
Computer Networks 203 (2022) 108582

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Scaling migrations and replications of Virtual Network Functions based on
network traffic forecasting
Francisco Carpio ∗, Wolfgang Bziuk, Admela Jukan
Institute of Computer and Network Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany

A R T I C L E I N F O

Keywords:
VNF placement
Migrations
Replications
Traffic forecasting
LSTM

A B S T R A C T

Migration and replication of virtual network functions (VNFs) are well-known mechanisms to face dynamic
resource requests in Internet Service Provider (ISP) edge networks. They are not only used to reallocate
resources in carrier networks, but in case of excessive traffic churns also to offload VNFs to third party cloud
providers. We propose to study how traffic forecasting can help to reduce the number of required migrations
and replications when the traffic dynamically changes in the network. We analyze and compare three scenarios
for the VNF migrations and replications based on: (i) the current observed traffic demands only, (ii) specific
maximum traffic demand value observed in the past, or (iii) predictive traffic values. For the prediction of
traffic demand values, we use an LSTM model which is proven to be one of the most accurate methods in
time series forecasting problems. Based on the traffic prediction model, we then use a Mixed-Integer Linear
Programming (MILP) model as well as a greedy algorithm to solve this optimization problem that considers
migrations and replications of VNFs. The results show that LSTM-based traffic prediction can reduce the
number of migrations up to 45% when there is enough available resources to allocate replicas, while less
cloud-based offloading is required compared to overprovisioning.
1. Introduction

Internet Service Providers (ISP) recognize Network Function Virtu-
alization (NFV) as a key concept to reducing capital and operational
expenditures. In NFV, service provisioning is achieved by concatenating
Virtual Network Functions (VNFs) in a specific sequence order, defined
as Service Function Chains (SFCs). The placement of VNFs is a well
known problem in the community which can follow different optimiza-
tion objectives, such as network load balancing and end-to-end delay.
Once VNFs are deployed in the network, the dynamic traffic demand
patterns require either reallocation or scaling of VNFs to pursuing
different objectives. Moreover, part of the workload may need to be
migrated to the cloud due to, for instance, non-optimal deployments or
insufficient resources within physical servers of the ISP.

The migration and replication of VNFs is a problem widely studied
from different perspectives to date. In all studies, when performing
migrations in runtime, it was shown that the active flows need to
be rerouted causing service disruptions. The use of replications, on
the other hand, requires extra server resources, due to virtualization
overhead, and extra network resources, due to state synchronization
tasks. From an ISP-centric point of view, the use of third party clouds
for a possible migration or replication of VNFs has an impact not only
on the performance of the system but also on the monetary costs for the

∗ Corresponding author.
E-mail address: f.carpio@tu-bs.de (F. Carpio).

ISP when using third-party cloud services. For these reasons, accurate
prediction of future resource utilization or traffic demand values is the
key for ISP to better proactively allocate their resources.

We propose to study how traffic forecasting, in general, can help
us to reduce the number of migrations and replications in ISPs, as
well as the related placements in third-party clouds. We formulate
the placement problem as a Mixed-Integer Linear Programming (MILP)
model and solve the placement in two phases, the latter one focused
on migrations and replications to be able to better understand their
effects. We analyze and compare three scenarios for the VNF migrations
and replications based on: (i) the current observed traffic demands
only, (ii) specific maximum traffic demand value observed in the past,
or (iii) predictive traffic values. In the latter case, we specifically
use LSTM networks for traffic predictions. The placement model also
considers the impact of migrations on the service delays due to ser-
vice interruptions and the impact of replications on the network and
server resource utilization due to virtual machine (VM) overhead and
synchronization traffic. Since the MILP model cannot be used as online
solution, we propose a greedy algorithm for that purpose and analyze
its performance.
vailable online 9 November 2021
389-1286/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2021.108582
Received 10 May 2021; Received in revised form 21 September 2021; Accepted 22
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:f.carpio@tu-bs.de
https://doi.org/10.1016/j.comnet.2021.108582
https://doi.org/10.1016/j.comnet.2021.108582
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108582&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 203 (2022) 108582F. Carpio et al.
The rest of the paper is organized as follows. Section 2 presents re-
lated work and our contribution. Section 3 describes the reference sce-
nario. Section 4 formulates the optimization model. Section 5 describes
the online heuristic approaches. Section 6 analyzes the performance of
the model and heuristics and Section 7 concludes the paper.

