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Abstract— This paper presents a new innovative framework 
to support smart manufacturing quality assurance. More 
specifically, the i4Q framework provides an IoT-based Reliable 
Industrial Data Services (RIDS), a complete suite consisting of 
22 innovative Solutions, able to manage the huge amount of 
industrial data coming from cheap cost-effective, smart, and 
small size interconnected factory devices for supporting 
manufacturing online monitoring and control. The i4Q 
Framework guarantees data reliability with functions grouped 
into five basic capabilities around the data cycle: sensing, 
communication, computing infrastructure, storage, and 
analysis-optimization. i4Q RIDS includes simulation and 
optimization tools for manufacturing line continuous process 
qualification, quality diagnosis, reconfiguration and 
certification for ensuring high manufacturing efficiency, leading 
to an integrated approach to zero-defect manufacturing. This 
paper presents the main principles of the i4Q framework and 
the relevant industrial case studies on which it will be evaluated. 
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I. INTRODUCTION

Manufacturing is a key sector for employment in the 
European Union generating three-quarters of Europe's exports 
[1] and more than 14% of European GDP [2]. The industrial 
sector is important to the EU economy and remains a driver of 
growth and employment. Industry provides added value 
through the transformation of materials into products. 
Although only roughly 1 in 10 enterprises in the EU is 
classified as manufacturing, the sector comprises 2 million 
companies and is responsible for 33 million jobs. Moreover, 
every new job in manufacturing results in the creation of 
between one half and 2 jobs in other sectors.  

The manufacturing sector generated EUR 5.812 Billion of 
turnover and EUR 1.400 Billion of value added. By these 
measures, manufacturing was the second largest of the NACE 
sections within the EU-27’s non-financial business economy 
in terms of its contribution to employment (21,4%) and the 
largest contributor to non-financial business economy value 
added, accounting for one quarter (26,6%) of the total. 
Furthermore, SMEs are the backbone of manufacturing 
industry in Europe. Micro, small and medium enterprises 
provide around 45% of the value added by manufacturing 
while they provide around 59 % of manufacturing 

employment. These important figures are complemented with 
the European Union Commission strategy that intends to 
expand industrial production in the EU from its current share 
of 15,5% of GDP to 20% by 2020. Resulting smart factories 
with high levels of digitalisation will be a key element for this 
new form of industrial production. Initiatives such as the 
German “Industry 4.0” with a total investment of EUR 40 
Billion every year by 2020 [3] and a governmental fostering 
of close to EUR 500 Million are supporting the development 
of the required technologies. 

Manufacturing companies are continuously facing the 
challenge of redesigning and adjusting their manufacturing 
systems to adapt their process to produce goods adapted to 
specific requirements and produced under the minimum 
required production rate, guaranteeing high quality and 
limiting the use of resources in order to reduce production 
costs. Therefore, reducing waste, scraps and defects, as well 
as production costs and lead times is crucial to increase 
productivity and hence, to pursuit manufacturing excellence. 
In this context, the implementation of zero defect strategies 
plays a decisive role. Addressing the above issues, this paper 
presents an innovative framework (i4Q) to support smart 
manufacturing quality assurance. 

II. THE BACKGROUND

A. The Challenges 
During the last decades several manufacturing operations 

and manufactured products quality optimisation 
methodologies and tools, such as the use of sensors and 
automated processes, have been implemented in European 
manufacturing companies with the aim of improving quality 
management and reduce variability on the manufacture of 
goods. Besides, and especially during the last decade, several 
R&D efforts have targeted on zero defect approaches with the 
purpose of developing solutions to improve performance of 
process control by incorporating enhanced quality control 
solutions. Nevertheless, current solutions show three major 
drawbacks that have not been solved.  

Data management: Thanks to the increase in the use of 
sensors, actuators and instruments, European 
manufacturing lines collect a huge amount of data, 
during the manufacturing process, which is very 
valuable for the improvement of quality in 
manufacturing but, for most of the European factories 
it is not possible to analyse the data generated in the 



process on a daily basis. At the same time the quality 
of these data is a crucial factor. 

Complexity of current solutions: Requiring heavy 
statistical and technology training and support, making 
them not accessible for SMEs. Now, users are 
demanding access to insights from advanced analytics, 
without requiring them to have IT or data science 
advanced skills. Most of current solutions lack of easy 
to use advanced data preparation, production reporting 
and advanced analytics and prediction.  

