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A B S T R A C T   

Urban green space (UGS) has gained increasing attention due to its environmental and social functions. However, 
the compound effects of climate change, population growth and economic development on UGS are largely 
unknown. We selected 107 medium-sized and large cities in China to investigate dynamics in the spatial pattern 
of UGS in relation to government policy and other drivers based on remote sensing data for the period 1990 to 
2019. To explore the effect of different levels of urbanization on changes in green space, we develop a new 
Normalized Urban Development Index (NUDI) to classify urban-suburban-rural gradients, viz. Long-term Built- 
up, New Built-up and Non-Built-up. Then, we analysed changes over time in the annual peak value of fraction of 
vegetation cover (FVC) for 380,000 cloud-free Landsat images, and regional UGS dynamics were evaluated using 
the proposed Regional Greenness Dynamic Index (RGDI). Finally, to reveal the major driver(s) of changes in UGS 
and estimate the extent to which patterns of urban greening are due to differences in economic development, we 
compared the observed UGS spatio-temporal dynamics with data on several climatic, social-economic and land 
use related factors for the same period. The NUDI are shown to be highly effective in mapping urban develop
ment gradients, with overall accuracy in the identified classes of 89%. Annual maximum FVC analysis indicates 
that there was significant greening between 1990 and 2019 in both the long-term built up (10,667.52 km2) and 
the non-built up areas (529,310.47 km2), while there was a major increase in browning (25,110.43 km2) in the 
newly built-up areas. The RGDI results indicate that 65% (71/107) of long-term built-up areas in cities trended 
greener over 2010 to 2019 under consideration. At the whole city scale, RGDI is negatively correlated with gross 
domestic product (GDP), although when considering the long-term built-up areas only, economic growth exhibits 
a significant positive correlation during 2010 to 2019 (R = 0.62, p < 0.01). This study offers important insights 
as to the patterns of change in urban greening extent over time and its underyling drivers across urban-suburban- 
rural gradients against the background of urban expansion, afforestation, climate change and economic 
development.   

1. Introduction 

Urban Green Space (UGS) has multiple environmental benefits that 
include ameliorating air quality (Jeanjean et al., 2016), urban heat is
land mitigation (Du et al., 2017), and flood prevention (Bai et al., 2018). 
Previous research has demonstrated that improved access to UGS can 
also support mental health among the urban population (Chang et al., 

2017; Hedblom et al., 2019). Ongoing urbanization demands appro
priate provision of ecosystem services (Silvennoinen et al., 2017) and 
increasing the area and range of types of UGS have emerged as impor
tant means to improving environmental quality in cities, thereby 
contributing to urban sustainable development. 

Following China’s reform and opening-up policy, the urbanization 
rate tripled between 1978 and 2016 from 17.9 % to 57.4%. Extremely 
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rapid growth has been accompanied by numerous environmental chal
lenges, especially for remaining natural habitats, biodiversity, local and 
regional climate, as well as for UGS itself (Kalnay and Cai, 2003; Yang 
et al., 2017). In response to the various pressures associated with urban 
expansion and climate change on China’s ecological situation, the Chi
nese government has promulgated a series of environmental policies. 
Urban re-greening and restoration of UGS and biodiversity are major 
thrusts of this policy. However, there are differences in urban responses 
to policies, while exhibiting unevenness and gradients in green space 
development. Studying the relationship between UGS and policy in 
China can be a good way to explore the mechanisms of policy influence 
on urban land use change and its ecological effects. 

Remote sensing technologies provide a powerful spatial tool to 
evaluate change over time, particularly in relation to vegetation dy
namics. Indices derived from satellite data, such as the normalized 
vegetation index (NDVI) and Leaf area index (LAI) are widely used to 
detect changes in greenness at a range of spatial scales. At the global 
scale, based on a long-term NDVI series, Myneni et al.(Myneni et al., 
1997) revealed significantly increased vegetation greenness across the 
Northern Hemisphere from 1981 to 1991. Using LAI data from 2000 to 
2016, Chen et al. (Chen et al., 2019) reported a markedly positive trend 
in vegetation greenness in China and India. On the other hand, between 
2000 and 2016, Enhanced Vegetation Index (EVI) and GPP results for 
suburban and rural areas of Shanghai showed a downward trend of 
38.0% and 28.0%, respectively, while the same measures exhibited an 
upward trend (2.8% and 4.6%, respectively) in the central parts of the 
city (Zhong et al., 2019). 

