packages written in Python:

(a) pip install r requirements.txt

3. Open the script «main_federated_bayesian.py», and note that there is a dictionary of hyperparameters
named «config». By changing the parameters, we can change our neural network architecture, the
number of clients, and the rest of hyperparamenters that have an influence on the training procedure.
We provide also an example on how to load a dataset by making use of the MNIST problem, please
note that you need to invoke the prepare_dataset() method in order to obtain the data that is going to
be send to each node.

4. Finally, the last call is to the run_experiment() method, which invokes all the functions needed for
training. Note that this code makes an extensive use of TensorFlow Distributions, so all the computa
tion and updates of distributions are done under the hood, which is a significant difference regarding
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the implementation provided for the centralized case. Also, note that the implementation heavily de
pends on the use of Deferred Tensors, which are a special class of TensorFlow Probability that updates
the whole chain of tensors every time that one of the tensors of the chain changes. That is, if the
parameters of a distribution changes, then all the distributions that depend on this one change as well.

5. In order to run the code with the default hyperparameters, execute python main_federated_bayesian.py

6. The final results will be stored in the following path: logs\

Figure 4.4: BNN’s performance in federated environment

The previous figure shows an example of this model’s execution where four different accuracy curves ob
tained during the process of training can be analyzed: the whole model’s training accuracy, both the server’s
and the clients’ performance, and a selected group of clients.
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5 Federated Data Augmentation
In the previous chapter we have presented a powerful approach that permits the implementation of dis
criminative problems in a distributed way using neural networks. However in practice it can be difficult
to calculate the product/quotient of complicated distributions such as those we expect in medical records.
Furthermore, it should be noted that the optimization procedure involves several iterations running through
the nodes, where each node has to solve a variational inference problem in highdimensional settings.

These limitations motivated us to also explore alternative implementations and we came up with a simple
idea: if the problem is the amount and variety of data we have in small local sites, instead of moving real
patients information that is forbidden we can share some latent information that allows us to build virtual
patients following similar statistics.

Wewere lucky because there is a good publication [49] that proposes a powerful architecture using generative
adversarial networks (GANs) that meet the two main challenges of trying to use data from multiple sources:
feature mismatch and distribution mismatch.

• Feature mismatch refers to the fact that even between datasets drawn from the same field (such as
medicine), the features that are actually recorded for each dataset may vary. Therefore, on the one
hand, we need to deal with the fact that the ”auxiliary” hospitals’ datasets do not contain all the features
that have been measured by the target hospital and, on the other hand, we have to take advantage of
the information contained in the features that are measured by the ancillary hospitals but not by the
target hospital.

• Distribution mismatch refers to the fact that the patient population of two hospitals may vary. There
fore, we need to prevent the federated implementation from bias created by different populations.

The architecture that they are proposing is known as RadialGAN and will be described in next section.

5.1 RadialGAN fundamentals
Radial GAN generalizes and outperforms several previous approaches: let us highlight a proposal for transfer
learning with multiple data sets proposed in [50] and also Adversarially Learned Inference with Conditional
Entropy (ALICE) [51] which is an extension of ALI that learns mappings which satisfy both reversibility (i.e.
that the distribution of mapped samples match those of the other distribution in both directions) and cycle
consistency. More specifically, ALICE introduces conditional entropy loss in addition to the adversarial loss
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to restrict the conditionals, thus enforcing cycleconsistency. In addition, CycleGAN [52] and DiscoGAN
[53] propose further frameworks for estimating reversible cycleconsistent mappings between two domains.
Using explicit reconstruction error instead of conditional entropy, CycleGAN and DiscoGAN ensure cycle
consistency. Finally, multidomain translation as StarGAN [54] can be considered as a preliminary work
that proposes a framework for multidomain translation that is scalable to multiple domains by using a single
generator (mapping) that takes as an additional input the target domain that the sample is to be mapped to.

Themain idea is that they usemultiple GAN architectures to translate patient information from one hospital to
another, leveraging the adversarial framework to ensure that the learned translation respects the distribution
of the target hospital. To learn multiple translations efficiently and simultaneously, they introduce a latent
space through which each translation occurs. This has the added benefit of naturally addressing the problem
of feature mismatch  all samples are mapped into the same latent space.

5.2 RadialGAN formulation
Suppose that we have M spacesX (1); · · · ;X (M), and that for each i, X(i) is a random variable taking values
in X (i). Suppose further that Y is a random variable taking values in some label space Y . Suppose also that
we have M datasets D1; · · · ;DM with

Di =
{(

x(i)j , yi
j

)}ni

j=1
(5.1)

where
(

x(i)j , yi
j

)
are i.i.d. realizations of the pair (X(i); Y) and ni is the total number of realizations (obser

vations) in dataset i.

The goal is to learn M predictors, f1; · · · ; fM (with fi : X (i) → Y) such that we want to use all datasets in
learning fi, not only (X(i); Y) but also (X(j); Y), ∀j ̸= i. The procedure consists of significantly augment
ing the local dataset with some virtual patients created from the data of the rest of the centres, but maintaining
a certain consistency behaviour that must be conveniently applied:

D̃i = Di ∪
j ̸=i

Gi
(

Fj
(
Dj
))

(5.2)

where Fj refers to the encoder at node j such that

Fj : X (j) ×Y → Z (5.3)

as a mapping into a common latent space and Gi corresponds to the decoder part
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Gi : Z → X (i) ×Y (5.4)

The architecture that is proposed is composed of two terms, one is an adversarial loss, while the other is cycle
consistency loss that ensures that virtual data has been properly generated. The following figure illustrates
the idea where a common latent space is used for sharing the local information preserving the privacy of
local records.

Figure 5.1: Local information shared through latent space

5.2.1 Training

In this section we will explain both criteria and give some intuition. The adversarial term is described in the
following formula:

Li
adv = E[ln Di(X(i); Y)] + E[ln(1Di(X̂(i)Ŷ))] =

= E[ln Di(X(i); Y)] + E[ln(1Di(Gi (Zi))] =

= E[ln Di(X(i); Y)] + ∑
j ̸=i

αijE[ln(1Di(Gi

(
Fj

(
(X(j); Y)

))
)]

(5.5)

where αij represents the assigned weight of different nodes, usually defined by the number of samples.

On the other hand, the cycleconsistency loss is expressed as follows:
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Li
cyc = E[

∥∥∥(X(i); Y)− Gi

(
Fi

(
(X(i); Y)

))∥∥∥
2
] + E[∥Zi − Fi (Gi (Zi))∥2] =

= E[
∥∥∥(X(i); Y)− Gi

(
Fi

(
(X(i); Y)

))∥∥∥
2
]+

+∑
j ̸=i

αijE[
∥∥∥Fj(X(j); Y)− Fi

(
Gi

(
Fj

(
(X(j); Y)

)))∥∥∥
2
]

(5.6)

Clearly, cycleconsistency loss guarantees that the translation into and back to the latent space returns some
thing close to the original input and that mapping from the latent space into one of the domains and back
again also returns something close to the original input. Schematically, both criteria can be represented in
the following figure.

Figure 5.2: RadialGAN schematic architecture

For the training, the global cost function is:

min
G,F

max
D

(
M

∑
i=1

Li
adv
(

Di, Gi,
{

Fj : j ̸= i
})

+ λ
M

∑
i=1

Li
cyc (Gi, F)

)
(5.7)

where λ is just a weighting factor.This approach can be interpreted more easily for two users splitting the
two components. The adversarial network is:
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Figure 5.3: RadialGAN schematic training process for two users

and the cycle consistency is

Figure 5.4: RadialGAN schematic cycleconsistency process for two users
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5.2.2 Prediction

After we have trained the translation functionsG1; · · · ; GM and F1; · · · ; FM, we create M augmented datasets

D̃i = Di ∪
j ̸=i

Gi
(

Fj
(
Dj
))

(5.8)

that we have already commented while the predictors f1; · · · ; fM are then learned in a separate phase on these
augmented datasets. This phase could use an arbitrary convex or neural network architecture and perform
training in a completely completely standard way.
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6 UPM contribution

6.1 Motivation
A desirable initial key feature of our contribution is to propose a single architecture (possibly with multiple
functionalities) capable of solving different problems as survival analysis, prediction, stratification (super
vised learning based on regression and classification) together with clustering and feature extraction (unsu
pervised learning). Furthermore, it is desirable that it is a common framework for all three case studies.

This decision cannot be made without taking into account that the final implementation should be federated,
so a clear procedure for influencing some users over others must be taken into account. Our proposal is based
on Generative Models (GM) using Variational Autoencoders (VAEs) that will probably be combined with
some adversarial training (GANslike). The general idea is that different nodes have to reach a consensus
on a certain space representing the data. Clearly, this space cannot be the original data because it cannot be
shared, so, it makes perfect sense to think of a common latent space that is created in a collaborative way.
This section illustrates the reasoning.

6.1.1 Single node

Let us formulate the original VAE algorithm to clarify the notation we will follow:

Figure 6.1: Original VAE algorithm scheme.

The ELBO is

LS (θ, ϕ, λ) =
∫

qϕ (z | x)
[
ln pθ (x | z) + ln pλ (z)− ln qϕ (z | x)

]
dz (6.1)

where you can notice that the only innovation comes from the fact that we have included a parameterized
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prior pλ (z). The idea is that instead of using a trivial distribution as usual, we can provide some more
elaborate proposals [55] [56] [57].

6.1.2 Multiple nodes, Centralized solution

This VAE formulation can be extended to the multiple nodes scenarios (suppose only two in the figure for
the sake of clarity)

Figure 6.2: Multiple nodes VAE algorithm scheme.

where we have a common latent space z, a single set of parameters {θ, ϕ}while wemaintain different sources
{x1, x2, · · · , xM} .

The ELBO can be formulated identically

LM (θ, ϕ, λ) =
∫

qϕ (z | x1, · · · , xM)
[
ln pθ (x1, · · · , xM | z) + ln pλ (z)− ln qϕ (z | x1, · · · , xM)

]
dz

(6.2)

6.2 Multiple nodes, Distributed solution
It is clear that previous approach is unfeasible in a distributed setting, so we have to trend to a different
architecture as the one showed in next figure:
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Figure 6.3: Multiple nodes VAE distributed algorithm scheme.

where we have separated sources (never shared) and also private NNs for the encoders {ϕ1, ϕ2, · · · , ϕM} and
decoders {θ1, θ2, · · · , θM} while we keep a common latent space to introduce the simplest understanding
of this family of Federated Learning (FL) algorithms. In practice, we have to be focused in more efficient
architectures, each one with its private latent space {z1, z2, · · · , zM} but sharing some information among
the nodes in order to emulate the common latent space already presented. These practical approaches can be
viewed in next picture.

