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Abstract. The necessity of organising big streams of Earth Observation (EO)
data induces the efficient clustering of image patches, deriving from satellite im-
agery, into groups. Since the different concepts of the satellite image patches are
not known a priori, DBSCAN-Martingale can be applied to estimate the num-
ber of the desired clusters. In this paper we provide a parallel version of the
DBSCAN-Martingale algorithm and a framework for clustering EO data in an
unsupervised way. The approach is evaluated on a benchmark dataset of Sentinel-
2 images with ground-truth annotation and is also implemented on High Power
Computing (HPC) infrastructure to demonstrate its scalability. Finally, a cost-
benefit analysis is conducted to find the optimal selection of reserved nodes for
running the proposed algorithm, in relation to execution time and cost.

Keywords: Density-based clustering - Image clustering - High Power Comput-
ing.

1 Introduction

Recent years have witnessed an increasing availability of frequent and free-of-cost
Earth Observation (EO) data, which promotes the involvement of satellite imagery anal-
ysis in several domains, from agriculture to disaster management, and from security and
defence to blue economy. To support applications in this wide range of domains, vari-
ous satellite-based solutions are proposed by the scientific community, with a particular
focus on artificial intelligence methods and machine-learning approaches [36126]].

Nonetheless, the large streams of time series of remotely sensed images need to be
organised in a contextual manner. The multimodal dimension of multispectral satellite
images, such as the Sentinel-2 images, require effective and efficient management of
the associated metadata, so as to group them into clusters. The lack of training data in
the EO domain results, though, to the inability of the EO downstream sector to apply
supervised machine learning techniques for pattern recognition in satellite images. The
problem is proved challenging when the number of clusters, that satellite image patches
can be grouped in, is not known a priori and the labels are not known or not annotated.
To that end, density-based algorithms are suitable [24]], since they do not require the
number of clusters as input, contrary to other clustering approaches, such as k-means.
Density-based algorithms require as input two other parameters: the minimum number
of points required to form a cluster, namely minPts, and the neighbourhood radius
€ (density level). Nevertheless, their estimation is hard to be made and often requires
several executions and combination of outputs from multiple density levels.
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algorithm for discovering clusters in large spatial databases with noise. DBSCAN is
still used both in research and real-world applications, while it has inspired numer-
ous extensions, In particular, DBSCAN-Martingale [[14]] estimates the number of clus-
ters by optimizing a probabilistic process, which involves randomness in the selec-
tion of density parameter. In this work we propose a parallel version of the DBSCAN-
Martingale, which is validated in clustering large data assets of satellite image patches
from Sentinel-2 imagery. Furthermore, the implementation of the proposed algorithm is
transferred to High Power Computing (HPC) infrastructure so as to show how compu-
tational limitations can be overcome, to prove scalability and to achieve high efficiency.

The remainder of the paper is organised as follows. First, in Section [2] we discuss
related publications that concern the optimisation of DBSCAN, either by optimising its
parameters or its performance time. Section [3] presents the proposed algorithm, along
with the necessary background, and describes the HPC infrastructure where the algo-
rithm is transferred. Section 4] continues with the description of the dataset used for the
evaluation of the algorithm, the results of the experiments, and a cost-benefit analysis
to examine how time and cost range in relation to the number of used nodes. Finally,
Section 5] concludes with a summary of the presented work and future steps.

2 Related Work

Due to its high popularity, the scientific community has focused on the improvement
of DBSCAN, mainly in two directions: the optimisation of DBSCAN’s parameters, i.e.
minPts and €, and the performance time, proposing faster versions of the algorithm.