Urban green space development is driven by both natural environ
mental factors and human activities (Barbosa et al., 2007; Xu et al., 
2019). Natural factors affect the distribution of UGS by influencing the 
distribution, survival and reproduction of vegetation (Weng et al., 
2021). For example, topography, moisture, air quality, precipitation, 
temperature and radiation all affect the distribution of UGS (Rupprecht 
et al., 2015; McPhearson et al., 2013; Piao et al., 2020). The influence of 
human activities on UGS includes population density, policy and ur
banization (Kabisch et al., 2016; Richards et al., 2017). Previous studies 
have demonstrated that the process of urbanization has a significant 
effect on UGS dynamics (Zhou and Wang., 2011; Zhou et al., 2016), but 
the majority of these are at the scale of a single city or for a single year 
and use a range of different measures. Most of these studies also analyse 
urban greening trends based on established administrative boundaries 
which do not adequately represent the development stage of each city, 
and are therefore not suited to studying differences in the distribution of 
green space along the urban centre/suburban/rural gradient. 

In the context of rapid urbanization and economic development in 
China, the question then arises as to the nature and scale of UGS in cities 
in relation to the greening policies. In this study we aim to explore trends 
in UGS in Chinese cities at a range of development stages and urban
–rural gradients with a view to determining the main driving forces 
underlying the observed spatio-temporal patterns. In approaching this 
complex issue in a spatially explicit way, we utilize remote sensing 
techniques and published statistics relating to economic activities and 
formulate the following objectives for 107 medium and large Chinese 
cities; a) to quantify, using a time series of night time light images, 
spatio-termporal trends in urban development; b) to assess spatial dy
namics of UGS in each of the urban development zones; c) to develop a 
comprehensive indicator to quantify the degree of change in UGS at the 
regional scale. 

2. Materials 

2.1. Study area 

Those Chinese cities with a population of greater than 5 million in
habitants (based on 2018 Chinese government city statistical data) are 
regarded as highly developed, yielding 107 urban agglomerations which 

form the basis this study. Most of these cities are located in the eastern 
and north-eastern regions of the country (Fig. 1), the largest of which is 
Shanghai (with c. 25 million. Inhabitants). The urban population of 
these 107 cities represents 67% of the total population of China. 

2.2. Data 

2.2.1. Night-time light images 
The stable Defense Meteorological Satellite Program-Operational 

Linescan System night-time light data (DMSP-OLS-NTL) has 
outstanding potential to accurately map the urban extent. NTL is widely 
used to provide information about urbanization processes and to eval
uate the location and dimension of urban agglomerations, including 
impervious surface area, population density, GDP, and the form of the 
urban boundary (Elvidge et al., 2007; Zhou et al., 2008; Liu et al., 2015). 
In this study, we used long-term annual NTL data from 1992 to 2013 to 
construct a novel index, named here as the Normalized Urban Devel
opment Index (NUDI. Due to variations in atmospheric conditions over 
time, DMSP-OLS-NTL data were normalized using Eq. (1). OLSnor can 
reduce the effect of NTL saturation and also increase the variability of 
NTL signal in urban areas (Zhang et al., 2013). All datasets were 
resampled to the same spatial resolution (300 m) using the nearest- 
neighbour resampling algorithm. 

OLSnor = (
OLS − OLSmin
OLSmax − OLSmin

)(1 − NDVImax) (1) 

Where OLSnor is the normalized DMSP-OLS-NTL pixel value, and 
OLSmax and OLSmin represent the regional maximum and minimum 
values in the DMSP-OLS-NTL image of each city, respectively. 