Figure 6.4: Multiple nodes architecture sharing information scheme.

Therefore, the key point is how to decide what information must be shared respecting the privacy require
ments.

6.3 Are GMs a suitable architecture?
This question concerns the reasoning on the suitability of this architecture for solving general supervised
and unsupervised algorithms taking into account that VAEs are generative models. The answer is probably
yes, emphasizing the role of the latent space, if we consider it as an accurate representation of the input data
into which we can also introduce additional features in order to create a certain desired structure such as
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clustering.

The following figure schematically illustrates the approach:

Figure 6.5: General scheme.

Let us review the literature in order to provide some support to this consideration. One key element must
be clear: all involved processes are coupled, which means that we have to derive a suitable bound to the
specific problem (an ELBO) and optimise it appropriately using variational techniques. The computation of
specific ELBO usually requires solving two important challenges: the application of the parameterization
trick beyond the Gaussian distribution and the computatuib of the KullbackLeibler divergence, which must
be solved analytically for the involved distributions (otherwise, the problem becomes very complicated).

6.3.1 Clustering

Clustering is a very important topic that aims to obtain some hidden structurefrom the incoming data to be
clustered in a certain latent space. There are many papers on the topic where probably the most standard
approach is to enforce a certain prior as a Gaussian mixture [58] [59] [60]. This approach requires defining
a hierarchical model on the latent space to represent the mixture as a categorical distribution and the cluster
distribution usually as a multivariate Gaussian model.

6.3.2 Imputation

Imputation can also be improved using VAEs architectures. As a good example we have [61] where the
latent space is enlarged in order to include also the missing features that are generated by a separate network
in a similar way as the standard latent space. The inference model is:
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q(zn, xm
n |xo

n) = q(zn|xo
n) ∏

d∈Md

p(xnd|zn). (6.3)

where xm
n ∈ Md is the set of missing attributes and xo

n ∈ Od is the set of observed attributes.

6.3.3 Supervised (semisupervised) learning

This topic has also been addressed from different perspectives where probably [62] was the first publica
tion who studied how can properties of the data be used to improve decision boundaries and to allow for
classification/regression that is more accurate than that based on classifiers/regressors built on labelled data
alone.

6.3.4 Survival Analysis

Survival analysis models the time to an event from a common start. Examples of survival data include
time to death or to hospitalization when suffering a certain disease. Survival observations consist of two
varieties: the first are observations for which the exact failure time is known; the second, called censored
observations, are observations for which the failure time is known to be greater than a particular time. Both
types are represented as (t; c), pairs of positive times and binary censoring status. Probably [63] was the first
proposal on the topic using VAEs although the paper is not clear and it does neither provide any code. They
introduce deep survival analysis, a hierarchical generative approach for survival analysis. It departs from
previous approaches in two primary ways. First, all observations, including covariates, are modeled jointly
and conditioned on a rich latent structure. Second, patient records align by their failure time rather than by
entry time, thus resolving the ambiguity of entry to the analysis.

6.4 Survival analysis usingVariationalAutoencoders
In this chapter, we provide detailed view on methods and ideas used for Survival Analysis (SA) using Vari
ational AutoEncoders (VAEs) as main tool. This has been the main contribution of UPM but many results
are still to come.

6.4.1 Vanilla Variational Autoencoder

In 2013, the original VAE paper was published [64] where a powerful approach based on Deep Neural
Networks (DNNs) was used in order to perform Bayesian inference on the problem depicted in Figure 6.6.
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We consider a dataset composed by N i.i.d. samples xi, i ∈ 1, 2, ..., N of a continuous or discrete variable.
The data xi is generated by the following random process:

1. A value zi is sampled from a certain prior distribution p(z), where zi is denoted as latent variable. The
original paper assumes a shape pθ(z), that is, the prior depends on some parameters θ, but their main
result does drop that dependence. Hence, we assume a simple prior p(z).

2. A value xi is generated following a certain conditional distribution pθ(x|z), where θ are parameters
of this distribution, which we denote as generative model.

Some assumptions are that the pdfs p(z) and pθ(x|z) are differentiable almost everywhere with respect to θ

and z. Note that we do not know neither the values of the latent variable z nor the parameters θ. If we do not
make any simplifying assumption on the marginal likelihood pθ(x) =

∫
p(z)pθ(x|z)dz, then, we cannot

evaluate the true posterior density, which is defined as follows by using Bayes’ Theorem:

pθ(z|x) =
pθ(x|z)p(z)

pθ(x)
(6.4)

Figure 6.6: Vanilla VAEBayesianmodel, where the shadowed circle refers to latent variable and white circle
to the observable. Note that the probabilities p and q denote, respectively, the generative model pθ(x|z) and
the variational approximation to the posterior qϕ(z|x), as the true posterior p(z|x) is unknown.

A common approach to solving this kind of problem consists on using variational methods, which rely on
defining a variational distribution from a parametric family and fitting the parameters to those that best ap
proximate the desired distribution. Note that this approach involves exchanging a complex problem (finding
a probability distribution, which is a functional analysis problem) by a less complex one (finding the best
parameters for a given distribution family, which is an optimization problem). Of course, the quality of the
approximation will be strongly conditioned by the expressiveness of the chosen parametric family.

In our case, we introduce the variational approximation qϕ(z|x), which is our approximation to the true
posterior.
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6.4.2 ELBO expression

The expression of the ELBO for an arbitrary sample xi is

log pθ(xi) ≥ −DKL(qϕ(z|xi)||p(z)) + Eqϕ(z|xi) [log pθ(xi|z)] = L(xi, θ, ϕ) (6.5)

that is, the ELBO L(xi, θ, ϕ) is a lower bound for the marginal loglikelihood of our set of points. Thus, by
maximizing the ELBO, we maximize the loglikelihood of our data, and that is the optimization problem we
want to solve.

6.4.2.1 Implementation of Vanilla VAE

It is possible to implement the ELBO obtained in (6.5) by making use of an architecture based on DNNs.
However, computing the gradient of the ELBO with respect to ϕ is difficult due to the fact that ϕ appears in
the expectation (i.e., the second term of the ELBO in (6.5)). In order to overcome this problem, [64] uses
the reparameterization trick, which consists on using a deterministic transformation gϕ of a random variable
ϵ such that z = gϕ(x, ϵ) where z ∼ qϕ(z|x) and ϵ ∼ p(ϵ). In this case, the ELBO can be estimated as
follows:

L̂(xi, θ, ϕ) = −DKL(qϕ(z|xi)||p(z)) +
1
L

L

∑
l

log pθ(xi|gϕ(xi, ϵi,l)) (6.6)

where we obtain L samples from ϵ ∼ p(ϵ) to estimate the second term. notes that sometimes it suffices
with using L = 1, although L > 1 can be used when required. Now, we can compute the gradient of the
ELBO with respect to θ and ϕ, and this allows using standard gradient techniques to maximize it. Even
more, expression (6.6) can be used to solve the problem using DNNs as the functions parameterized by ϕ

and θ respectively, as all the gradients can be obtained by using Backpropagation algorithm, which several
programming libraries obtain in an automatic fashion.

Figure 6.7: Vanilla VAE implementation using DNNs.
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6.4.3 Survival Analysis Model

In a conventional timetoevent (Survival Analysis, SA) setup, we are given N observations. Individual
observation are described by triplets

D = (xi, ti, di)
N
i=1 (6.7)

where xi = xi1, ..., xp1 is a pdimensional vector of covariates, ti is the timetoevent and di ∈ 0, 1 is the
censoring indicator. When di = 0 (censored) the subject has not experienced an event up to time ti, while
di = 1 indicates observed (ground truth) event times. Timetoevent models are conditional on covariates:
the event time density function f (t|x), the hazard rate (risk score) function h(t|x) or the survival function

S(t|x) = P(T > t) = 1 − F(t|x) (6.8)

also known as the probability of failure occurring after time t, where F(t|x) is the cumulative density func
tion. From standard survival function definitions, the relationship between these three characterizations is
formulated as:

f (t|x) = h(t|x)S(t|x) (6.9)

6.4.3.1 Weibull model

Regarding the chosen distribution for the time event we have followed several publications where theWeibull
distributionmodel is used. TheWeibull distribution is a two parameter distribution whose support is positive,
i.e., f (t) = 0, ∀t < 0. The two scalar parameters of the distribution are λ, α, where λ > 0 controls the scale
and α > 0 controls the shape as follows:


f (t | α (x) , λ (x)) = α(x)

λ(x)

(
t

λ(x)

)α(x)−1
exp

(
−
(

t
λ(x)

)α(x)
)

S(t | α (x) , λ (x)) = exp
(
−
(

t
λ(x)

)α(x)
)

h(t | α (x) , λ (x)) = α(x)
λ(x)

(
t

λ(x)

)α(x)−1

(6.10)

Note that when α = 1, we obtain the exponential distribution. In our case, α can be understood as the
evolution of the probability of the event over time: α = 1 means that the probability of event is constant
over time, α < 1 means that the probability of event decreases over time, and α > 1 means that the proba
bility increases over time. It should also be noted that sometimes the scale parameter λ is inverted: this is
something we must pay attention to in order to avoid errors (i.e., some code that generates samples from the
Weibull distribution take as scale parameter 1/λ.
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6.4.4 The initial approach: Survival Analysis VAE (SAVAE)

Let us propose an initial approach, that we name Survival Analysis VAE (SAVAE). As mentioned before, we
are interested in obtaining the predictive distribution of the timetoevent, given a certain set of covariates.
Let us assume the Bayesian model in Figure 6.8, where we have:

• A latent variable z, that we assume continuous.

• Two observables, namely, the covariate vector x and the timetoevent t. We assume that the two
generative models pθ1(x|z) and pθ2(t|z) are conditionally independent, that is, if we know z, we can
generate either x or t.

• As we are interested in the predictive distribution as a function of the covariates of a new patient, we
only have to use a single variational distribution to estimate the true variational posterior p(z|x). Even
though it could be possible to include also the effect of the time, and hence, obtaining p(z|t, x), in this
initial approach we only use the covariates to obtain the latent space, while the inclusion of time is left
for future work.

Figure 6.8: SAVAE Bayesian model, where the shadowed circle refers to latent variable and white circles to
the observables. Note that the probabilities p and q denote, respectively, the generative models pθ1(x|z) and
pθ2(t|z), and the variational approximation to the posterior qϕ(z|x), as the true posterior p(z|x) is unknown.