Dynamic behaviour of the manufacturing factories: 
Complex systems of diverse, connected, 
interdependent entities which need suitable modelling 
and simulation approaches and data fusion techniques 
to interpret the collected data 

B. Manufacturing Data Analytics 
Since the third Industrial Revolution, which was 

characterised by the emergence of the digital information age, 
that manufacturers all over the world are embracing the notion 
of convergence of the digital and physical worlds [4]. Mainly 
due to this convergence and to technological advances 
achieved throughout the last two decades, manufacturing-
related data is being generated at exponentially growing rates 
[5]. Still, there are few manufacturing sectors that truly 
capitalize on such amount of collected data, by extracting 
meaningful insights for supporting improvements on their 
businesses, processes and products [6].  

Recently, the application of Data Analytics to 
manufacturing data has been presented as a solution for the 
issue of capitalizing on ever-growing manufacturing data [7]. 
Manufacturing Data Analytics can be defined as the process 
of finding useful information from analysing manufacturing-
generated raw data, whether for decision-making support or 
for optimisation of business and production processes, among 
other objectives [8], [9] present the main objectives for 
applying Big Data Analytics (BDA) in smart manufacturing. 
It is envisioned that future BDA applications will be able to 
assist enterprise managers to learn everything about what they 
did today and to predict what they will do tomorrow. This 
future vision is based on a taxonomy of data analytics 
approaches for manufacturing, which entails four types of 
analytics processes: descriptive, diagnostic, predictive and 
prescriptive analytics [5], [10].  

Both descriptive and diagnostic analytics methods are 
reactive while predictive and prescriptive analytics 
approaches are proactive. Descriptive analytics is an 
exploratory analysis of historical data to tell what happened. 
During this stage, most of data mining and statistical methods 
can be used to reveal the data characteristics, recognise 
patterns and identify relationships of data objects. Diagnostic 
analytics is a deeper look at data to attempt to understand the 
causes of events and behaviours. The diagnostic analysis of 
machines and other equipment can help to identify the 
possible faults and predict the failures to reduce the machine 
down-times.  

Predictive analytics mainly utilises historical data to 
anticipate the trends of data (i.e., what will occur in the future). 
Finally, prescriptive analytics extends the results of 
descriptive, diagnostic and predictive analytics to make the 
right decisions in order to achieve predicted outcomes. The 
prescriptive methods typically include simulation, decision-

making, optimisation and reinforcement learning algorithms. 
Although the three first types of data analytics are not new 
research trends, the fourth, prescriptive analytics, is seen as a 
future challenge in Manufacturing Data Analytics  [6], and is 
closely linked to simulation (digital twins) and optimisation.  

C. Manufacturing Data Collection 
Modern manufacturing produces high volumes of data [11] 
up to the point that the concept of “Smart Manufacturing” is 
itself tightly intertwined to that of data-driven manufacturing 
[4], allowing companies - for instance - to visualise, analyse 
and react to both collected and real-time (or near real-time) 
information, relevant to many areas of manufacturing, 
ranging from production to maintenance, order management 
and supply chain. Additionally, data can be used in periodic 
analysis and strategic/business planning. 

As highlighted in various research - e.g. [12] - the quality 
of data plays a critical role in business applications under 
various aspects including performance, decision-making 
(management) and cooperation. As already highlighted by 
[13] it is of course important to define what ‘data quality’ 
actually means. In fact, there are several dimensions (and 
measures) related to the concept. In their book on Data Quality 
[12] the authors examine in great detail the dimensions of data 
quality, highlighting how literature does not always agree on 
the definitions of such dimensions and measurements. 

Nonetheless, common attributes/measures defining a basic 
set of data quality attributes can be identified in the 
dimensions of accuracy, completeness, consistency, 
timeliness.  

Accuracy, two types of accuracy can be defined, syntactic 
and semantic. The former essentially assesses how close a data 
value is to a set of values defined in a domain considered 
syntactically correct. The latter assesses closeness from a 
semantic point of view.  

Completeness assesses the degree to which a given data 
collection includes data describing the corresponding set of 
real-world objects. In certain domains (especially databases), 
completeness has to do with the presence (and meaning) of 
null values, therefore some authors suggest that during quality 
assessment a Boolean value should be associated with a field.  

Consistency assesses the adherence to semantic rules 
defined over a set of data i.e. answering the question: “are data 
consistent across the data sets?” and “are the data representing 
conflicting information?”.  

Currency is a time dimension which relates to how often 
the data is updated. Related time dimensions are volatility 
which represents how frequently data changes in time (e.g. a 
birth date has volatility equal to zero), and timeliness which 
specifies the currency of data with respect to a given 
task/usage e.g. data could be current, but still late for a certain 
usage.  

Accessibility relates to the capability of users to access data 
within their own context, including physical status/functions, 
technologies and culture. 