2. Related work and our contribution

2.1. VNF placement, migrations and replications

Significant amount of previous work has focused on the placement
of virtual resources for VNFs [1], specially with variants of the joint
optimization placement problem with different objectives. For instance,
in [2], a resource allocation solution is proposed for optimizing energy
efficiency, while considering delay, network and server utilization. [3]
proposed models to finding the optimal dimensioning and resource
allocation with latency constraints in mobile networks. [4] studied how
to optimize the VNF placement and traffic routing while considering
reliability and end-to-end delays. In [5], the authors propose to solve a
joint decision problem when placing VNFs considering multiple real-
world aspects in order to deal with highly varying traffic requests.
Within the placement problem topic, migration and replications of
VNFs are known as specific sub-problems that need to be solved in the
context of resource and service management.

Regarding migrations, since VNFs are commonly running over VMs,
there is the possibility of migrating VMs entirely [6] or migrating only
the internal states of VNFs [7] to new VMs. In this regard, while
the interruption and rerouting of active flows is possible [8], there
is always a service downtime duration that will vary depending on
the path latencies [9]. Some authors, like in [10], propose a dynamic
placement scheduler to minimize the end-to-end latencies when per-
forming migrations. In [11], a trade-off was found between the power
consumption and QoS degradation to determine whether a migration is
appropriate in order to minimize its negative impact due to the service
interruptions.

On the other hand, replications have been primarily used to pro-
vide service reliability [12,13], whereby minimization of the number
of required replicas [14] is one of the main objectives. In addition,
replications need to be studied in the context of reduction of end-to-end
service delays [15], load balancing on the network links [16] or to load
balance the server utilization [17]. Studies combining both migrations
and replications have also been carried out, e.g., [18], where a balanc-
ing between the number of migrations and replications is proposed in
order to maximize the network throughput and minimize the delay. In
our previous work [19], we proposed an optimization method to de-
riving a trade-off between migrations and replications while improving
server, network load balancing and QoS. Unlike migrations, replications
need to consider the impact on traffic synchronization between VNFs,
which is an important issue that adds considerable traffic overhead in
the network [20].

2.2. Traffic forecasting and VNF resource requirement predictions

While NFV provides network operators more flexibility to instanti-
ate VNFs at runtime, the dynamic change of network states due to the
highly variant traffic load at the edge requires prediction mechanisms
to proactively adapt the placement of VNFs accordingly. To address
this issues, two approaches have been proposed, one by predicting
the resources that VNFs will require based on past utilization [21]
while the other one by using traffic forecasting (predictions) techniques
to calculate how much resources the VNFs will need to serve that
traffic correspondingly [22]. In both cases, a more traditional approach
uses either the statistical analysis of time series, or machine learning.
Examples of the statistical analysis can be found, for instance, in [23]
where the authors introduce a mechanism based on Fourier-Series to
determine upcoming demands to perform online VNF scaling. In [24],
2

the authors also use Fourier-Series with the same purpose but, in this
case, with the objective of reducing blocking probability. A slightly
different approach in this area is proposed in [25] where a method
is used based on linear regression to predict traffic and to scale VNFs
in order to improve service availability. Yet another example in [26]
uses a fractional Brownian motion (fBm) traffic model to learn traffic
parameters in order to predict time-varying VNF resource demand.

Most of the recent work in this area, however, include machine
learning based methods. In the area of predicting resource require-
ments, [27] uses Feedforward Neural Networks (FNN) to predict future
requirements of VNFs based on its past utilization and the influence
from neighbor VNFs. With a similar objective, [28] uses a Bayesian
learning approach to learn from historical resource usage data from
VNFs and predict future resource reliability. Another example in [29]
uses an specific type of Recurrent Neural Network (RNN) which is based
on attention and embedding techniques jointly with Long Short Term
Memory (LSTM) model to predict CPU utilization from VNFs with high
accuracy.

For traffic forecasting with ML, [30] uses both RNN and Deep
Neural Networks (DNN) to forecast traffic changes and prove that
these methods can improve delay when provisioning new resources
to VNFs as compared to threshold-based methods. Since one of the
main objectives when predicting traffic is to determine when to scale
VNFs, as discussed in [31]. Here, it is proposed the use of Multilayer
Perceptron (MLP) to predict the required number of VNFs in relation
with the network traffic to scaling the deployment of VNFs.