6.4.4.1 Goal

Our main target is to use variational methods, namely VAEs, in order to obtain the predictive distribution for
the timetoevent as follows [63]

p
(

t∗ | x∗, {xi, ti}N
i=1

)
=
∫

p
(

t∗ | z, {xi, ti}N
i=1

)
p
(

z | x∗, {xi, ti}N
i=1

)
dz (6.11)
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where x∗ represents the covariates of a certain patient, and we want to estimate its survival time distribution
p
(

t∗ | x∗, {xi, ti}N
i=1

)
. Again, note that we consider that the latent variable z depends only on the training

set (as they determine the DNN weights) and the latent variable, whereas the latent variable depends on the
training set and the covariates. As mentioned before, we could include the effect of the covariates on the
time prediction, but that is left to future work.

6.4.5 ELBO derivation

The main assumptions of our model are the following ones:

• The two generative models pθ1(x|z) and pθ2(t|z) are conditionally independent, that is, if we know
z, we can generate either x or t. We further assume that each component of the covariates vector
is conditionally independent given z. Hence, p(x, t, z) = p(x1|z)p(x2|z)...p(xp|z)p(t|z)p(z) =

pθ1(x|z)pθ2(t|z)p(z) = pθ(x, t|z)p(z).

• We know the distribution shape of pθ1(x|z) and pθ2(t|z), but we do not know the parameters θ1 and
θ2.

With these assumptions, we can compute the ELBO in a similar way to the Vanilla VAE case as follows. Let
us start by noting that the conditional likelihood of a set of points {xi, ti}N

i can be expressed as follows:

log pθ(x1, x2, ..., xN , t1, t2, ..., tN |z) =
N

∑
i

log pθ(xi, ti|z)

=
N

∑
i

(
log pθ2(ti|z) +

p

∑
m=1

log pθ1m(xim|z)
) (6.12)

After some derivations we obtain:

L̂(xi, θ1, θ2, ϕ) = −DKL(qϕ(z|xi)||p(z))

+
1
L

L

∑
l

[
log pθ2(ti|gϕ(xi, ϵi,l)) +

p

∑
m=1

log pθ1m(xim|gϕ(xi, ϵi,l))

]
(6.13)

In terms of implementation, we use three DNNs as in Figure 6.9. Note that the main difference is that
now, the decoder DNNs outputs the parameters of each distribution. Also, we noted that there is a trade off
between accuracy in the times predicted (measured in terms of Cindex) and the weight w assigned to the
reconstruction term of the t variable:
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L̂(xi, θ1, θ2, ϕ) = −DKL(qϕ(z|xi)||p(z))

+
1
L

L

∑
l

[
w · log pθ2(ti|gϕ(xi, ϵi,l)) +

p

∑
m=1

log pθ1m(xim|gϕ(xi, ϵi,l))

]
(6.14)

where the divergence and the marginal loglikelihood computations require specific derivations.

Figure 6.9: SAVAE implementation using DNNs.

6.5 Procedures to couple the learning of different nodes
in VAEs’ architectures

In this section we are going to introduce two different procedures in order to introduce the federated learning
procedure in VAEs. On the one hand, jointly conforming the prior. On the other, using virtual patients
models.

• At this time, we have not found satisfactory performance using the first approach. It seems that the
effect of the prior is not so critical and it is difficult to drive the evolution of the encoderdecoder just
pushing from this side.

• The use of virtual patients from good nodes (hospitals with high number of users and with most of the
features’ space complete) feedback into bad nodes seems to be a more direct way to influence these
nodes that are able to estimate the missing features and perform improved supervised or unsupervised
tasks.

64 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

6.5.1 Joint design of the prior

6.5.1.1 The isolated node

Remembering the original VAE algorithm:

Figure 6.10: Original VAE algorithm scheme.

where the ELBO was already presented

LS (θ, ϕ, λ) =
∫

qϕ (z | x)
[
ln pθ (x | z) + ln pλ (z)− ln qϕ (z | x)

]
dz (6.15)

where you can notice that the only innovation comes from the fact that we have included a parameterized
prior pλ (z).

The optimum solution regarding the prior choice is given by the following condition

∂LS (θ, ϕ, λ)

∂λ
= 0 → pλ∗ (z) = qϕ (z) (6.16)

that is known as the aggregated posterior. Typically, it is estimated as an average

pλ∗ (z) ≈ 1
N

N

∑
n=1

qϕ (z | xn) (6.17)

but however, this choice may potentially lead to over fitting, so in practice it can be approximated by

pλ∗ (z) =
1
N

N

∑
n=1

qϕ (z | xn) ≈
1
K

K

∑
k=1

qϕ

(
z | α(k)

)
(6.18)

where αk are known as the pseudopoints that have be optimized, so

λ =
{

ϕ, α(1), α(2), · · · , α(K)
}

(6.19)

Notice that pλ∗ (z) dose not depend on data! so, the pseudopoints can be shared!.
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6.5.1.2 Multiple nodes

Also remembering the introduction where we presented the general idea:

Figure 6.11: Multiple nodes architecture sharing information scheme.

we can propose a constructive methodology defining the following optimization set up. Given a local i node
we have the corresponding VAE architecture:

Li (θi, ϕi, λ) =
∫

qϕ (zi | xi)
[
ln pθ (xi | zi) + ln pλ (zi)− ln qϕ (zi | xi)

]
dzi (6.20)

where {θi, ϕi} are local variables while λ is a global variable. It is clear that previous formulation will run
independently at different nodes unless we tie the optimization process with a common constraint. The idea
is to reach a consensus in the distribution of the prior pλ (zi) , z = zi, ∀i. The criteria is very intuitive, in
the centralized case, we can solve

∂LM (θ, ϕ, λ)

∂λ
= 0 → pλ∗ (z) = qϕ (z) ≈

1
N

N

∑
n=1

qϕ

(
z | x(n)1 , x(n)2 , · · · , x(n)M

)
(6.21)

A first obstacle is that this aggregated version depends on the local data, that can not be shared, so we are
going to approximate it by the pseudopoints

pλ (z) ≈
1
N

N

∑
n=1

qϕ

(
z | x(n)1 , x(n)2 , · · · , x(n)M

)
≈ 1

K

K

∑
k=1

qϕ

(
z | α

(k)
1 , α

(k)
2 , · · · , α

(k)
M

)
(6.22)

This distribution can be considered as separable assuming that data are independent, so we have

pλ (z) ≈
1
Z

M

∏
m=1

(
1
K

K

∑
k=1

qϕm

(
z | α

(k)
m

))
︸ ︷︷ ︸

pλm (z)

=
1
Z

M

∏
m=1

pλm (z) (6.23)
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where Z is the normalizing factor and at each node we have to approximate

pλm (z) =
1
Z

Km

∑
km=1

qϕm

(
z | α

(km)
m

)
(6.24)

where local parameters are
λm =

{
ϕm, α

(1:Km)
m , Km

}
(6.25)

Thus, the formulation will be

maxLi (θi, ϕi, λ) =
∫

qϕ (zi | xi)
[
ln pθ (xi | zi) + ln pλ (zi)− ln qϕ (zi | xi)

]
dzi, ∀i

s.t. : pλ (z) ≈ 1
Z

M
∏

m=1

(
1

Km

Km

∑
km=1

qϕm

(
z | α

(km)
m

))
︸ ︷︷ ︸

pλm (z)

zi = z, ∀i

(6.26)

Notice that we are proposing a Product of Experts (PoE) approach because of the inertia of Expectation
Propagation but clearly other options and Mixtures of Experts (MoE) can be applied (for instance a mixture
of Gaussians that we know are universal density approximators). Therefore, the idea is to solve locally this
formulation and after that send to the server a new set of pseudopoints (realize that you do not need to send
the points but you can adjust a mixture of Gaussians model and share the corresponding parameters).

6.5.2 Federated Data Augmentation

We have already explained the idea in the introduction section where we have describe the use of a com
mon architecture denoted as Radial GAN. As we have seen, a loss function as a combination of adversarial
component and cycleconsistency component forcing a common latent space.

After we have trained the translation functionsG1; · · · ; GM and F1; · · · ; FM, we create M augmented datasets

D̃i = Di ∪
j ̸=i

Gi
(

Fj
(
Dj
))

(6.27)

and the predictors/classifiers f1; · · · ; fM are then learned in a separate phase on these augmented datasets.
This phase could use an arbitrary convex or neural network architecture and perform training in a completely
completely standard way.

6.6 First results of FL
This section relates some of our preliminary results on the topic. It is important to remark the following
ideas: federated learning in health scenarios has to be focused from a very particular perspective due to the
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heterogeneity of different nodes with unequal number of available samples and many samples can be missed.
If we have in one node very few samples we have two options:

• Train the model in other nodes with ’more ideal conditions’ and copy it. However, if we have different
nodes with very different set of features, the architectures to be used will be quite different. In other
words, just applying one common structure probably will not work.

• Use virtual patients models to be communicated to other nodes and create long enough number of
effective samples. The basic idea is that at local bad nodes we use these good samples to impute the
local missing features and train with the virtual patients and the remote enhanced samples. In some
cases, this process can be understood as a denoising procedure.

And after this federated processing, locally use the desired architecture for prediction, diagnosis, survival
analysis, clustering... These considerations deserve two additional discussions:

• How are we going to evaluate the performance of the federated implementation in order to verify that
there is a real improvement?

• Choose a simple setup with a suitable database that permits to choose the number of samples and the
number of missing attributes per node.

Next scheme shows the main idea:

Figure 6.12: General scheme federated data augmentation.

6.6.1 How to evaluate the performance

Wemust pay attention to the evaluation procedure of the effectiveness of the federated implementation. This
means that we should take under consideration the following ideas:
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• If nodes have similar number of samples with similar number of features we can be misled by apparent
satisfactory performance. In this case the federated implementation could be useless without any
practical effect.

• To avoid this misleading situation, it might be recommendable to consider very unbalanced scenarios
to test the procedures.

– Isolated good nodes with ideal conditions will give a performance upperbound.

– Isolated bad nodes with very poor conditions will give a performance lowerbound

– Bad nodes with the federated implementation must provide a performance in between and desir
ably closer to the upperbound.

6.6.2 Preliminary tests

6.6.2.1 MNIST results

In a first step we decided not to use the MDS database because it is very adhoc with not too many patients
and with many missing entries. Also, the application of survival analysis is a complicated problem whose
performance will depend on many aspects and can mask specific issues related to the federated implementa
tion. Therefore, in order to evaluate the performance of the federated implementation using VAEs we have
selected the MNIST data base with 10 handwritten digits while the purpose of the task is to implement a
classification problem.