2.2.2. Landsat imagery 
Surface reflectance products of 380,000 images covering the period 

1990 to 2019 at 16 days temporal were extracted from the Landsat series 
in GEE. Both the Landsat datasets and the pre-processing algorithm used 
in this study are available on the GEE platform. The availability of 
suitable images of Landsat-5/7/8 data are shown in Fig. 2 (a), and the 
distribution of data used in each year is depicted in Fig. 2 (b). We 
calculated two greenness-related spectral indices, including the 
Normalized Difference Vegetation Index (NDVI) (Goward et al., 1991) 
and the Fraction of Vegetation Cover (FVC) (Gutman and Ignatov, 
1998). In order to reduce the effect of differential sensor calibration in 
Landsat 5/7/8, the annual peak NDVI (NDVImax), and its derived FVC, 
were utilized to assess UGS dynamics, whichwere calculated using Eq. 
(2). 

NDVI =
ρNIR − ρred
ρNIR + ρred

(2a)  

NDVImax = Maximum[NDVI1,NDVI2,⋯,NDVIn] (2b)  

FVC =
NDVI − NDVIs
NDVIv + NDVIs

(2c) 

Where ρred and ρNIRrepresent the surface reflectance, corresponding 
to the red band and near-infrared band, respectively. NDVImax represents 
the annual maximum NDVI values for the respective time 
series,NDVI1,NDVI2,⋯,NDVIn are the calculated indices for all Landsat 
time series.NDVIvand NDVIs are the NDVI fractions of the complete 
vegetation canopy and bare soil, respectively. 

2.2.3. Meteorological data 
The China Meteorological Forcing Dataset (CMFD) is a gridded near- 

surface meteorological dataset, developed specifically for the study of 
land-surface processes in China (He et al., 2020). In this study, annual 
mean near-surface air temperature (AMT), annual mean downward 
shortwave radiation (AMSR), annual mean downward longwave radia
tion (AMLR), and annual total precipitation (ATP) were used as the 
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climatic factors to compare with UGS dynamics. The dataset was pro
vided by the National Tibetan Plateau Data Centre (http://data.tpdc.ac. 
cn). 

2.2.4. Socio-economic data 
Population figures and gross domestic product values (denoted as 

POP, GDP, respectively) are representative of urbanization and eco
nomic growth for each city. The POP and GDP datasets were obtained 
from the online local annual statistical yearbooks (http://tongji.cnki. 
net/). 

2.2.5. The global artificial impervious areas (GAIA) 
We obtained the 2018 urban map using global artificial impervious 

areas (GAIA) dataset (Gong et al., 2020) and used this as the current 
urban distribution base map to help classify the urban area into different 

development zones. Furthermore, the annual urban area extent was 
obtained for each city based on GAIA to calculate the ratio of impervious 
surface coverage (ISC) as an important factor influencing UGS. GAIA 
products are available at http://data.ess.tsinghua.edu.cn/gaia.html. 

3. Methods 

3.1. Algorithms for urban development zone identification 

In order to better understand the effect of urbanization on UGS dy
namics, we classify the urban area into three different urban develop
ment zones viz. long-term built-up (LB), new built-up (NewB), and non- 
built-up (NB) using a cluster-based method. Firstly, we reclassified city 
area into built-up and non-built-up region with the help of the current 
urban distribution map (based on GAIA product in 2018). Secondly, we 

Fig. 1. Overview of the study area showing the location and population of the 107 cities included in the study.  

Fig. 2. (a) shows the number of suitable images from 1990 to 2019, and (b) shows the distribution of Landsat 5/7/8 data volumes available for each year.  
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developed a novel index, the Normalized Urban Development index 
(NUDI) to qualify the degree of urban development, calculated as per Eq. 
(3). The main principle of the NUDI is to further distinguish long-term 
built-up areas from new built-up areas by quantifying the stability of 
nigh-time light intensity, so a larger OLSmax − OLSmin in NUDI indicates 
that the night-time light intensity in the area has increased significantly 
within a certain time frame, and the greater the likelihood that it is a 
new built-up area, otherwise it is long-term built-up area. Eq. (3) 

NUDI =
OLSmax − OLSmin
OLSmax + OLSmin

(3) 

Where OLSmax is the maximum value of annual mean NTL time series 
over the period in question, OLSmin is the minimum value of annual mean 
NTL time series over the period. 