Additionally, domain ontologies are suggested as a tool to 
improve data quality management tasks. [14] reports several 
efforts to propose ontologies, semantics, and semantic web 
technologies within manufacturing and underlines how 



semantically rich descriptions can provide benefits in Industry 
4.0 scenarios.  

III. THE PROPOSED SOLUTION

i4Q is a complete solution, the i4Q RIDS (Reliable 
Industrial Data Services), integrating a set of i4Q Solutions, 
targeting the manufacturing sector and aimed at improving the 
digital manufacturing through more reliable and effective 
data. It is founded on a unified yet modular Framework, rooted 
in a consistent Reference Architecture which encompasses the 
following core layers: physical, network, middleware, 
database, and application. The Reference Architecture is 
based on current standards in manufacturing (e.g. IIRA, 
RAMI4.0, IDSA, and IMSA) and incorporates all 
fundamental viewpoints involved in the process: business, 
usage, functional and implementation. i4Q therefore aims to 
support the complete flow of industrial data, starting from data 
collection to data analysis, simulation and prediction. It 
provides solutions to ensure data quality, security and 
trustworthiness, especially tailored for manufacturing, such as 
blockchain-based data services and distributed storage. 

i4Q also includes a set of services for data integration and 
fusion, data analytics and data distribution. Execution of AI 
workloads (including at the edge) is enabled and effectively 
managed through dedicated services which enable the 
dynamic deployment scenarios based on a cloud/edge 
architecture. Monitoring at various levels is provided in i4Q 
through scalable monitoring tools and the collected 
monitoring data are used for a variety of activities including 
resource monitoring and management, workload assignment, 
smart alerting, predictive failure and model (re)training. 

Digital twins are extensively used, enabling full 
digitisation of the manufacturing process and providing 
simulation and modelling capabilities. Digital twins are used 
for process qualification - in particular to analyse how process 
parameters affect final product quality and obtain virtual 
sensors, as well as to explore potential upgrade actions and 
extend existing process data. Additionally, digital twins 
support quality diagnosis of the manufacturing line. Typical 
process qualification methods are improved in i4Q thanks to 
automated continuous process qualification and the use of 
real-time data. 

In order to facilitate wide and agile deployment, i4Q 
adopts a modular, microservices-based approach, allowing the 
framework - and individual components - to be adapted and 
integrated in different manufacturing scenarios, for diverse 
companies and at varying maturity levels. 

A. Goals 
With i4Q RIDS, factories will be able to handle large 

amounts of data, achieving adequate levels of data accuracy, 
precision and traceability, using it for analysis and prediction 
as well as to optimise the process quality and product quality 
in manufacturing, leading to an integrated approach to zero-
defect manufacturing. 

i4Q Solutions efficiently collect the raw industrial data 
using cost-effective instruments and state-of-the-art 
communication protocols, guaranteeing data accuracy and 
precision, reliable traceability and time stamped data integrity 
through distributed ledger technology. i4Q provides 
simulation and optimisation tools for manufacturing line 
continuous process qualification, quality diagnosis, 

reconfiguration and certification for ensuring high 
manufacturing efficiency and optimal manufacturing quality. 

Regarding data collection, the i4Q framework progress 
beyond the state-of-the-art by focusing on the prescriptive 
analytics challenge, which entails several smaller challenges, 
such as close-loop integration between data analytics and 
simulation processes (in order to bring simulation and digital 
twin models the closest to reality as possible and to capitalize 
on the insights gathered from such models) [5] and by 
leveraging data analytics workloads between edge and cloud 
computing (so as to implement an hybrid cloud/edge 
computing scheme, to not only exploit the strength of cloud 
computing to process the complicated tasks but also harness 
the benefit of edge computing in short latency, consequently 
obtaining the better performance). 

B. Procedure 
To illustrate how i4Q will work, a supposed scenario is 

stated below. The management of a manufacturing company 
in a value-added network decides to develop a successor 
model for one of its products. By implementing the i4Q RIDS, 
all data necessary for the production of the new product from 
the different internal and external sources of the production of 
the predecessor model is centralised (IoT), consolidated, 
subjected to automated pre-processing and made available in 
a scalable internal physical storage system or virtually in a 
cloud for further processing. Furthermore, i4Q data 
acquisition, preparation and storage processes assure data 
quality and neutrality at all times. The use of a blockchain-
based data service ensures the reliability, trustworthiness and 
traceability of the existing data. A system containing 
multilayer cyber security features protects data supplied to the 
IoT-system. In order to use the full potential of i4Q for the 
development of a new process, data of previous production 
processes is needed. Through the monitoring of the company's 
production processes, a large number of the manufacturing 
parameters required for the production of the predecessor 
product are already available in the company's own databases.  