We have considered only two nodes, one (good one) with 500 digits with complete features. The second
(bad one) only with 50 digits and with a percentage of missing pixels representing missing attributes that are
replaced by binary noise (this way we control the imputation effect on the performance).

The federated implementation is based on the hypothesis that we have created an arbitrary large number of
samples at the bad node using the ideal model of the good node. As the radial GAN architecture is not yet
completely operative we have used the real samples.

For different imputation levels we have implemented the imputation algorithm described in [61] and we have
plot the federated result in front of the two bounds: upper bound related to the performance of the good node
isolated and lower bound the same for the bad node.

The following results deserve some explanations:

• Solid line represent the probability of detection using the latent space while the dashedline represent
the same result using the recovered samples. You can notice that using the latent space provide better
results.
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• The numbers in first columns represent the original numbers, the reconstructed number in the ideal
node, the same two results for the isolated bad node and the last two columns represent the case where
the federated solution has been implemented.

• Next curves are related to different percentage of noisy (random imputed samples).

Figure 6.13: Imputation rate 0.5.

Figure 6.14: Imputation rate 0.7.
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Figure 6.15: Imputation rate 0.9.

6.6.2.2 MDS results

Once we have achieved an implementation of the federated VAE that obtains considerable results forMNIST,
we have proceeded to adapt the problem to the MDS database. In this case, we have also considered a classi
fication problem targeting one gene, although of course other analyses can be done, but these are preliminary
results. This gene is the SF3B1 gene, as it has a very frequent genetic mutation, although in this case the
distinction between SF3B1 only mutated and unmutated SF3B1 (as they are completely identical if SF3B1
is excluded) will be completely lost.

We have followed the same process as in the previous case with only two nodes, a good one and a bad
one, the latter with less information and a percentage of missing data. Unlike the MNIST database, this
database contains very few samples (2048) so it makes sense to think that training it using this algorithm
could lead to overfitting. This can be observed in the VAE training, as the training part of the VAE shows a
significantly better performance than the testing part, clearly affecting the reconstruction part, as can be seen
in the following accuracy curves 6.16. Even though the reconstruction phase shows worse results than the
previous dataset, we have to focus in the latent part, where the federated dataset has an accuracy lower than
the upperbound one but higher than the lowerbound one. However, as it has been mentioned before, these
are just preliminary ideas which have to be analyzed in depth.
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Figure 6.16: Imputation rate 0.5.
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7 UniBO contribution
Clustering is a technique that nowadays is widely used for patient stratification. In general, patients can be
stratified according to some features obtained by multiomics measurements (genomic, Imaging, etc) and,
after this step, try to predict some clinical outcome. This approach is what has been applied in several studies
concerning haematological diseases [65]. One of these approaches has been used for the Myelodysplastic
syndrome (MDS) [66]. In this report, the authors used a particular type of clustering: the hierarchical Dirich
let process (HDP), a non parametric Bayesian approach to clustering grouped data. Due to the high number
of studies that used this method, and also on the basis of the numerous clinical validations, the HDP has
become a sort of ”gold standard” for clustering of hematological malignancies. It has to be noted that the
choice of HDP is motivated also by the nature of the data set. As will be specified later, the data set format is,
roughly speaking, formed by (for each patient) a set of genomic measurements (obtained by a gene panel),
a set of cytogenetic measurements and by a third set of clinical variables. For the sake of simplicity, we
will indicate the genomic and cytogenetic measurements with the common term of ”mutations”. According
to this simplification, the first two sets of measurements can be coded by using a 0 (absence of mutation)
or a 1 (presence of mutation). In this way, each row (each patient) will be represented as a realization of a
multinomial distribution (the conjugate prior of the Dirichlet distribution). Another pros. of the HDP is that
the number of clusters is determined automatically and there is no needing of assigning it a priori. Unfortu
nately, at our current knowledge, there is no a federated implementation for such algorithm, and also a ”de
novo” federated implementation is not easy to develop. The current state of the art in the federated imple
mentation of similar algorithms is the realization of a federated framework for the so called Latent Dirichlet
Allocation (LDA) [67], a generative statistical model that has been used also for application in hematological
malignancies. We observe that the HDP is the nonparametric Bayesian ”natural extension” of the LDA, and
that the number of clusters can be learned from the data. For these reasons, all the federated implementations
has to be compared not only with a centralized implementation, but also with the HDP results, in order to
have a clinical interpretation and translation.

7.1 Clustering Methods
Clustering algorithms can be classified into the following categories, according to the method they use [68].
Partitioningmethods: these methods attempts to directly decompose the data set into a set of disjoint clusters.
Hierarchical clustering methods: these proceed successively by either merging smaller clusters into larger
ones, or by splitting larger clusters and produce the so called dendrogram. Fuzzy clustering: these methods
allow to the same object to be included into different clusters and with various degree of memberships.
Densitybased clustering: these methods group neighbouring objects of a data set into clusters based on
density conditions. Moreover, clustering methods can be classified also on the basis of their membership
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function; Soft and Hard clustering. A core aspect of clustering is dimensionality reduction, a key concept
in machine learning and data science. Dimensionality reduction is important for feature extraction and data
visualization, especially in the case of highdimensional data. Among variousmethods, we canmention those
based on nonlinear projection of highdimensional data into a lower dimensional space, such as distributed
stochastic neighbor embedding (tSNE), and those based on manifold learning , such as Uniform manifold
approximation and projection for dimension reduction (UMAP). Both these algorithms are, at our knowledge,
not yet implemented in a federated way, but they can constitute a valuable benchmark.

7.2 MDS data description
The data on Myelodisplastic Syndrome (MDS) that are actually available between the GenoMed4All con
sortium are a combination of genomic, cytogenetic and clinical data. These data has been described in the
deliverable D6.1, but we report here a brief description.The dataset is in a ”csv” format and we have that
rows are patients while the columns are the variables (features) (for a complete description see the D6.1).
These variables are organized as follows:

General and demographic variables

• Patient ID (EUROMDS patient labels)

• Gender (M/F)

• Age at data collection» (Age at diagnosis)

Clinical variables (prognostic scores)

• WHO 2016 subtype (WHO disease classification)

• IPSS risk group (disease classification according to IPSS)

• IPSSR score, IPSSR risk group (disease classification according to IPSSR)

Clinicalbiological variables at diagnosis

These variables are composed of Hematochemical tests results on blood (cell counts and ferritin etc.) and
bone marrow (count of bone marrow blasts an sideroblasts etc.) and a comorbidity score index.

Follow up and outcome variables
These variables are:
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• Leukemia free survival (event, time to event)

• Overall survival (event, time to event)

• Acute Myeloid Leukemia (AML) adjusted Overall survival(event, time to event).

Cytogenetic variables

These data are grouped in 13 columns where is reported the presence/absence of a chromosomal alteration

Genomic variables  panel (yes=1/no=0)

The mutational status of 47 selected genes (gene panel for MDS)

HDP components

Patient specific Hierarchical Dirichlet Processes. The weights across 6 latent components are listed as re
ported in [66].

7.3 Federated Clustering
Clustering plays a central role in disease outcome prediction and intervention planning by bridging the gap
between traditional, average based medicine, and fully personalized one. Clustering patients based on rele
vant attributes, but clinical, phenotypical, demographical and omics, allow to identify responses to therapy
that might have been discounted as unpredictable variability before. To make full use of this ability it is
necessary to employ extended clinical studies, with potentially tens of thousands of patients involved. This
kind of studies are unfeasible for single centers and, even when possible, can’t be generalized to the general
population (for example at the European level) due to biases in sociodemographical and ethnicity charac
teristics of the population under study. This means that multicenter studies are fundamentals, but these kind
of studies have issues with privacy and anonimization, when some of the information cannot be shared due
to privacy concerns.

To circumvent this, federated methods can be applied, trying to identify crossregional clusters without pri
vate information leaking between the centers. Sadly, most clustering methods cannot be directly extended
in a federated setting, and even those than can might need to be changed substantially to accommodate for
the different scenario.

Given the prominence of Deep Learning Approaches in federated approaches, we focused our exploration
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on this kind of models. The model we developed is base on the Deep Embedding for Clustering (DEC)
proposed by [69], implemented using the Flower framework[70] and extended for the MDS case. In the
following a complete explanation on DEC model is provided, then the necessary modifications to make this
model “federated” are proposed.

This model was inspired by parametric tSNE and exploited the ability of autoencoders to project real data to
the feature, or hidden, subspace, with a (commonly) strongly reduced dimensionality. This model, is able to
simultaneously learn feature representations and cluster assignments . The main problem is clustering a set
of n points {xi ∈ X}n

i=1 into k clusters, each represented by a centroid µj, j = 1, . . . , k. Instead of clustering
directly in the data space X, the model first transform data with a nonlinear mapping fθ : X −→ Z, where θ

are the learnable parameters and Z is the latent feature space. The dimension of Z is typically much smaller
than X in order to avoid the “curse of dimensionality”. To parametrize fθ , DNNs are a natural choice. In
this data driven approach the optimization of the NN is crucial to obtain reliable results. DEC training is non
trivial and subdivided in two main steps:

Step 1: parameters initialization and feature space identification by training a deep autoencoder.

Step 2: parameters optimization, i.e. clustering step, exploiting an auxiliary target distribution.

Figure 7.1: Diagram of the DEC model

During Step 1 the model tries to learn the feature representation of data, i.e. learns the nonlinear mapping
fθ . A stacked autoencoder (SAE) is used because recent research has shown that they consistently produce
semantically meaningful and wellseparated representations on realworld datasets. Thus the unsupervised
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representation learned by SAE facilitates in a natural way the clustering representation from DEC. In order
to obtain the best representation possible, the SAE is initially pretrained as denoising autoencoder, that is a
two layer neural network defined by:

x̃ ∼ Dropout(x) (7.1)

h = g1W1 x̃ + b1 (7.2)

h̃ ∼ Dropout(h) (7.3)

y = g2W2h̃ + b2 (7.4)

where Dropout(·) is a stochastic mapping that randomly sets a portion of its input dimensions to 0, g1 and
g2 are activation functions for encoding and decoding layer respectively, and θ = {W1, b1, W2, b2} are
model parameters. Pretraining is performed by minimizing a reconstruction loss, usually MeanSquared
Error (MSE) ||x − y||22 is used for realvalued data, via the Stochastic Gradient Descent (SGD) optimizer.
Then, the dropout layers are removed and the autoencoder is finetuned to optimize the reconstruction loss.
The final result is a multilayer deep autoencoder with a bottleneck encoding layer in the middle. The decoder
layers are then discarded and only encoder layers are used as initial mapping between the data space and the
feature space.