Regarding the parameters optimisation, the algorithm in [9] divides the data set into
multiple data regions, sets the appropriate parameters for each data region for local
clustering, and finally merges the data regions. [23]] focus on minimizing the additional
computation required to determine the parameters by using the approximate adaptive e-
distance for each density while finding the clusters with varying densities that original
DBSCAN cannot find. [33]] proposes a self-adaption grey DBSCAN algorithm that au-
tomatically selects its parameters, whereas [29]] calculate the parameters minPts and €
based on the optimal k-value, selected after multiple iterations of k-clustering. Further-
more, in the works of [17]] and [28]], the problem of proper parameterisation is solved by
applying the density peak algorithm and the natural neighbour algorithm respectively.

As far as it concerns the performance, several recent works present revisions of
DBSCAN, aiming to reduce the computation time. [37] target the time spent in the
input/output (reading/writing data), while [12] inspects the neighbourhoods of only a
subset of the objects in the dataset, similarly to the modification of DBSCAN presented
in [21]] that requires computing only the densities for a chosen subset of points. Like-
wise, the approaches of [40] and [[7] run on selected core points, the first based on
locality sensitive hashing and the latter on k-nearest neighbours.

In addition, [10] apply a novel randomized k-centre clustering idea to decrease the
complexity of range query, which is a time-consuming step in DBSCAN. [5] improve
the efficiency with Ada-DBSCAN, an extension that consists of a data block splitter and
a data block merger, coordinated by local clustering and global clustering, and [27] with



Parallel-DBSCAN-Martingale 3

ADBSCAN, which identifies local high-density samples utilizing the inherent proper-
ties of the nearest neighbour graph. Other extensions that present good performance are
the 3W-DBSCAN [46]), the Bisecting Min Max DBSCAN [22]}, and the method in [31]]
that only computes the distances between the object and its nearby neighbours.

Towards decreasing the complexity of DBSCAN, [2]] avoid spending time on every
edge in the neighbourhood graph by working with box graphs, while [19] exploit the
Warshall algorithm to mitigate its complexity. In [4]], problem complexity reduces by
using a single parameter (choice of k nearest neighbours) and by handling large vari-
ations in cluster density (heterogeneous density). Moreover, [35] use a combination of
distance-based aggregation by overlaying the data with customized grids and [3]] utilize
bitmap indexing to support efficient neighbour grid queries.

The upsurge of distributed and high-performance computing technology has moti-
vated scientists to propose various parallel implementations of DBSCAN. [45] present
a framework that divides data into partitions, calculates local DBSCAN results, and
merges local results based on a merging graph. [§] enable parallel computing by a
divide-and-conquer method that includes a simplified k-mean partitioning process and
a reachable partition index, and [I5] present a new approach that supports real-time
clustering of data based on continuous cluster checkpointing. Additional parallelised
versions of DBSCAN are found in the works of [23], [18] applying MapReduce, [47]
with a parallel grid clustering algorithm, and [38]], who developed a scalable distributed
implementation of their own uDBSCAN.

[44]) and [20] manage to parallelise DBSCAN by using Quadtree data structure. In
the latter, the solution distributes the dataset into smaller chunks and then utilizes the
parallel programming frameworks such as Map-Reduce to provide an infrastructure to
store and process these small chunks of data. [30] utilizes Cover Tree to retrieve neigh-
bours for each point in parallel and the triangle inequality to filter many unnecessary
distance computations. Alternatively, AnyDBC by [34], instead of performing range
queries for all objects, iteratively learns the current cluster structure of the data and
selects a few most promising objects for refining clusters at each iteration.

Finally, a further step to distributed implementations of DBSCAN is the optimisa-
tion of the involved stages. [6] propose improvements both in data partitioning stage and
in merging stage. [16] adopt a partitioning strategy based on kdtree, similarly to [39],
and a new merging technique by mapping the relationship between the local points and
their bordering neighbours. [43] use a Hilbert curve to identify the centres for initial
partitioning, [32] optimise it with distance matrix and R-Tree based methods, and [41]]
suggest a cell-based data partitioning scheme, which randomly distributes small cells
rather than the points themselves.