2.3. Our contribution

So far, we lack studies on how traffic prediction can be used to min-
imize migrations and replications of VNFs. To this end, we contribute
with studying how traffic forecasting can help on reducing the number
of migration and replication of VNFs by optimizing their placement in
a proactive manner. This is motivated especially by three previously
mentioned studies, [5,30,31], that showed the need to consider highly
varying traffic requests when placing VNFs in 5G networks and the
role that traffic forecasting plays in placement and scaling of VNFs.
We analyze this problem from an ISP point of view by using a MILP
generic multipath based model comparing three scenarios: (i) when
VNFs are placed only considering current observed traffic demands,
(ii) when VNFs are placed considering the 80% of the specific maxi-
mum traffic demand value and (iii) when VNFs are placed considering
predicted traffic values. For traffic forecasting, we use an LSTM model
which is proven to be one of the most accurate methods in time
series forecasting problems. The placement model also considers the
impact of migration of VNFs have on the service delays due to service
interruptions, considering individual delays per each traffic demand on
a per-path basis, i.e., individually per each path. Regarding replications,
we consider their impact on the network and server resource utilization
due to VM overhead and synchronization traffic used for maintaining
states. Additionally, we propose a greedy algorithm as online solution
for the MILP model and we compare it to basic random- and first-fit
approaches. Finally, we contribute to by showing that traffic prediction
can reduce the number of migrations when enough available resources
to allocate replicas, while also reducing the utilization of the cloud.

3. Reference scenario

We assume that an ISP owns the network infrastructure close to
the end users where it install small groups of servers for the NFV
Infrastructure. We also assume that the ISP uses the cloud as a third
party to offload VNFs when, for instance, its own infrastructure cannot
deploy new VNFs. Our model follows a two phase optimization process,
in order to study the impact of migrations and replications of VNFs have

on the ISP network while minimizing the utilization of the cloud.

Computer Networks 203 (2022) 108582F. Carpio et al.

V
o
t
f
s
e
t
s
i
c
c
a
a
i
t
c
i
b
p
t
s
d
t

3

(
𝜆

3.1. Optimization scenarios and assumptions

Since our approach to optimizations is carried out from the point
of view of an ISP who owns the physical server infrastructure, given
a certain network topology with certain number of servers located
in network nodes, we assume that all nodes of that topology have
direct links to a third party cloud server. The specific resulting resource
utilization from the links connecting to the cloud and the cloud servers
are not considered in the analysis, but the geographic location of the
cloud servers for service delay is.

The optimization is divided in two phases. During the first one,
the model minimizes the placement of VNFs in the cloud, so the ISP
network is as much utilized as possible, and also by minimizing the
number of VNF replicas at certain time step 𝑡. After that, a second
placement is carried out at time 𝑡 + 𝛥𝑡 while considering initial place-
ment of VNFs that took over during the first phase. In this case,
minimizing the migration of VNFs from the first placement is also
added to the objective altogether with the minimization of replications
and cloud VNFs. Since the traffic demands, and, therefore, the amount
of resources allocated by VNFs vary over time, during the first phase
at time 𝑡, a certain traffic bandwidth is considered which is different
from the one considered during the second phase after 𝛥𝑡. The main
objective is, therefore, to study how migrations and replications can
be minimized in the network while at the same time also reducing
the usage of the cloud. This is done while comparing three different
scenarios when optimizing during the first phase: (i) considering the
current observed traffic demands at time 𝑡, (ii) considering the 80% of
the maximum traffic demand values can have and (iii) considering the
predicted traffic demands at time 𝑡 + 𝛥𝑡.

For the sake of simplicity, we consider a VNF instance maps 1:1 to a
M where some server resources are reserved to the VM independently
f the processed traffic. We define the end-to-end service delay, as
he sum of propagation delay (time for the data to travel through the
iber), processing delay (time for the VNF to process the data) and
ervice interruption delays caused by migrations. These delays will be
xplained in detail in the next section, however, let us shortly focus on
he migration process in order to better understand its impact on the
ervice delay. We assume a migration occurs when a VNF is reallocated
nto a new location and, still, there are active flows being served,
ausing, in this way, an interruption of the service. So, we omit here the
ase of cold migrations. Most of the migration process occurs without
ffecting the perceived delay by the end user since, before performing
migration, a new VNF instance is deployed in a new location and

ts state is synchronized with the old instance. However, we consider
here is always a short interruption of the service until the active flows
ommute to the new VNF [9]. In this sense, the service delay can be
nterpreted as a worst case delay. In our model, we consider a multipath
ased approach where every SFC can use multiple paths, whereby each
ath can exhibit different delays due to different links and VNFs are
raversed. On the other hand, we make use of replications to address
calability but without introducing delays due to the replication process
oes not stop the service. But, we do consider the synchronization
raffic between replicas in order maintain their states synchronized.