Based on the NUDI results and the known urban distribution, the 
three different development zones for each city were identified using Eq. 
(4). In order to fill inner pixels in Long-term built-up and New built-up 
zones, a kernel density estimation combined with morphological 
approach (Li et al. 2020) was used was used to fill the gaps to derive the 
built-up areas of the different zones. 

Eq. (4) 
⎧
⎨

⎩

NUDI < TandUrbancurrent = 1Long − termbuilt − Up
NUDI > TandUrbancurrent = 1Newbuilt − Up

Urbancurrent = 0Non − built − Up
(4) 

Where Urbancurrent represents the urban distribution in 2018 based on 
the GAIA product, used as currently built area mask to distinguish the 
built-up and non-built-up area. T represents the threshold for each city, 
which was automatically calculated using the Otsu algorithm for each 
city (Otsu et al., 1979). 

To validate the accuracy of urban development zone classification, 
the total of 986 validation samples (including 332, 334, 320 samples for 
long-term built-up, new built-up and non-built-up, respectively) were 
collected with the help of high-resolution satellite image from Google 
Earth platform and global urban boundary (GUB) product. The confu
sion matrix method was used for validation. 

3.2. Spatial-temporal dynamics in UGS, 1990–2019 

The trend in FVC over a given period was calculated using the linear 
least squares regression of annual FVC values against time, and the 
significance of the trend was estimated by applying the Mann-Kendall 
statistical test. Moreover, a novel index, the Regional Greenness Dy
namic Index (RGDI) was proposed to evaluate greenness dynamics, 
considering both the rate and area of greenness/brownness change for 
each pixel with values calculated as positive or negative (%m2) as per 
Eq. (5). RGDI values greater than 0 indicate that the region is charac
terized in general by greening, while negative values indicate overall 
browning. 

RGDI =
∑n

i=1
TriAiNyr (5) 

Where i represents the pixel with a significant trend, n is the total 
number of pixels in the region, such as long-term built-up, new built-up 
and non-built-up, Tri is the trend value of the pixel, Ai is the area of the 
pixel, and Nyr is the length of the study period. 

3.3. Analysis of driving forces of UGS 

Here, we selected seven variables as potential driving factors, 
including four factors related to climatic change (AMT, ATP, AMSR, 
AMLR), one factor related to land-use change (ISC), and two socio- 
economic factors (GDP and POP). Generalized linear models (GLM) 
was applied to assess the strength of the relationships between UGS and 
its driving factors. To assure statistical independence, highly correlated 
variables (Spearman’s ρ greater than 0.8) were not applied in the same 

model. To explore the relative influence of each factor, a boosted 
regression tree (BRT) model was utilized. The four parameters of the 
BRT model, viz. The learning rate, tree complexity, number of trees and 
bag fraction, were set to 0.001, 6, 1000 and 0.75, respectively. BRT 
model was fitted using the dismo package (https://cran.r-project.org/ 
web/packages/dismo/index.html) in R. 

4. Results 

4.1. Urban zonation 

The temporal dynamics of urban expansion, detected using changes 
in long-term built-up and new built-up using the annual GAIA product, 
were assessed from 1990 to 2018. Fig. 3 provides examples of the urban 
zonation distribution for six major cities, viz. Shanghai, Beijing, 
Guangzhou, Wuhan, Xi’an, and Fuzhou city. Validation of the confusion 
matrix algorithm with the help of selected sample points reveal that the 
overall accuracy of urban zoning using NUDI and the threshold algo
rithm was 89%. 

4.2. Zonal differences in UGS dynamics 

Fig. 4 illustrates the greening and browning trends for six Chinese 
major, where long-term built-up urban areas are characterized by a 
general greening trend, while the new built-up spaces were subject to 
browning, and non-built-up areas trended markedly greener. However, 
the temporal dynamics of UGS varies greatly between zones and periods. 
More specifically, a significant browning trend in the long-term built-up 
urban areas of the six selected large cities is evident between 1990 and 
2009 but this is followed by predominant greening from 2010 to 2019. 
In the new built-up category, it shows significant browning over 1990 to 
2019, while non-built-up urban areas are associated with greening over 
the same time. Table 1 shows the statistics on the sum of significant 
green(SG) area and significant brown(SB) area in different zones for 107 
cities. 