Step 2 is then performed to refine the parameters found so far. The data is passed through the initialized
DNN to get embedded data points and then kmeans clustering is performed in the feature space Z to obtain
k initial centroids µj, j = 1, . . . , k. Following this initialization the training proceed iterating between two
tasks: computing the auxiliary target distribution and minimize the KullbackLeibler (KL) divergence to the
computed target distribution. The choice of the Student’s tdistribution as a kernel to measure the similarity
between embedded point and centroid seems natural (including the connection to the TSNE encoding), and
it is computed as:

qij =
(1 + ||zi + µj||2/α)

α+1
2

∑j′ (1 + ||zi + µj′ ||2/α)
α+1

2
(7.5)

where zi = fθ(xi) ∈ Z corresponds to xi ∈ X after embedding, α are the degrees of freedom of the
Student’s tdistribution and qij can be interpreted as the probability of assigning sample i to cluster j (i.e.,
a soft assignment). They let α = 1 since it is not possible to crossvalidate α on a validation set in the
unsupervised setting, and learning it is superfluous.

For an efficient convergence of the model, choosing the proper target distribution P is very important. It
needs to possess the following properties:

1. Strengthen predictions (i.e., improve cluster purity).

2. Put more emphasis on data points assigned with high confidence.

3. Normalize loss contribution of each centroid to prevent large clusters from distorting the hidden feature
space.
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During the KL divergence optimization, the model updates the deep mapping and refine the cluster centroids
by learning from current high confidence assignments using an auxiliary target distribution. Specifically, the
model is trained by matching the soft assignment to the target distribution. The objective is defined as a KL
divergence loss between the soft assignments qi and the auxiliary distribution pi as:

L = KL(P||Q) = ∑
i

∑
j

pij log
pij

qij
(7.6)

where pij is computed as:

pij =
q2

ij/ f j

∑j′ q2
ij/ f j′

(7.7)

where f j = ∑j qij are the soft cluster frequencies. The training strategy can be seen as a form of self
training. As in selftraining, we take an initial classifier and an unlabeled dataset, then label the dataset
with the classifier in order to train on its own high confidence predictions. Indeed, in the original paper
the authors observed that DEC improves upon the initial estimate in each iteration by learning from high
confidence predictions, which in turn helps to improve low confidence ones.

The method jointly optimizes cluster centers and DNN parameters θ using Stochastic Gradient Descent
(SDG) with momentum.

∂L
∂zi

=
α + 1

α ∑
j
(1 +

||zi − µj||2

α
)−1 × (pij − qij)(zi − µj), (7.8)

∂L
∂µj

= −α + 1
α ∑

i
(1 +

||zi − µj||2

α
)−1 × (pij − qij)(zi − µj). (7.9)

The gradients ∂L
∂θ are then passed down to the DNN and used in standard backpropagation to compute the

DNN’s parameter gradient ∂L
∂θ . For the purpose of discovering cluster assignments, the procedure is stopped

when less than a predefined number of points change cluster assignment between two consecutive iterations.

7.4 Results on MDS data

7.4.1 Federated training of the DEC models

Training DEC model in a federated fashion needs some modifications w.r.t the centralized version. Step 1
of training (initialization of parameters via SAE) is performed by exploiting FedAvg[71], one of the most
popular algorithms for aggregating weights. KullbackLeibler Divergence (KLD) minimization step also is
performed using FedAvg. The initialization of the cluster centroids needs a deeper discussion, in fact it is
not guaranteed that running kmeans at clients place will undercover the same clusters centroids for every
client. One have to keep in mind that clusters’ inititialization does not need to be extremely precise because
centroids will be optimized during KLD minimization step, but on the other hand they cannot be random
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since DEC model works better if clusters are already enough separated in the feature space. In order to solve
the problem of “federating” the clusters’ initialization, the following algorithm is proposed.

Every client identify its clusters’ centroids as in the centralized version. The initialization is done with
25 different random seeds, run for 300 epochs and looking to obtain all the k centroids. These centroids are
then sent to the central node to be aggregated. To do the aggregation, at server place, the algorithm randomly
chooses one of the clients centroids as the starting point, then add iteratively to the list of aggregated centroids
the farthest centroid available from the list of all clients’ centroids until k centroids are collected. This provide
a full coverage of the features space from the initial centroids. The the final list of aggregated centroids is
sent back to the clients to initialize the clustering layer.

The clustering layer treats them as weights to be optimized, and then trains for 10’000 epochs, updating
every 100 epochs the auxiliary distribution and the soft assignments. The optimization is performed using
SGD with a fixed learning rate of 0.1.

Other important modifications to the network architecture were performed to adapt DECmodel toMDS data.
The first dropout layer for noising data were substituted with a Random Flipping layer that randomly sets a
portion of input data to 0 or 1 respecting the overall distribution of 0 and 1 in the entire dataset. The dimen
sions of the the fully connected layers that compose the autoencoder were reduced from {500,500,2000,10},
used in the paper for MNIST dataset, to {26, 26, 100, k}, where k is the number of cluster to identify.
Moreover a Binary CrossEntropy loss was chosen for reconstructing these binary data, as the outputs of the
autoencoder could be interpreted as probability to assume values 0 or 1.

The entire dataset of 2043 sample patients is divided in equal number between clients in several different
partitions, and every client is weighted in the average only by the number of samples:

• 2 clients set up, client 1 has 1021 samples, client 2 has 1022 samples

• 4 clients set up, client 1,2,3 have 510 samples, client 4 has 513 samples

• 6 clients set up, client 1,2,3,4,5 have 340 samples, client 6 has 343 samples

• 8 clients set up, client 1,2,3,4,5,6,7 have 255 samples, client 8 has 258 samples

Clients’ local samples were subdivided in traintest set, respectively 8020% of the samples, at clients’ place.

To estimate the results of the clustering procedures we estimated the quality of the SAE and the Clustering
quality. For the SAE the metrics were:

• Accuracy between original data and reconstructed data;

• Rounded accuracy between original data and rounded reconstructed data;

• G metric, ratio between train loss and evaluation loss.
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Identifying AE Dropout Random Unit
letter epochs rate Flip rate Norm

a 2500 0.2 0.2 No
b 2500 0.05 0.05 No
c 2500 0.2 0.2 Yes
d 2500 0.1 0.1 Yes
e 2500 0.05 0.05 Yes
f 2500 0.01 0.01 Yes
g 5000 0.01 0.01 Yes

Table 7.1: Parameters configurations for the tested models.

For the clustering model the metrics were:

• Cycle accuracy of labels assignment, the accuracy between predicted assignment of real data and
predicted assignment of reconstructed data;

• Number of samples whose label prediction change with regard to the previous epoch;

• G metric, the ratio between train loss and evaluation loss,

7.4.2 Effect of parameters on model performances

To assess the sensitivity of the results to the training parameters we tested different model configurations,
identified by the letters a—g. For each model we changes the AE, the dropout rate, the random flip unit and
the use of unit normalization. The individual models are summarized in Tab 7.1. Different features space
dimension (k) were tested, from 2 to 12, for each model, and the results for this tests can be seen in Fig. 7.2,
Fig. 7.3, Fig. 7.4. As one can see the only major difference can be observed in the G metric between the
models with no normalization (a and b) and those with normalization (the others).

Figure 7.2: SAE for the different models configurations with varying numbers of clusters
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Figure 7.3: G metric for the different models configurations with varying numbers of clusters. One can
observe the difference between the models with normalization (c, d, e, f, and g) and those without (a and b)

Figure 7.4: Cycle accuracy for the different models configurations with varying numbers of clusters

The results of the federation, by dividing the dataset in equal (or as equal as possible) splits, is detailed in
Fig. 7.5, Fig. 7.6, Fig. 7.7 based on the number of cluster centroids selected. As one can see, there is no
significant loss of clustering quality.

7.4.3 Comparison with the Hierarchical Dirichlet Process clustering

Currently the Hierarchical Dirichlet process can be considered the gold standard for cluster identification in
a single core setting, but it is non trivial to distribute in a federated setting. We therefore used the previous
results of the HDP as the ground truth to assess whether the new methods could perform in a comparable
way.

We considered two cases, one with 6 and one with 8 clusters, being those the previously obtained results on
the MDS dataset, with a varying number of nodes (1, 2, 4, 6, and 8) in the federation. Clearly with one node
is intended a centralized version of the training. In one case the silhouette score was confronted between the
two methods, while in the other 3 scores were considered to assess the agreement between the two different
clustering. In Fig. 7.8 one can see the results with 6 clusters, while in Fig. 7.9 one can see the results with 8
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Figure 7.5: SAE for the different number of federated clients with varying numbers of clusters

Figure 7.6: G metric for the different number of federated clients with varying numbers of clusters.

clusters.

One can observed that the Silhouette scores are significantly improved, even if is to be expected given that the
DECmethod is optimizing for that score, albeit indirectly. The agreement measures show that the agreement,
even if not optimal, is consistent with different federation layouts, highlighting the robustness of the method
to the federation procedure.
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Figure 7.7: Cycle accuracy for the different number of federated clients with varying numbers of clusters

Figure 7.8: left: Silhouette score of both DEC and HDP for 6 cluster centroids with different federation
divisions; right: Agreement scores between DEC and HDP for 6 cluster centroids with different federation
divisions

Figure 7.9: left: Silhouette score of both DEC and HDP for 8 cluster centroids with different federation
divisions; right: Agreement scores between DEC and HDP for 8 cluster centroids with different federation
divisions
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8 UniTO contribution
The goal of survival analysis is to predict the occurrence time of some event of interest, which can be an
adverse event for patients in a clinical setting. To this aim, the Cox proportional hazards model is routinely
used by clinicians for prognostic purposes. However, clinical data are often limited in individual centres
and aggregating local datasets is often impossible due to their sensitivity and strict privacy regulations, re
quiring federated approaches. Traditional survival models do not fit a federated learning framework, as their
loss function is nonseparable with respect to the samples. In addition, most of the stateoftheart methods
assume only linear relationships among covariates. Therefore, we explored the most recent Neural Net
work and Machine Learning techniques to develop nonlinear survival analysis models, implementing them
through a federated approach.
This chapter is organized as follow: section 8.1 is dedicated to the description of the standard Cox Propor
tional Hazard model and its ”deep” version, using Neural Networks; section 8.2 introduces the proposed
Federated Learning implementations of the algorithms; section 8.3 shows the obtained performance of the
methods applied to Myelodysplastic syndrome (MDS) data and section 8.4 reports our conclusions and the
directions for future works.