.2. Migrations and replications

To better understand the model, let us now illustrate an example
shown in Fig. 1(a)) of an SFC providing service to traffic demands
1 and 𝜆2 with two chained VNFs, 𝑣1 and 𝑣2 instantiated in server

𝑥1, at node 𝑛1, and server 𝑥2 at node 𝑛2, respectively. Depending on
the functionality, every VNF can be of a different type 𝑡, however for
simplification in this example, we assume all VNFs are of the same
type 𝑡, so they all require the same amount resources. The service
delay is calculated as the sum of propagation delays, processing de-
lays and service interruption delays. As an example, assuming 𝐷𝑙 is

pro
3

the propagation delay of a link 𝑙 and 𝑑𝑥,𝑣 (𝜆) is the processing delay
Fig. 1. Examples of different possible scenarios for the model.

experienced by a traffic demand 𝜆 traversing a VNF 𝑣 on a server
𝑥, then, the delay for traffic demand 𝜆1 using that specific path 𝑝 is
𝑑𝜆1𝑝 = 𝐷𝑙1 + 𝑑pro

𝑥1,𝑣1(𝜆1) + 𝑑pro
𝑥2,𝑣2(𝜆1). In this phase, which is taken as

the initial placement for the second phase, we do not consider delays
caused by service interruptions, since there are no migrations yet.

For the second phase, the traffic demands change, so the current
VNFs in the network have the possibility to be either migrated or
replicated. An example is shown in Fig. 1(b), where VNF 𝑣2 is migrated
from server 𝑥2 to server 𝑥3. From the delay perspective, here the
processing delay of VNF 𝑣2 is calculated considering the server 𝑥3
instead, and because a service interruption occurred and, therefore,
active flows are rerouted, a service downtime delay is added: 𝑑𝜆1𝑝 =
𝐷𝑙1+𝑑pro

𝑥1,𝑣1(𝜆1)+𝑑pro
𝑥3,𝑣2(𝜆1)+𝑑dwt𝑠 . Another example is shown in Fig. 1(c),

where instead of migrating, the VNF 𝑣2 is replicated into server 𝑥3
and only traffic demand 𝜆2 is routed to the new replica location. In
this case, there is synchronization traffic added between both VNFs 𝑣2
to maintain their states synchronized. In terms of delays, there is no
change for 𝜆1 compared to the first placement and 𝜆2 will experience
𝑑𝜆2𝑝 = 𝐷𝑙1 + 𝑑pro

𝑥1,𝑣1(𝜆2) + 𝑑pro
𝑥3,𝑣2(𝜆2), which considers the processing delay

of 𝑣2 on server 𝑥3. In this case, service downtime is not considered since

Computer Networks 203 (2022) 108582F. Carpio et al.
Fig. 2. Normalized traffic demand example.

the original VNF is still in original location, so no interruption of the
service occurs.

3.3. Traffic demand model and time series forecasting

We assume that every source destination pair of nodes within the
ISP network generates a certain number of traffic demands with specific
bandwidth. The traffic demands data samples are generated using a
lognormal distribution with a time-varying mean and variance, which
simulates the behavior of common traffic patterns in the internet [32,
33]. The time-varying mean values are obtained using superposition of
sinusoidal functions, i.e.:

𝑦(𝑡) = 𝛼 +
𝑛
∑

𝑘=1
𝛽𝑘 ⋅ sin(𝜔𝑡

𝑘 + 𝜙𝑘) , (1)

where 𝛼 is a constant amplitude, 𝛽𝑘 and 𝜙𝑘 are frequency dependent
constants, and 𝑛 the number of frequency components, in our case equal
to 2. We generate 24 data samples per time period simulating one day.
An example of a resulting function is shown in Fig. 2.