In applying the rule RGDI greater than 0 = greening, RGDI < 0 =
browning, we detected the degree of greening/browning for 107 cities 
over time (Fig. 5). In the long-term built-up zone, the area that was 
characterized by browning in each of the first two decades of the study 
period was greater than that which experienced greening. However, 
between 2010 and 2019 showed these areas in general became signifi
cantly greener overall. In the new built-up zone, the area subject to 
browning exceeds that which became greener. Finally, in non-developed 
zones, all time periods indicate significant greening. Fig. 6 shows the 
number of green and brown cities in different regions during the four 
time periods. 

Between 1990 and 1999, the long-term built-up zones in all 107 were 
characterized by browning. In the following decade, the long-term built- 
up zone of 16 cities trended greener, and greening was prominent from 
2010 to 2019 in the same zone in 71 of the cities. In the new built-up 
zone, only 12, 8 and 25 cities exhibited greening over the periods 
1990 to 1999, 2000 to 2009 and 2010 to 2019 respectively. On the other 
hand, greening dominated the non-built up zones in 64, 76 and 85 of the 
cities for the same periods. 

4.3. Factors driving UGS dynamics 

We investigated the sensitivity of UGS to seve factors by analysing 
the outputs of generalized linear models relating the RGDI to seven key 
factors. Table 2 presents the correlation coefficient results i.e. the mean 
coefficient values of all statistically significant (z < 0.05) correlated 
models (denoted as “slope”) for four different periods. In whole city 
scale, GDP shows a significant negative correlation with RGDI, while 
population shows a significant positive correlation. ISC is negatively 
correlated with RGDI. Precipitation is shown to have had no statistically 
significant effect, AMSR, on the other hand, is significantly positively 

W.-B. Wu et al.                                                                                                                                                                                                                                 

https://cran.r-project.org/web/packages/dismo/index.html
https://cran.r-project.org/web/packages/dismo/index.html


International Journal of Applied Earth Observation and Geoinformation 103 (2021) 102525

5

Fig. 3. Spatial distribution of urban development zones based on threshold-based NUDI and GAIA data.  

Fig. 4. Dynamics of UGS in long-term built-up for six cities (slope of FVC trend in four temporal periods).  

Table 1 
Statistics on the sum of SG area and SB area (units are km2).  

Type LB_SG LB_SB NewB_SG NewB_SB NB_SG NB_SB 

1990–1999  2,572.97  8,381.66  2,951.68  6,553.18  101,493.07  40,942.84 
2000–2009  5,753.32  7,308.54  4,683.38  11,347.28  133,224.62  53,224.76 
2010–2019  8,101.80  5,279.45  6,810.22  6,751.67  161,712.93  49,303.65 
1990–2019  10,667.52  25,110.43  6,476.69  37,185.50  529,310.47  119,940.32  
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Fig. 5. Statistics for 107 cities with SG and SB areas according to the different zones whereby the position of the red dot indicates the mean area value for all 107 
cities, green arrows indicate that the area of significant greening is larger than area of significant browning, and vice-versa for red arrows. Where LB, NewB and NB 
denote Long-term built-up, New built-up and Non-built-up, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 6. Statistics on the number of greening and browing cities across time windows for the three different zones, and the city as a whole. Where LB, NewB NB and 
WC denote Long-term built-up, New built-up and Non-built-up, Whole city, respectively. 
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correlated and AMT significantly negatively correlated with RGDI. 
Results of the BRT analysis show that ISC and POP are the most 

important factors influencing spatial variation in RGDI in the long-term 
built-up zone, GDP and ISC are most important in the new built-up zone, 
while climate change has a much greater impact on RGDI than socio
economic factors in the non-built-up zone. For the city as a whole, ISC 
and AMSR are important factors influencing the spatial variation of 
RGDI (Fig. 7). 