3 Background and Methodology

3.1 Background and notation

In this section we provide the notation that we deem necessary before presenting the
proposed algorithm. As already mentioned, DBSCAN [I1]] has two parameters: ¢ and
minPts. The parameter e defines the radius of neighborhood around a point  (density
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level), while the parameter min Pts is the minimum number of neighbors within e ra-
dius. minPts is usually predefined based on the minimum size of the desired clusters.
On the other hand, the density level € is hard to be estimated and, even so, the algorithm
is not able to output all clusters using one single density level. The cluster structure
is visualised using the OPTICS [T]] plot of reachability distances, where the dents rep-
resent clusters and it is also possible to observe the density level at which the desired
clusters are extracted. For each density level ¢, the output of DBSCAN is one clustering
vector and is denoted by Cppsca Ny In detail, given a dataset of n-instances, DB-
SCAN provides as output a clustering vector C' with values the cluster IDs C|j] for each
instance j = 1,2,...,n, assigning each element j to a cluster. In case the j-th element
is marked as noise, then the cluster ID is zero (C[j] = 0). For further definitions of
the DBSCAN-Martingale process and its extension for providing the estimation of the
number of clusters k, the reader is referred to [13I14].

3.2 The proposed Parallel-DBSCAN-Martingale

The proposed parallel version of the DBSCAN-Martingale algorithm, which requires R
realisations and 7" iterations of the DBSCAN algorithm, each one allocated in different
nodes and cores, so that the algorithm can scale up using an HPC infrastructure, is pre-
sented step-by-step in Algorithm[I]and the complete framework for its implementation
is illustrated in Fig. [T]
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Fig. 1: The Parallel-DBSCAN-Martingale framework

Given a dataset of satellite images, which are cropped into patches, any feature
extraction technique can be applied and the resulted feature vectors can be used for
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clustering. As mentioned in section 3.1} the OPTICS plot is used for selecting the max-
imum € and then DBSCAN-Martingale is executed on different cores in parallel, for
multiple values of minPts, in order to detect the most probable number of clusters,
which is the final output of the framework.

Algorithm 1 Parallel-DBSCAN-Martingale(N, T, R, w) return k

: Allocate N nodes and 7T cores
: Set the number w of different values of minPts
: Extract feature vectors per satellite image patch using any feature extraction method
Find €4, using the maximum reachability distance from an OPTICS reachability plot
: for minPts € {minPts1, minPtsy, ...,minPts, } do
clusters =0,k =0
for r = 1to Rdo

Generate a random sample of 7" values in [0, €maa]

Sort the generated sample €;,t = 1,2, ..., T

fort =1to 7 do

compute CppscAn(e,) distributed in each one of the T" cores

R oy gk R

—_
N = O 0

compute C® distributed in each one of the T cores
update the cluster IDs
update the vector C'
update k = maxC|[j]
J

_—
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end for

clusters =AppendTo(clusters, k)
end for
k =mode(clusters)
: end for
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: compute minPts such as: minPts = argmind;
i
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. find index ¢ such that minPts = minPts;
. return k;

)
=

3.3 HPC Infrastructure

In order to demonstrate the scalability of the proposed algorithm and achieve the best
performance of clustering, Parallel-DBSCAN-Martingale is also run on HPC infras-
tructure. On these clusters, the environments are setup so that machine learning and
deep learning algorithms can be processed effectively. In particular, the NEC Cluster
platform (Vulcan) is selected to accelerate the computation, shorten the running time
and improve the performance. It is a heterogeneous cluster with currently 761 nodes
of different types (Memory, CPU, Disk, Accelerators). For the experiments of Section
[ CascadeLake nodes (clx-25) have been used, which include Infiniband interconnect
for high-speed transmission and high memory 384GB. Especially, near real-time data
analytics are enabled to be performed with the high amount of RAM. The high per-
formance data analytics (HPDA) system naturally enables different kinds of machine
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learning and data analysis tasks, including the clustering task. The technical details of
the NEC Cluster (Vulcan) are summarised in Table[T]

Table 1: Technical specification of the NEC Cluster (Vulcan).