Based on this already existing manufacturing data, i4Q 
QualiExplore checks the data reliability and enables the digital 
simulation of the production of the successor model by means 
of a digital twin. The bundling of all data from the different 
areas of development and production necessary for the 
manufacturing of the new product, in this virtual image of new 
production processes, enables a validation and visualisation of 
the production process to be developed. Critical production 
parameters and potential sources of error can be quickly 
identified, analysed and eliminated in the virtual model of the 
production using the i4Q Big Data Analytics Suite. In order to 
ensure the quality of the products in production, multivariate 
production parameters have to be converted into critical 
quality characteristics which will be used for inline quality 
assurance later on. Furthermore, the simulation model can be 
extended by virtual sensors to generate additional data and the 
effect of potential optimisation options of the production 
process can be explored. On the basis of the results of 
production simulation, the actual real production process with 
the corresponding production parameters required for 
manufacturing of high-quality products can be derived.  

This procedure reduces the process development costs as 
well as the ramp-up time for the new process, since cost- and 
time-intensive tests to determine the necessary manufacturing 
parameters are largely eliminated. The i4Q RIDS includes an 
automated inline process qualification to evaluate the 



capability of the process to produce products that meet the 
quality requirements. Data from the pre-series process is used 
to evaluate the capability of the process. Once the capability 
has been proven, the start of production (SOP) can take place. 
After starting the process, the critical quality characteristics 
are continuously monitored.  

The production parameters of all production units 
integrated in the process flow together in real time centrally in 
the i4Q data system and are prepared, and evaluated for 
analysis. Even minor deviations in production parameters 
relevant to quality features can be detected and localised by 
the real-time monitoring and automatic process analysis and a 
reconfiguration of the process can be performed. This prevents 
the production of low-quality products, reduces production 
down time through error localisation and possible failure 
costs. The digital twin of the process allows efficient and 
effective troubleshooting and intelligent reconfiguration of the 
corresponding production units with subsequent evaluation. 
The optimisation of the critical production parameters for 
reconfiguration of the production process will be performed in 
the virtual environment of the digital twin. After successful 
completion of the reconfiguration, a new process qualification 
with subsequent production release is carried out. 

C. Evaluation 
This section identifies the 6 industrial scenarios for i4Q 

coupled with a high-level user expectation of impact across 
different industrial activities, sectors and domains. The 
concrete industrial use cases introduced below will be 
implemented in 2021 and 2022 as part of i4Q to demonstrate 
the applicability and the impact of the project and its results in 
the market environment under real-world conditions. It should 
be noted, however, that i4Q will be designed for any industrial 
sector in highly complex inter- or intra-organisation scenarios, 
and not limited to the challenges of the pilot cases of the 
project. 

The i4Q Project will deploy/validate the i4Q Solutions in 
pre-defined use cases which have been chosen for their 
complementary nature yet building upon some common 
themes. A total of 6 Pilots are envisioned, representing 
different Industrial Sectors and activities: White Goods, Wood 
Equipment, Metal Machining, Ceramics Pressing, Plastic 
Injection and Metal Equipment. All of them are representative 
of high-tech manufacturing sectors characterised by an 
increasing demand for high quality products and a need for 
factories digitisation and data reliability. In this regard, the 
selected i4Q pilots represent a very representative sample of 
industry. Furthermore, the six pilots belong to two different 
levels of the manufacturing process where the exploitation of 
data is instrumental to optimise the production’s quality: 
machine tool providers, and production companies. Players in 
these two levels need to interact to tackle specific challenges 
related to quality monitoring, and process qualification. To 
gain a general vision of the i4Q Pilots and see their 
complementarity, they have been characterised by three main 
criteria: i) if the use case addresses the challenges in data 
reliability, data fusion and simulation, ii) the set of generic 
technologies to be worked on, and iii) the industrial and 
technical partners of the consortium that will be involved.  

IV. CONCLUSIONS

i4Q framework provides a complete solution consisting of 
sustainable IoT-based Reliable Industrial Data Services 

(RIDS) able to manage the huge amount of industrial data 
coming from cost-effective, smart, and small size 
interconnected factory devices for supporting manufacturing 
online monitoring and control. The i4Q Framework 
guarantees data reliability with functions grouped into five 
basic capabilities around the data cycle: sensing, 
communication, computing infrastructure, storage, and 
analysis-optimisation; based on a microservice oriented 
architecture for the end users.  
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