Correlation analysis of annual regional mean RGDI values and GDP 
(Fig. 8) indicates that economic growth is associated with significant 
reductions in UGS between 1990 and 2009. but this relationship then 
reverses and is significantly positive (R = 0.62, p < 0.01) between 2010 
and 2019. Similarly, economic growth is correlated with reduced 
greening in the new built-up areas from 1990 to 2010, while also 
appearing to have promoted greening from 2010 to 2019 (R = 0.23, p <
0.05). The effects of economic development therefore are shown to vary 
over time. This is further elucidated in Table 3, which lists the top ten 
cities, including those most economically highly developed cities in 
China, with greatest RGDI in the long-term built-up zone over the 
studied period. Positive growth in both economic development and UGS 
occurred between 2010 and 2019 and, moreover, the more developed 
the economy, the greater the degree of greening. 

5. Discussion 

The spatial analysis of FVC from 1990 to 2019 presented here in
dicates that the degree of urban browning or greening is related to 
emerging patterns of urbanization over time. UGS development is 
markedly uneven, as reflected in the different degrees of urban 

development within cities and also between cities. Fig. 9 shows the 
distribution of RGDI in 107 cities in different time periods; the phe
nomenon of returning to green in the stable built-up areas is obvious 
during 2010–2019, especially in the Beijing-Tianjin-Hebei city cluster, 
the Yangtze River Delta city cluster, and the Guangdong-Hong Kong- 
Macao Greater Bay Area city cluster. For the newly built-up areas, the 
browning trend is prominent. In contrast, non-built-up areas exhibit a 
steady greening trend, which is consistent with the findings of previous 
studies (Chen et al., 2019). While the urban r-greening phenomenon is 
obvious for the whole city from 1990 to 2019, the Yangtze River Delta 
urban agglomeration shows a browning trend, which may be due to the 
replacement of a large amount of urban green space by impervious 
surfaces as a result of particularly intense urban expansion. Overall, 
urban expansion and internal densification are associated with brown
ing. However, as witnessed in most Chinese cities after 2009, when 
urban development matures, the city can begin to recover its UGS. 
Large-scale urban afforestation projects in China have significantly 
increased the fraction of vegetation in the established urban areas, 
improving ecosystem services and enhancing urban sustainability (Yao 
et al., 2019; Jin et al., 2021; Ding et al., 2021). 

Urban green spaces are affected by both climate change as well as 
socio-economic factors. At the scale of the whole city, precipitation and 
short-wave radiation are the main climatic factors that promote green 
space development. Burgeoning urban expansion and urban renewal 
might be expected to have had a direct and negative impact on UGS. 
Here we show that the trend of greening in economically developed 
cities is more significant and that these economically more powerful 
cities exhibit stronger greening trends than those with lower levels of 
economic development in long-term built-up area during 2009 to 2019. 
At the scale of the whole city, economic growth negatively impacts UGS 
although it is interesting to note that in the older, more established parts 
of cities, such economic growth seemingly stimulates greening, i.e., the 
more developed the city economy, the higher the degree of green space 
optimization in the long-term built-up area. This may be due to the 
authorities implementation of greening policies, including a range of 
environmental policies, to promote ecological restoration, including 
green city construction (Liu et al., 2014; Verdini et al., 2020). Our study 
also indicates that in built-up areas, the main drivers of green space 
change are socio-economic factors, while in non-built-up areas, climate- 
related factors play a dominant role. 

The re-greening phenomenon in built-up areas evident over the past 
decade in this study attests to the initial success of China’s urban 
greening policies and demonstrates that a balance between economic 
development and ecological civilization is achievable. (Gu et al., 2020). 

Table 2 
Regression coefficients between seven variables and RGDI at whole city scale in 
four different periods.   