8.1 Survival Analysis
Given a group of individuals susceptible to experiencing an event of interest, survival analysis techniques
seek to infer the probability distribution for the time of that event for each individual. Obtaining these times
toevent requires patients to be followed in long observational studies, which typically last years. Due to
this long duration, patients frequently drop out from studies before any event occurs. In this case, one can
only know that the event did not occur before the dropping time, which is known. This partial knowledge is
known in survival analysis as right censoring. An example is presented in Figure 8.1.
Here for patients A,C and E it is unknown whether they did or did not experience an event after termination
of the study, so they are considered censored. The only available information is that they are eventfree up to
the last followup. Therefore, the exact time of an event could only be recorded for patients B and D, which
are considered as uncensored. The goal of survival analysis is to model the probability distribution of the
actual event time Ti ∈ R+ for each individual i ∈ [N] = 1, ..., N. The hazard function h(t, xi) represents
this distribution through an approximate probability that an event, characterized by a vector xi ∈ Rp of
features (e.g. clinical, demographics, genetic features, etc.), occurs in the time interval [t; t + ∆[, under the
condition that an individual would remain eventfree up to time t:

h(t, xi) = lim
∆t→0

P(t ≤ Ti < t + ∆t | xi, Ti ≥ t)
∆t

≥ 0
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Figure 8.1: Examples of right censoring.

8.1.1 CoxPH model

Cox proportional hazards model is the most widely used technique to learn from censored survival data. It
assumes that the hazard function can be factored as:

h
(
t | xi1, . . . , xip

)
= h0(t) exp

(
p

∑
j=1

xijβ j

)
⇔ log

h (t | xi)

h0(t)
= x⊤i β (8.1)

where β ∈ Rp are the coefficients associated with each of the p features, while h0(t) is the baseline hazard
function, common to all the individuals in the group and dependent on time only. In addition, the model
implies that the risk ratio between individuals does not depend on time. Therefore, considering only relative
comparisons, the baseline hazard function does not need to be specified. The function h0(t) and the param
eters β can be estimated independently from each other. For the latter, the minimization of the negative Cox
partial loglikelihood function is performed, which only compares the relative risk ratios and it is based on
the probability that the ith individual experiences an event at time ti, given that there is one event at time
point ti.

Let Ri =
{

j | tj ≥ ti
}
be the risk set, i.e., the set of subjects who remained eventfree shortly before time
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point ti, and I(·) the indicator function, then we have:

P (subject experiences event at ti | one event at ti)

=
P ( subject experiences event at ti | eventfree up to ti)

P ( one event at ti | eventfree up to ti)

=
h (ti | xi)

∑n
j=1 I

(
tj ≥ yi

)
h
(
tj | xj

)
=

h0 (ti) exp
(
x⊤i β

)
∑n

j=1 I
(
tj ≥ ti

)
h0
(
tj
)

exp
(

x⊤j β
)

=
exp

(
x⊤i β

)
∑j∈Ri

exp
(

x⊤j β
)

By multiplying the conditional probability from above for all patients who experienced an event, and taking
the logarithm, we obtain the partial likelihood function:

β̂ = arg max
β

log PL(β) = arg max
β

n

∑
i=1

δi

[
x⊤i β − log

(
∑

j∈Ri

exp
(

x⊤j β
))]

(8.2)

We also notice that with this formulation the baseline hazard function h0 is canceled out so it does not need
be defined for finding the coefficients β.

8.1.2 DeepCox

Cox proportional hazards model assumes that the log hazard is decomposed into and timeindependent linear
predictor of features vector x as log(h(t | x)/h0(t)) = x⊤β. However, the assumption is often too simplis
tic in realworld clinical data, as the patients’ features could contribute through more complicated nonlinear
functions to the definition of risk scores. In order to capture this behaviour, the model can be easily extended
to the nonlinear case by replacing the linear predictor x⊤β with the output of a neural network with param
eters Θ. Therefore, the partial loglikelihood expressed in (8.2) will be the loss function used to train the
neural network. In particular, due to the event indicator δi, only uncensored data points are considered to
compute the loss. A schematic representation of the model is presented in Figure 8.2.
This idea was originally proposed in the work of Faraggi and Simon [72] back in 1995, where they explored
multilayer perceptrons, but the same loss can be used in combination with more advanced architectures such
as convolutional neural networks or recurrent neural networks, thus extending the Cox model to different
types of patients’ data such as diagnostic images or temporal records. Therefore, it is natural to also use the
same loss function in the era of deep learning.
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Figure 8.2: DeepCox neural network.

8.1.3 Evaluating Survival Models

The most frequently used evaluation metric for survival models is the Concordance Index (CI) and it will be
considered as reference metrics to evaluate and compare the performances of the proposed models. CI is a
measure of rank correlation between the predicted risk scores f̂ and it can be considered as a generalization
of the area under the ROC curve (AUC) that can take into account censored data. It is defined as the ratio
of correctly ordered (concordant) pairs to all the comparable pairs. Two samples i and j are comparable if
the sample with lower observed time experienced an event, i.e., if tj > ti and δi = 1 where δi is a binary
event indicator δ ∈ {0; 1} that defines the status of censored (δ = 0) or uncensored (δ = 1). A comparable
pair (i, j) is concordant if the estimated risk f̂ by a survival model is higher for subjects with lower survival
time, i.e., f̂i > f̂ j ∧ tj > ti, otherwise the pair is discordant.

8.2 Federated strategies
DesigningMachine Learning algorithms in a federated privacypreserving framework is challenging for both
training and evaluating the model. In our application, the survival data from the patients are supposed to be
available from different hospitals and cannot be moved across centres. This induces the development of
algorithms able to jointly learn a predictive model from these data by sharing as little information as pos
sible from the centres. This can be accomplished in multiple ways, depending on the kind of model one is
concerned with. For neural networks, the internal weights can be shared without restrictions. However, it
is not clear which is the most efficient strategy to aggregate and update the models at each federated step,
since it depends on a wide range of factors such as the specific learning task, the data type or the statistical
heterogeneity of the centres. To this purpose, we have investigated three possible federated learning archi
tectures (Sequential Federated, Weights Averaging and Ensemble Federated), which have been tested on a
survival dataset of MDS patients already described in the previous chapters. The implemented techniques
are not limited to this specific application, but they can be also used for other regression or classification
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tasks.

8.2.1 Federated CoxPH

Before going deeper into the analysis of the federated strategies, it is worth making some observations about
a common shortcoming when building Federated CoxPH models. The loss function (8.2) differs from tra
ditional losses since it is nonseparable at a single patient level. Indeed, the internal sums of exponential
terms are performed over the risk sets of each patient i, thus supposing that their data are always available.
However, this is not the case for the federated learning paradigm, where we can only access the patients’
belonging to the same centre as i when computing the loss. Hence, the resulting loss function will be incom
plete and, in principle, it could deviate significantly from the true value. For practical purposes, computing
the CoxPH loss over a subset of the whole dataset is usually fine as the subset contains several uncensored
samples, otherwise the outer sum in the partial likelihood function would be over an empty set. Specifi
cally, if we represent all the risk sets with a squared boolean matrix where the ith row denotes the risk set
of the ith instance (i.e., at the observed time tj > ti), computing the federated risk sets for each centre is
like applying a mask to the whole dataset considering only the respective diagonal blocks of the matrix as
represented in the figure below. In particular, there are two possible scenarios (Figure 8.3): balanced or
unbalanced centres. One balanced which refers to the case in which all the hospitals have the same sizes in
terms of number of patients (left panel of the figure), the other one unbalanced representing a nonuniform
distribution of patients among the centres (right panel of the figure).

Figure 8.3: Example of masked risk set matrices in the balanced and unbalanced federated scenarios.

8.2.2 Sequential Federated

This architecture is inspired by the FedAvg algorithm, proposed by Google’s researchers in their seminal
work in 2017 [1]. The general idea is to create a single model that moves sequentially across the centres
during the training phase; each centre is treated as a minibatch with the only difference that the samples
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of each batch are fixed and not randomly shuffled at each epoch. A schematic representation of the model
is presented below: First, we randomly initialize the model’s parameters M0, e.g. the weights of a neural

Figure 8.4: Sequential Federated architecture.

network, in a central server. M0 is sent to the first centre C1 where an internal training is performed for a
fixed number of epochs, using only its own patients’ data. Then, the updated model M1 is sent back to the
central server, which directly shares it with another centre without making any operation. The process is
repeated until the model has seen all the participating nodes and the whole procedure is also repeated for a
certain number of federated epochs, randomly shuffling the order of the centres each time.

8.2.3 Weights Averaging

While in the previous strategy a single model is sequentially trained across the centres, in this architecture
a common model is trained simultaneously through all the K centres, by performing a weights aggregation.
Therefore, the same model is separately trained through all the centres at the same time, with a fixed number
of internal epochs. Then, all the local updates are sent to a central server, which perform a weighted average
of the parameters, giving more importance to the nodes with a higher number of patients. This final global
update is then used as a new starting point and the procedure is repeated for each federated epoch, as repre
sented in Figure 8.5.
We highlight that Sequential Federated andWeights Averaging strategies are the limit cases of the FedAvg al
gorithm, respectively setting the fraction of selected nodes for each step to C = 0 (the updates are performed
one centre at a time) and C = 1 (all the centres are used for each update).
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Figure 8.5: Weights Averaging Federated architecture.

8.2.4 Ensemble Federated

The last investigated method is based on a simple ensemble technique, where model outputs from different
centres are aggregated to provide a final prediction. Therefore,Kmodels are generated, withK corresponding
to the number of centres, and they are trained separately at the same time. All local outputs yk are then shared
to a central server and aggregated together through a weighted average, to provide a final prediction ŷ (Figure
8.6).

Figure 8.6: Ensemble Federated architecture.

As we can notice, this ensemble technique is different from the other federated strategies since there are
no federated epochs and K local models are created instead of a global one. However, since data are never
shared across the nodes to compute the final outputs, this method still deserves to be analysed.
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8.2.5 Centrebased KFold CrossValidation

To test the models’ performance it is necessary to design a validation strategy that satisfies all the privacy
preserving requirements. To this purpose, we propose a Federated KFold CrossValidation. It is based on the
same principles of the standardKFoldCrossValidation and it can be used to find the optimal hyperparameters
of the model. In particular, for each fold, the data of a selected centre are excluded from the training and
used as an internal test. To evaluate the methods we will use the CI, which is a relative score since it depends
on the ratio of concordant pairs to comparable ones. Thus, this metric needs to be computed not at a single
centre level, but over the whole dataset in order to be reliable. Therefore, during the cross validation, the
predictions obtained for each internal test will be concatenated to compute the CI for the entire population,
which represents the final crossvalidation score for a specific combination of hyperparameters.