The three optimization scenarios previously introduced differ on
the considered traffic demand values during the first placement. So,
in the first scenario, the VNFs are allocated based on the observed
traffic at that specific time step 𝑡. In the second scenario the VNFs are
allocated assuming the demands values are at the 80% of the maximum
traffic demand value, instead of considering the real observed values.
This let us consider this case as the most conservative one, since an
overprovisioning of resources will occur in most of the cases. In the
third scenario, the VNFs are allocated considering the predicted traffic
demand values after 𝛥𝑡 instead of the observed ones. Then, the resulting
placement from all three scenarios during this first placement is used as
initial condition for the optimization of the second placement at 𝑡+𝛥𝑡,
respectively, where in all three cases only the real observed values are
considered.

For the last scenario, a time series forecasting problem is modeled
where a certain number of time periods (i.e. days, where each day
consists on 24 time steps) 𝐷−1 are used for training and one time period
for evaluation. We specifically use one LSTM network for every traffic
demand with input and output sizes of 1 unit and 8 units in a hidden
layer. The model uses Rectified Linear Unit (ReLU) as the activation
function and is fit with Adam optimizer and optimized using the mean
squared error (mse) loss function. The batch size for the model is 4 and
the validation data is 10% of the total. The number of epochs is not
constrained, instead an early stopping function is used with a minimum
delta of 0.001 and a patience of 10 epochs. Specific parameters are later
described during the evaluation of the model.

4. Problem formulation

We model the network as G = (N ∪ X,L) where N = {1,… , 𝑁} is a
4

set of nodes, X = {1,… , 𝑋} is a set of servers and L = {1,… , 𝐿} is a set
of directed links. Specifically, X𝑛 is a subset of servers 𝑥 ∈ X attached
to node 𝑛 ∈ N. We denote the set of all SFCs as S = {1,… , 𝑆}, where a
specific SFC 𝑠 ∈ S is an ordered set of VNFs V𝑠 = {1,… , 𝑉𝑠}, each VNF
being of type 𝑡, 𝑡 ∈ T, T = {1,… , 𝑇 }, where 𝑣 ∈ V𝑠 is the 𝑣th VNF in set
𝑉𝑠. Table 1 summarizes the notations. It should be noted that the model
is written such that it can be efficiently used in optimization solvers.
For instance, the big M method is avoided when possible or its value is
minimized in order to avoid numerical issues with the solver.

4.1. Objective function

We define the joint optimization problem as the minimization of
the sum of the number of migrations and replications, and number of
functions allocated in the cloud, i.e.,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶
∑

𝑠∈S

∑

𝑣∈V𝑠

[

𝑊𝑚
∑

𝑥∈X
𝐹 𝑣,𝑠
𝑥 (1 − 𝑓 𝑣,𝑠

𝑥) (2a)

+𝑊𝑟

[

(
∑

𝑥∈X
𝑓 𝑣,𝑠
𝑥

)

− 1
]

]

(2b)

+𝑊𝑐
∑

𝑥∈X𝐶

∑

𝑠∈S

∑

𝑣∈V𝑠

𝑓 𝑣,𝑠
𝑥 , (2c)

where the variable 𝑓 𝑣,𝑠
𝑥 specifies if a VNF 𝑣 from service chain 𝑠

is allocated in server 𝑥. Since the optimization process follows two
different phases, after the first placement we take the value of variables
𝑓 𝑣,𝑠
𝑥 and convert them into the input parameters 𝐹 𝑣,𝑠

𝑥 for the next
placement step, i.e.

∀𝑠 ∈ S,∀𝑣 ∈ V𝑠,∀𝑥 ∈ X ∶ 𝑓 𝑣,𝑠
𝑥 ⇒ 𝐹 𝑣,𝑠

𝑥 . (3)

The parameter 𝐹 𝑣,𝑠
𝑥 determines if a VNF 𝑣 of a service chain 𝑠 was

placed on server 𝑥 during the initial placement. So, the objective func-
tion is divided into three different terms, where the first one (2a) counts
the number of migrations, the second one (2b) counts the number of
replications and the third one (2c) counts the number of functions
allocated in cloud servers (here only X𝐶 subset is considered). Every
term is then weighted by 𝑊𝑚, 𝑊𝑟 and 𝑊𝑐 , respectively, which allows
us to independently evaluate and compare the effect of each one of
the terms. The same objective function is used for both optimization
phases, with the only difference being that during the first placement,
𝐹 𝑣,𝑠
𝑥 is in all cases 0, so only replications and number of functions

in the cloud are minimized. We next follow up with the definition of
constraints.

4.2. General constraints

The general constraints are related to the traffic routing, the VNF
placement and the mapping between VNFs and paths.