Vulcan CascadeLake nodes (clx-25)
Total number of nodes 84 nodes
Processors per node 2x Intel Xeon Gold 6248, 40 cores total @ 2.50GHz
1 RAM per node 384 GB
Disk storage per node No local storage
External parallel file system ~500TByte (shared), throughput of 6 GB/s
Operating system CentOS 7
Available Standard Software PBSPro, Apache Hadoop, Apache Spark, etc.
Main Programming Languages / Tools |C++, MPIL, Python, etc.

4 Evaluation

4.1 Dataset Description

For the evaluation of the proposed algorithm, we have selected the BigEarthNeﬂdataset
[42]], which contains ground-truth annotation about Sentinel-2 satellite images and counts
590,326 patches of size 120x120 pixels. Each patch may contain one or more of the fol-
lowing labels: water, rice, urban, vineyards, forest, bare rock, and snow.

Table 2: Number of satellite image patches per label

Labels (Single labeled dataset|Subset 1|Subset 2|Subset 3
Water 71,549 100 1,000 | 30,000
Rice 1,122 100 1,000 -
Urban 33,411 100 1,000 | 30,000
Vineyards 2,749 100 1,000 -
Forest 220,406 100 1,000 | 30,000
Bare rock 52 - - -
Snow 61,707 100 1,000 | 30,000
Total 390,996 600 6,000 | 120,000

By definition clustering cannot handle a multi-labelling problem, since each patch
will be assigned to a single cluster. Therefore, we have excluded the patches whose
ground truth is more than one label and produced a modified version of the dataset

'http://bigearth.net/
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that can be seen in the column “Single labeled dataset” of Table [2] Due to the high
imbalance in the number of patches for each class (e.g., 220k forest, 1k rice, 52 rock)
and in order to evaluate the scalability of the algorithm, we have produced three subsets:
one with 100 patches per label, one with 1,000 patches per label and one with 30,000;
classes with less than 100/1,000/30,000 instances were omitted in the preparation of the
respective subset. All subsets can be seen in detail in Table 2]

It should be also noted here that in the following experiments the feature extraction
stage generated one vector per satellite image patch using a Deep Convolutional Neural
Network layer, but as stated in[3.2] the vector representation could be of any type, such
as color histograms or other feature vectors.

4.2 Results

For our experiments, 7' was set to 5, €4, to 10, and w to 12, with min Pts varying from
5 to 16. For each minPts = 5,6, ..., 16 the proposed Parallel-DBSCAN-Martingale
estimated the probabilities of the number of clusters (for reasons of space, only the
plot for minPts = 11 can be seen in Fig. [Jh) and generated the final result in an
unsupervised way, searching for the most “stable” number of clusters as an optimal
solution (Fig.[2b), i.e. 6 for Subset 1.

Estimating the number of clusters with the highest probability for every minPts
requires significant computational effort. For Subset 1 (600 patches) and 100 realisa-
tions, it was possible to run Parallel-DBSCAN-Martingale in a personal computer with
4 cores and achieve an execution time of 12 seconds. However, it did not manage to
run for Subset 2 (6,000 patches) or Subset 3 (120,000), indicating that it needs to be
distributed in multiple processing nodes for scalability. Four runs were successful on
the HPC infrastructure, which has been presented in [3.3] for different parameters, i.e.
the size of the dataset, the number of realisations and the available cores. All the details
of the runs (parameters and execution time) can be found in Table@ It should be high-
lighted here that with an HPC infrastructure, the proposed algorithm is able to cluster
even within 40 minutes (2,400 seconds) satellite image patches that cover more than
172k square kilometers (Run 3).