8.3 Experimental setup and results

8.3.1 Model architecture

The baseline model is a FeedForward Neural Network with 2 hidden layers composed of 8 and 4 nodes
respectively. To facilitate the optimization process during the training, we have set a learning rate that
decades if Loss(i+1) > Loss(i), such that lr(i+1) = max

(
lr(i)/

√
i + 1, 0.001

)
. In addition, we also

added L1 and L2 regularizations on the weights of the first hidden layer in order to prevent overfitting. The
hyperparameters selection was performed through the crossvalidation described above. In particular, our
grid search included: federated epochs, internal epochs, number of internal batches and initial learning rate.

8.3.2 Federated settings and validation

To test our models we used the MDS data from Bersanelli et al. [66], which includes 2,043 patients and a
total of 70 covariates of different types (demographics, clinical, genetic and cytogenetic features). For the
timetoevent prediction task we considered the Overall Survival, i.e., the death of the patient. 28.9% of the
patients are uncensored, while for the others the time of the last followup visit is reported.

Data were standardized, putting all values in the [0; 1] interval, before being fed into the neural network.
For the models’ evaluation, we divided the dataset into training and test sets (with a 75% − 25% split).
Then, to simulate a federated framework, we distributed the training data across 8 artificial centres, but
still storing them in the same memory unit of a single machine. For the simulation we explored different
federated settings in order to test the robustness of the proposed architectures to realworld data distributions.
In particular, we simulated 4 scenarios in the creation of the fictitious centres:

• Balanced IID nodes: Centres have the same number of patients and IID distributions of covariates
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and survival times;

• Unbalanced IID nodes: Centres have different number of patients (with a hub node containing 40%
of patients) but maintain the same distributions of covariates and survival times;

• Balanced NonIID survival times: Centres have the same number of patients but different non
overlapping survival times distributions (see Figure 8.7a);

• Balanced NonIID feature (BMB): Centres have the same number of patients but different non
overlapping distribution of a single feature (see Figure 8.7b). In this case we performed a feature
importance analysis over the whole training set and chose the feature with the higher predictive value
for the Neural Network, which was the Bone Marrow Blasts percentage (BMB).
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Note that for the NonIID scenarios we decided to set hard thresholds to the distributions of survival times
and BMB, when creating the centres. These situations should be intended as the worst case scenarios for the
NonIID settings.

Finally, we applied the Centrebased KFold CrossValidation for hyperparameters selection only on the train
ing data, while we used the test set for the evaluation of the selected model (blind test). The test set can be
considered as an isolated centre with an unbiased distribution of the features. The evaluation process has
been repeated 20 times, applying different traintest splits.

8.3.3 Preliminary results

The performances of our models on the blind test set are reported in terms of CI, which is computed through
the risk scores obtained for each patient with the trained neural networks.
To appreciate the advantage of the federated approaches we have also evaluated the performance of our
models for the corresponding nonfederated boundary cases, in order to establish an upper bound and a
lower bound for the 4 federated settings. In particular, the lower bounds are represented by the situations
in which centres are isolated and models are built using only their own data; on the other hand, the unique
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upper bound is the centralized case, which refers to the case where all the data are simultaneously available,
as if they could be shared to a central server without any restrictions.
These results are summarized in Tables 8.1, 8.2, 8.3.

Concordance SD

Centralized case (Upper bound) 0.75 0.02

Table 8.1: NonFederated Centralized case.

IID centres
Balanced sizes Unbalanced sizes

Concordance SD Concordance SD

Isolated nodes (Lower bound) 0.62 0.06 0.62 0.07

Sequential 0.75 0.02 0.74 0.02

Weights Averaging 0.75 0.01 0.75 0.02

Ensemble 0.74 0.02 0.75 0.02

Table 8.2: Federated IID centres.

NonIID centres
NonIID survival times NonIID BMB

Concordance SD Concordance SD

Isolated nodes (Lower bound) 0.55 0.06 0.59 0.05

Sequential 0.60 0.07 0.70 0.03

Weights Averaging 0.68 0.03 0.73 0.05

Ensemble 0.59 0.05 0.70 0.03

Table 8.3: Federated NonIID centres.

As we can see from Table 8.2, in the IIDcentres scenarios all the federated approaches achieve good scores
with respect to the lower bounds, showing a significant improvement of the Concordance Index. This result
also applies in the case of unbalanced centres, with no relevant differences.
On the other hand, there is a deterioration in the performance for the NonIID scenarios, but still achieving
scores significantly higher than the case of isolated nodes. In particular, Table 8.3 shows that the Weights
Averaging federated strategy is more robust to both NonIID times and NonIID BMB settings with respect
to Sequential and Ensemble strategies.
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8.4 Conclusions and further work
Here we have introduced a preliminary federated implementation of the survival analysis through a CoxPH
model combined with a simple neural network and designing three possible federated strategies, which can
be also used for different applications. The model, tested on MDS data, achieved promising results and
we believe it is worth investigating the proposed techniques further through also other nonlinear learning
algorithms. Therefore, we aim at exploring in detail more complex neural network architectures, suitable
also for different types of input data (such as medical images or temporal records). Moreover, we will also
enrich the proposed federated strategies by considering more realistic scenarios, where some centres are
unavailable for training in some federated epochs.
Regarding the models’ evaluation, we will test also the performance with imputed data in order to include
more variables and a greater cohort of patients, and considering other types of events like the LeukemiaFree
Survival (LFS) and the EventFree Survival (EFS), available from the MDS dataset.
Finally, we plan to analyze the performance of our FL strategies in other nonIID settings, i.e., with introduced
heterogeneity in the local data distribution, since a performance degradation could be generated due to weight
divergence of the local models resulting from nonIID scenarios, as pointed out by authors in [73, 74].
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9 UCPH contribution

9.1 Motivation
Medical data sets are often small, heterogeneous, noisy, and have missing values. Additionally, when data
come from different sources, they may have systematic differences due to differences in instrumentation and
procedures at the different clinics. Therefore, the models used must be robust to these complicating factors.
In the group at UCPH, we are working on methods and models that are well suited for these types of data.

Due to the limited size of some of the data sets, we will work on representation learning combined with
transfer learning. The idea of representation learning is to learn a low dimensional representation of the high
dimensional data, which can facilitate subsequent training of a classifier or a survival model. Sometimes, it is
possible to include additional data, for instance from the public domain, when learning representations, which
potentially can lead to very robust representations. This has a significant potential for RNAsequencing data.

Noise, uncertainty andmissing data are best handled by probabilistic models. The generative neural networks
described in the introduction are very expressive machine learning models that output probabilities rather
than point estimates. Using such models, we can therefore better quantify the uncertainty.

We intend to apply and further develop a generative model, which combine representation learning and
generative neural network, and which is also particularly well suited for handling of missing data. This
model and the results obtained are briefly described below.

9.2 The deep generative decoder
The deep generative decoder (DGD) [75] is a generative neural network, which consists of a probability
distribution over latent space (or representation space) and a neural network (the decoder), which maps
representations to the feature (output) space. As the model described in Chapter 6, the distribution over
representation space is parametrized and can have any differentiable form, such as a mixture of Gaussians,
in which the mixture coefficients, component means and covariances are the parameters. The whole model
is estimated by maximum aposteriori (MAP) estimation, including the representations. Please consult our
paper for more details: https://arxiv.org/abs/2110.06672

The model is very similar to the variational autoencoder (VAE) [64] mentioned earlier, but does not have an
encoder. The main difference from the VAE is the MAP estimation instead of the variational inference used
in the VAE.
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Our experience with the model so far is that it is much easier to train than a corresponding VAE and that the
results are also significantly better. In our recent paper [75], we used the CIFAR10 dataset to evaluate the
performance of the DGD at various tasks such as model convergence and accuracy, the ability to reconstruct
the original image; which we evaluated in various ways. As a baseline, we compared our model to a VAE.

We trained both the VAE and the DGD for 50 epochs on the CIFAR10 data, and we found that the DGD
model search was faster than the VAE (Figure 9.1A). Despite the fact that the VAE converges faster during
the initial iterations (0 to 20 epochs), the DGDmodel achieves a lower reconstruction error once convergence
is achieved after 50 epochs (Figure 9.1B), suggesting that the DGD is a more stable and easier to train model.

Deep generative models, such as Generative Adversarial Networks (GANs) have recently attracted a lot
of attention as an stateoftheart method to generate random images. We therefore decided to compare
the image generation performance of the DGD against the VAE and the popular, GAN based architecture
DCGAN [76]. In order to contrast the different models, we investigated their abilities at generating random
images and reconstructing the test images using the CIFAR10 dataset (Figure 9.1C). We found that the
VAE performed poorly, mainly generating blurry images. In contrast, the DGD model generated sharper
images, resembling those images that were generated by the DCGAN. We must acknowledge that the low
performance of the VAE does probably not represent the optimal state this model can achieve provided we are
not experts in the field of VAEs. Yet, our simple approach with the DGD method provides a robust starting
point to train these type of models, which can be very useful for researchers without longtime experience
in the field.

The Bayesian approach provides a natural approach to encode prior believes in a mathematically rigorous
manner. UsingMNIST as a case example, it seems plausible to consider a prior that assigns different clusters
to the different types of digits, therefore allowing the data to get away from 0. To incorporate this idea (see
[75] for details), we used a ”softball” prior over the means of the Gaussian mixture, a Dirichlet prior over
the mixture coefficients and a Gaussian prior on log(1/σ2). Finally, as an evaluation, we visually tested
the ability of our model to represent the MNIST data in a 2D space, using 20, 30 and 50 mixtures in the
representation layer (Figure 9.1DF). We found that the DGD approach with priors formed wellseparated
clusters in 2D for the different numbers. Furthermore, random digits generated with the model were very
good.

One of the advantages of our model is that due to the lack of encoder neural network, the model design is
also easier and the number of model parameters much smaller. This comes at the price that one has to run a
MAP optimization for new samples in order to find the most probable representation and there is a danger
that this process ends up in a local maximum rather than the global. For very large networks or in situations
where speed is an issue, it may therefore be advisable to later introduce an encoder. An encoder can be
trained entirely from the decoder without access to the real samples as described in [75].