4.2.1. Routing
For a given network, the input set 𝑝 ∈ P𝑠 is the set of all pre-

calculated paths for SFC 𝑠. The binary variable 𝑧𝜆,𝑠𝑝 = 1 indicates, that
a traffic demand 𝜆 ∈ 𝛬𝑠 of the SFC 𝑠 is using path 𝑝 ∈ P𝑠. The first
routing constraint specifies that each traffic demand 𝜆 ∈ 𝛬𝑠 from SFC
𝑠 ∈ S has to use only one path 𝑝 ∈ P𝑠, i.e.:

∀𝑠 ∈ S,∀𝜆 ∈ 𝛬𝑠 ∶
∑

𝑝∈P𝑠

𝑧𝜆,𝑠𝑝 = 1. (4)

Then, the next constraint takes the activated paths from the variable
𝑧𝜆,𝑠𝑝 and activates the path for a certain SFC 𝑠:

∀𝑠 ∈ S,∀𝑝 ∈ P𝑠,∀𝜆 ∈ 𝛬𝑠 ∶ 𝑧𝜆,𝑠𝑝 ≤ 𝑧𝑠𝑝 ≤
∑

𝜆′∈𝛬𝑠

𝑧𝜆
′ ,𝑠

𝑝 . (5)

This forces 𝑧𝑠𝑝 to be 1 when at least one traffic demand is using path 𝑝,
whereas the right side forces to 𝑧𝑠𝑝 to be 0 when no traffic demand 𝜆 is

using path 𝑝.

Computer Networks 203 (2022) 108582F. Carpio et al.

b
t

f
f
∀

w
d
s
V
n

∀

Table 1
Parameters and variables notation.
Param. Meaning

N set of nodes: N = {1,… , 𝑁}, 𝑛 ∈ N.
X set of servers: X = {1,… , 𝑋}, 𝑥 ∈ X.
L set of links: L = {1,… , 𝐿}, 𝓁 ∈ L.
P set of admissible paths: P = {1,… , 𝑃 }, 𝑝 ∈ P.
S set of SFCs: S = {1,… , 𝑆}, 𝑠 ∈ S.
T set of VNF types: T = {1,… , 𝑇 }, 𝑡 ∈ T.
V𝑠 ordered set, 𝑣 ∈ V𝑠 is the 𝑣th VNF in set V𝑠.
𝛬 set of traffic demands: 𝛬 = {1,… , 𝛬}, 𝜆 ∈ 𝛬.
𝛬𝑠 ⊆ 𝛬 subset of traffic demands 𝜆 ∈ 𝛬𝑠 for SFC 𝑠 ∈ S.
N𝑝 ⊆ N subset of ordered nodes in path 𝑝 ∈ P.
X𝑛 ⊆ X subset of servers attached to node 𝑛 ∈ N.
X𝑝 ⊆ X subset of ordered servers in path 𝑝 ∈ P.
X𝐶 ⊆ X subset of servers located at the cloud.
P𝑠 ⊆ P subset of admissible paths 𝑝 ∈ P𝑠 for 𝑠 ∈ S.
𝑇 𝓁
𝑝 , 𝑇

𝑛,𝑚
𝑝 binary, 1 if path 𝑝 ∈ P traverses link 𝓁 ∈ L and 1 if connects node 𝑛 ∈ N and 𝑚 ∈ N as source and destination path nodes, respectively.

𝛤 pro
𝑡(𝑣) , 𝛤

syn
𝑡(𝑣) continuous, load ratio of a VNF of type 𝑡 ∈ 𝑉𝑡 and traffic ratio for synchronization traffic between two VNFs of type 𝑡 ∈ 𝑉𝑡, respectively.

𝛩𝑠
𝑡(𝑣) integer, overhead for VNF 𝑣 ∈ V𝑠 of type 𝑡 ∈ 𝑉𝑡.

𝐶max
𝓁 , 𝐶max

𝑥 integers, maximum capacity of link 𝓁 ∈ L and of server 𝑥 ∈ X, respectively.
𝐶proq,max
𝑥,𝑡(𝑣) integer, maximum processing capacity that can be assigned by a server 𝑥 to a VNF of type 𝑡

𝐷𝓁 continuous, propagation delay of link 𝓁 ∈ L.
𝐷max

𝑠 , 𝐷dwt continuous, max. service delay of a SFC 𝑠 ∈ S and service downtime duration caused by a migration, respectively.
𝐷pro,max

𝑡(𝑣) continuous, maximum allowed processing delay for a VNF of type 𝑡.
𝐷proq

𝑡(𝑣) , 𝐷
prox
𝑡(𝑣) continuous, delay of a VNF 𝑣 of type 𝑡 due to queues and processing, respectively.