GDP POP ISC AMLR ATP AMSR AMT 

1990–1999 –  – − 0.25 
***  

2.48 
***  

–  0.42 
** 

− 2.85 
*** 

2000–2009 − 0.47 
***  

0.82 
*** 

− 0.21 
*  

− 0.42 
**  

0.17    0.29 
*** 

– 

2010–2019 − 0.35 
*  

0.84 
*** 

− 0.37 
***  

0.91 
*  

–  0.26 
* 

− 0.87 
⋅ 

1990–2019 − 0.41 
***  

0.64 
*** 

− 0.43 
***  

–  –  0.15 
* 

– 

Where “***” represents p-value < 0.001, “**” represents p-value < 0.01, “*” 
represents p-value < 0.05, and “.” represents p-value < 0.1. 

Fig. 7. Ranking of factors affecting RGDI based on BRT analysis.  
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More recently, several urban development initiatives at the city and 
local scale, including “eco-cities”, “national health city”, “low-carbon 
city and “sponge city” have emerged (Yang et al., 2013; Liu et al., 2009; 
Li et al., 2017) and have been integrated into ecological spatial planning 
in the urban context in China. These initiatives all focus on greening in 
core urban areas and favour further development of gardens and urban 
parks (The State Council of the People’s Republic of China, 2017). Our 
findings also provide evidence for the success of policy-driven greening 
strategies in China’s cities, while providing valuable information for 
policy makers to assess the historical pattern of urban re-greening. The 
analysis also highlights that some cities would benefit from a stronger 
focus on green development policies, such as the national strategy of 
ecological civilization. 

In this study, we applied long time series earth observation remote 
sensing data to quantify the degree of urban development and define 
different urban development zones. We demonstrate the application of 

satellite-derived big data coupled with a comprehensive range of 
methods to quantify the degree of urban development and urban 
greening. The methodology enables the reliable assessment of urban 
development and urban green space dynamics. 

6. Conclusions 

Using a time-series of remote sensing data it is possible to compre
hensively analyse spatio-temporal variations in UGS for across Chinese 
cities. The data and methods used provide a means to evaluate the dy
namics of UGS along a gradient of urban development and to assess 
possible underlying factors. We undertook spatial analyses for three 
different zones, including long-term, new, and non-built-up to analyse 
the development of UGS in 107 major cities in China. NUDI is able more 
accurately to identify different urban development areas at a higher 
resolution and therefore provide a more detailed understanding of the 
effects of different urbanization development stages on UGS. This novel 
index of urban development offers an efficient means to map the urban- 
suburban-rural gradient over time and assess the changes in UGS at the 
regional level. The results of this study highlight several issues that 
improve existing knowledge of UGS extent and change in revealing 
spatial differences among different urban development zones. Dynamics 
of UGS for 107 cities in China across different urban zones are eluci
dated, along with a consideration of the factors underlying these pat
terns, i.e. socio-economic conditions, climate, and land use. The analysis 
reveals signicant differentiation in the effects of these factors over time 
and in different zones among cities. The methodological toolbox used 
here is suitable to the evaluation of large data sets with a view to gaining 
insights to rapid urbanization and its effects on UGS. This study focuses 
on the quantitative changes in UGS. In order to better explore the dy
namics of UGS, future studies should be applied to investigating the 

Fig. 8. Relationship between GDP and RGDI in the three zones, and the city as a whole, across four different periods for 107 cities.  

Table 3 
Ten cities with the highest RGDI in the long-term built-up zone during 2010 to 
2019.  

City RGDI (107%m2) RGDI 
ranking 

GDP (108 RMB) GDP ranking 

Shanghai  7.45 1/107  24,558.11 1/107 
Beijing  6.89 2/107  21,821.78 2/107 
Shenzhen  3.86 3/107  16,812.33 4/107 
Xian  3.23 4/107  5,536.78 25/107 
Dezhou  3.01 5/107  2,572.00 60/107 
Changchun  2.80 6/107  5,261.00 29/107 
Guangzhou  2.56 7/107  16,880.33 3/107 
Chengdu  2.54 8/107  10,223.33 7/107 
Foshan  2.16 9/107  7,725.22 15/107 
Jiaxing  2.15 10/107  3,453.56 46/107  
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effects of urbanization and afforestation projects on attributes such as 
biodiversity and carbon sequestration capacity of UGS. 
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