There are a number of advantages to this model, which we believe matches the GenoMed4ALL project very
well. Below we will describe some of them and some of the extensions that will be developed in the project.
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Figure 9.1: Performance of the Deep Generative Decoder and the VAE on CIFAR10 andMNIST.(A) Learn
ing curves for the DGD and the VAE.(B) Test loss distributions for the VAE and the DGD. (C) Image gener
ation and reconstruction performance of the DCGAN, DGD and VAE, tested on the CIFAR10 dataset. (DF)
2D representation space and random samples from DGD models with priors. The models contain 20 mix
tures (D), 30 mixtures (E) and 50 mixtures (F) on the representation layer. Figure modified with permission
from [75]
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9.3 Missing values and imputation
Many machine learning approaches that we would consider for medical data relies on a complete data vector.
If some of the values are missing in a data vector, they are replaced by some guesses, such as the mean value
across samples. In the GDG, however, there is no encoder, and we can calculate the probability of the model
(corresponding to the likelihood) just from the values present. This property (first pointed out in [77]) means
that one do not have to guess any values, but simply optimize the model from the values that are present.

Once the model is estimated, it can be used for imputing missing values in arbitrary samples. This is done by
first finding the most probably representation for the sample and then compute the probability distribution for
the missing value. From this probability distribution, one can sample one or more values or simply choose
the most probable as the imputed value. One can also sample representations and thereby obtain an even
better distribution.

We will implement model estimation with missing data as well as the imputation method and test it on data
in the GenoMed4ALL project.

9.4 Representation learning
When estimating the model, we obtain the most probable representations of the training data at the same time
as we train the decoder. This is very similar to what happens in manifold learning, such as UMAP [78], that
also returns a set of ”optimal” representations. The two methods differ in their objective functions, however,
where the manifold learning methods seek to maximize a concordance based on the distances between points
in representation and output space, the generative model treats the points as independent and seeks to obtain
a good distribution of data.

We will work on reconciling these two model types. This could be done by adding terms to the loss of the
DGD,which aims at making “good” representations. We have put “good” in quotes, because part of this work
is to find ways of measuring the quality of a representation. One measure of quality that we will pursue is
the performance of other machine learning tasks based on the representations. It means that a representation
is judged on the performance in e.g. a classification or survival analysis task.

Wewill develop the representation learning and compare toUMAP.Wewill use data from theGenoMed4ALL
project, on which UMAP is already applied.
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9.5 Integration in a federated implementation
There are some advantages of the DGD when it comes to a Federated implementation. One is that the
representations of samples (as well as the samples of course) can be kept private to the nodes and only the
decoder and other parameters need to be communicated between nodes. Another advantage over the VAE is
that the model is smaller and contains approximately half the number of parameters.

In collaboration with other partners in GenoMed4ALL, we will implement the GDG in a federated frame
work and test the different ingredients of the model (missing values, imputation, representation) on the tests
developed for the project.
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10 FORTH contribution

10.1 Gradient Tree Boosting
Ensemble learning is an interesting metalearning strategy where a large number of relatively weak simple
models are combined in order to obtain a stronger ensemble prediction [79]. The most prominent examples
of such machinelearning ensemble techniques are random forests [80] that use the “Bagging” technique
(sampling with replacement from the data set and averaging of the submodels) and have gained a lot of
popularity in recent years. Instead of the simple model averaging technique that Random forests use, the
so called “boosting” technique and the AdaBoost algorithm in ensemble learning [81] follows an iterative,
“stagewise” additive approach where a new model is added and trained based on the errors of the whole
ensemble in the current iteration. A statistical view of the boosting techniques led to the introduction of the
gradient boosting machines [82, 83] and gradient tree boosting when decision trees are used as the “weak”
learners. Under this statistical framework, the new baselearners are selected according to their correlation
with the negative gradient of the loss function, associated with the whole ensemble. Here, we are going to
quickly present XGBoost which is one of most famous examples of gradient tree boosting algorithms [84].

In the Gradient Boosting Decision Trees (GBDT) setting a sequence of decision trees are trained. Formally,
given a loss function l and a data set with n instances and d features D = {(xi, yi)}, where |D| = n,
xi ∈ Rd, and yi ∈ R, GBDT minimizes the following objective function [84]:

L̃ = ∑
i

l (ŷi, yi) + ∑
k

Ω ( fk)

where Ω( f ) = γTl +
1
2 λ∥w∥2 is a regularization term to penalize the complexity of the model. Here γ

and λ are hyperparameters, Tl is the number of leaves and w is the leaf weight. Each fk corresponds to a
decision tree. Training the model in an additive manner, GBDT minimizes the following objective function
at the tth iteration.

L̃(t) =
n

∑
i=1

[
gi ft (xi) +

1
2

hi f 2
t (xi)

]
+ Ω ( ft)

where gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
are first and second order gradient statistics

on the loss function. The decision tree is built from the root until reaching the restrictions such as the
maximum depth. If IL and IR are the instance sets of left and right nodes after the split and letting I = IL ∪ IR,
then the “gain” of the split is given by

Lsplit =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ (10.1)

100 / 110



D6.2  Preliminary conclusions about federated learning applied to clinical data

10.2 XGBoost on a Federated Learning setting
As described previously, during the process of construction of a tree, XGBoost (and other Gradient Boost
algorithms) deal with the problem of locating an optimal split for the residuals of the data set. In XGBoost
splitting is applied by locating a threshold that maximizes (10.1), which simplifies to the following since γ

is constant:

Lsplit =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]

Where IL, IR are the instances (i.e. samples) of the data on the left and the right nodes respectively after
the split, and I are all the instances before the split. Also, gi and hi are the first and second order gradient
statistics of the loss function: l(ŷi, yi). In this function ŷi is the predicted probability of sample i and yi is
the target of sample i. Finally, λ is a regularization parameter (λ > 0), the greater the λ the more pruning is
applied from the algorithm.

Now if we assume that the loss function is “logloss”, one of the most common functions for binary classi
fication:

l(ŷi, yi) = − [yi log(ŷi) + (1 − yi) log(1 − ŷi)]

then the first and second order gradients of this loss faction are gi = ŷi − yi , or else the residuals and
hi = ŷi(1 − ŷi). If we substitute these values in Lsplit then the optimal split is the one that maximizes the
expression:

Lsplit = SimilarityScoreleft + SimilarityScoreright − SimilarityScoreroot

where the SimilarityScore for a collection of samples is:

SimilarityScore =
(∑n

i=1 gi)
2

∑n
i=1 hi + λ

or else:

SimilarityScore =
(∑n

i=1 residuali)
2

∑n
i=1 ŷi ∗ (1 − ŷi) + λ
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So here we can see that in order to locate the optimal split of a leaf in the tree, we just need to find(1) sums
of the residuals (for gi) and (ii) the sum of the likelihoods of the predictions (for hi). XGBoost locates this
optimal split through an exact Greedy algorithm. Ultimately this means that it just applies all possible splits.
A large part of the optimizations that are described in the XGBoost algorithm are dealing with substituting
the greedy algorithm with heuristics that limit the number of possible splits. Here we present a split finding
algorithm that is suitable for federated learning.

An ideal solution would be for all federated nodes to transmit all gi and hi values for each split to the
master node and then the master node locates the optimal split as suggested in [85]. This method has the
disadvantage of revealing too much information regarding the data in each node. For example in the first
iteration the central node would get the residuals (gi) for every instance for every node. Assuming an initial
prediction probability of 0.5, it could simply check if the sample belongs to the positive or negative class by
just checking if the residual is positive or negative. Furthermore, this requires a lot of communication with
the central orchestrating node that will negatively affect the training time.

Here we suggest the following approach. Each node computes the S different splits that yield the top S Lsplit

values, where S is a configuration hyperparameter. For example if S = 10 then each node computes the
splits that produce the top 10 Lsplit values. Then each node returns to the central node three types of data:
(i) the splits, (ii) their corresponding values of Lsplit and (iii) the number of samples that belong to the root
node of this split for this node. Assume that SPs is the sth split, C is the number of federated nodes, Ls,p is
the Lsplit value returned from the pth node when it applies the sth split. Also assume that Np is the number
of samples that the root node contains in the pth node (this is before the split, so it is irrelevant to the split).
After receiving this data the central node computes the split that maximized the following expression:

argmax
SPs

{
C

∑
p=1

NpLs,p

}

Or else it locates the split that contains a high number of samples over many nodes (Np) and also high values
of Lsplit.

After obtaining the optimal split the central node transmits that to the nodes so that they can continue building
the tree. Again some information about the distribution of the data can be deduced, but important information
like class values is not leaked.

The second part of the XGBoost algorithm is the computation of the output values of the leaves of the tree,
or else the weight w∗

j of leaf j. According to the XGBoost publication this value is equal to:

w∗
j =

∑i∈Ij
gi

∑i∈Ij
hj + λ

In contrast to the optimal split, here there isn’t any “search” that needs to take place. The computation of
the output value happens after the optimal tree has been constructed. Given the same loss function l and
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substituting gi and hi in the formula above we have:

w∗
j =

∑n
i=1 residuali

∑n
i=1 ŷi(1 − ŷi) + λ

Here we notice that the output value of a leaf can be computed from the sum of the residuals that this
leaf contains and also from the sum of the likelihoods of the predicted probabilities that this leaf contains.
Therefore after a split, each node can just transmit these two sums to the central node. The central node adds
all sums and can compute the w∗

j for all leaves which transmits back to the clients. It is important to note
that during this federated process all nodes ‘work’ on constructing the same set of trees.
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11 Conclusions
This report has played a remarkable role in the evolution of the project, as all partners involved have gained
a lot of additional experience in federated architectures. In this period we have organised recurring meetings
to clarify the scope and limitations of various federated implementations applicable to different challenges
posed by the case studies ranging from supervised to unsupervised problems to very promising ideas. At this
stage, all partners involved have a clearer perspective on the approaches they want to explore. In addition,
some important missing issues have been identified that need to be addressed in the future:

• We need a single code chain that includes common procedures for generating data and analysing re
sults. In addition, an agreed format of the different contributions is needed to be able to compare
alternatives on fair terms.

• We need closer interaction with the leaders of otherWPs to list the set of challenging problems defined
by those responsible for the different case studies to make sure that AI initiatives are covering all
demands.

• We need to expand our cooperation between the different partners to create synergies and promote a
productive fusion of ideas. So far, we have identified several approaches with some common funda
mental architectures that can probably be improved through joint efforts.

• We have also identified the need to bring our AI analysis closer to clinicians, while also trying to
develop tools that improve the interpretability and explainability of the results of our mostly black
box algorithms.

• We have realized that we need an accurate and objective test procedure that should validate whether
the federated implementation is really effective and distinguish the situation where performance has
been obtained only on isolated algorithms and local data. This procedure will define good nodes
with complete data whose isolated behaviour will define an upper bound of performance and very
poor nodes with only a few samples and many missing features whose isolated performance should
be an unsatisfactory lower bound but which improves significantly after the federated process. This
improvement will quantify the effective gain of our implementations.
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