Table 3: Execution time of Parallel-DBSCAN-Martingale for different parameters

PC HPC
Run 1|{Run 1{Run 2| Run 3 | Run 4
number of patches | 600 |6,000 | 6,000 |120,000{120,000
dataset size of patches (MB)| 50 501 | 501 | 10,020 | 10,020
square kilometers | 864 |8,640 | 8,640 (172,800|172,800

T 5 5 5 5 5
R 100 10 |1,000 10 1,000
available cores 4 216 108 1,044 80

time (seconds) 12 12 160 | 2,400 | 12,400
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Fig.2: (a) Probability of the number of clusters for minPts = 11 (b) Most probable
number of clusters per minPts

4.3 Cost-Benefit Analysis

After achieving the parallel execution of DBSCAN-Martingale on HPC, a further anal-
ysis has been conducted in order to investigate how time and cost range in relation to the
number of reserved nodes. Regarding prices, we refer to HLRS fee schedule for 202(ﬂ
where the computing cost for Cascade-lake 384GB nodes is €1.31 per node*hour.

Table 4: Time & cost analysis of multi-node execution of Parallel-DBSCAN-Martingale

Reserved Nodes|Execution Time (hours)|Execution Cost (€)
1 (40 cores) 1.672 2.62
2 (80 cores) 0.822 2.62
3 (120 cores) 0.562 3.93
4 (160 cores) 0.533 5.24
5 (200 cores) 0.527 6.55
6 (240 cores) 0.273 7.86

The fluctuation of execution time (in hours) and execution cost (in euros) per num-
ber of nodes when running Parallel-DBSCAN-Martingale (1" = 5, R = 60) is reported
in Table @ and also displayed as a line chart in Figure[3]

Moreover, we define marginal cost m; as:

Un; — Un;_,

i

m; =
b, = tn,y

https://www.hlrs.de/solutions—services/academic—users/
legal-requirements/
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Fig. 3: Execution Time (hours) and Execution Cost (€) vs Nodes

where v, is the price value, t. is the processing time and n is the number of nodes. The
fluctuation of marginal cost m; is illustrated in Figure [ and shows that switching from
1 to 2 nodes is advantageous, since execution time is reduced by half with the exact
same cost, while switching from 4 to 5 nodes is the least profitable option, considering
that the cost increases, but the execution time remains almost the same.

ml (1 to 2 nodes) m2 (2 to 3 nodes) m3 (3 to 4 nodes) m4 (4 to 5 nodes) m5 (5 to 6 nodes)

Marginal Cost

Fig. 4: Marginal cost while increasing number of nodes

5 Conclusion and Future Work

Clustering satellite image patches allows a fast grouping of Earth Observation data
into clusters of similar semantic content, i.e. concepts such as water, snow, forest, rice,
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etc. This process is unsupervised and does not require any label information or the
number of clusters known a priori. In an operational level, once a cluster of satellite
imagery patches is obtained and one of the patches is assigned a label (e.g., “this is a
water surface”), then this label is propagated to all other members (patches) of the same
cluster.

In this work we presented a parallel version of a state-of-the-art clustering algo-
rithm, namely DBSCAN-Martingale, which estimates the number of clusters in an au-
tomatic way. The use of HPC allows us to distribute the processing task into several
processing nodes, thus offering a scalable solution to the EO Big Data community. The
parameters of the proposed density-based approach are also learned in an unsupervised
way and a stable solution is searched with many executions and realisations of the pro-
cess, to get the optimal value for the number of clusters. Once the optimal number of
clusters is obtained, then any traditional clustering algorithm (e.g., k-means) can be ap-
plied, having as input the estimated number of clusters and the vector representation
of the satellite image patches. Parallel-DBSCAN-Martingale was evaluated in a subset
of the BigEarthNet dataset and achieved to estimate the correct number of clusters, i.e.
labels of the patches. It was also run successfully on HPC infrastructure, proving its
scalability and increasing its efficiency. Finally, a cost-benefit analysis was conducted
to detect the optimal selection of nodes for running this particular algorithm on this
particular infrastructure.

Future work will focus on further experiments on HPC to discover the optimal us-
age of multiple cores, as well as on the parallelisation of other parts of DBSCAN-
Martingale, such as the realisations.
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