𝑅𝑡(𝑣) binary, 1 if VNF 𝑣 of type 𝑡 is replicable.
𝐹 𝑣,𝑠
𝑥 binary, 1 if VNF 𝑣 ∈ V𝑠 from SFC 𝑠 has been already allocated at server 𝑥 ∈ X, 0 otherwise.

Vars. Meaning

𝑧𝑠𝑝 binary, 1 if SFC 𝑠 uses path 𝑝 ∈ P𝑠.
𝑧𝜆,𝑠𝑝 binary, 1 if traffic demand 𝜆 from SFC 𝑠 uses path 𝑝 ∈ P𝑠.
𝑓𝑥 binary, 1 if server 𝑥 is used, 0 otherwise.
𝑓 𝑣,𝑠
𝑥 binary, 1 if VNF 𝑣 ∈ V𝑠 from SFC 𝑠 is allocated at server 𝑥 ∈ X, 0 otherwise.

𝑓 𝑣,𝑠
𝑥,𝜆 binary, 1 if VNF 𝑣 ∈ V𝑠 from SFC 𝑠 is used at server 𝑥 ∈ X by traffic demand 𝜆, 0 otherwise.

ℎ𝑣,𝑠
𝑝 binary, 1 if VNF 𝑣 ∈ V𝑠 from SFC 𝑠 uses path 𝑝 ∈ P for state synchronization, 0 otherwise.

𝑑𝜆,𝑠
𝑝 continuous, service delay of a traffic demand 𝜆 in path 𝑝.

𝑢𝓁 , 𝑢𝑥 continuous, utilization of a link 𝓁 ∈ L and server 𝑥 ∈ X, respectively.
4.2.2. VNF placement
VNF placement is modeled using the binary variable 𝑓 𝑣,𝑠

𝑥,𝜆, which has
only value 1, if VNF 𝑣 from SFC 𝑠 is allocated at server 𝑥 ∈ X and used
y traffic demand 𝜆 ∈ 𝛬𝑠. Similar to (4), the next constraint defines
hat each traffic demand 𝜆 ∈ 𝛬𝑠 from SFC 𝑠 ∈ S traverses every VNF
𝑣 ∈ V𝑠 in only one specific server 𝑥 ∈ X:

∀𝑠 ∈ S,∀𝑣 ∈ V𝑠,∀𝜆 ∈ 𝛬𝑠 ∶
∑

𝑥∈X
𝑓 𝑣,𝑠
𝑥,𝜆 = 1. (6)

Then, similarly to (5), the next constraint takes the activated VNFs
or each traffic demand from the variable 𝑓 𝑣,𝑠

𝑥,𝜆 and activates the VNF
or a certain SFC 𝑠 as follows:
𝑠 ∈ S,∀𝑣 ∈ V𝑠,∀𝑥 ∈ X,∀𝜆 ∈ 𝛬𝑠 ∶

𝑓 𝑣,𝑠
𝑥,𝜆 ≤ 𝑓 𝑣,𝑠

𝑥 ≤
∑

𝜆′∈𝛬𝑠

𝑓 𝑣,𝑠
𝑥,𝜆′ , (7)

here the left side forces to 𝑓 𝑣,𝑠
𝑥 to be 1 when at least one traffic

emand 𝜆 ∈ 𝛬𝑠 is using VNF 𝑣 ∈ V𝑠 at server 𝑥 ∈ X and the right
ide forces to 𝑓 𝑣,𝑠

𝑥 to be 0 when no traffic demand is using that specific
NF 𝑣 on server 𝑥. Likewise, we determine if a server is being used or
ot by constraining the variable 𝑓𝑥 as:

𝑥 ∈ X ∶ 1
|S||V𝑠|

∑

𝑠∈S

∑

𝑣∈V𝑠

𝑓 𝑣,𝑠
𝑥 ≤ 𝑓𝑥 ≤

∑

𝑠∈S

∑

𝑣∈V𝑠

𝑓 𝑣,𝑠
𝑥 , (8)

where 𝑓𝑥 is 1 if at least one VNF from any SFC is allocated at server
𝑥 ∈ X, 0 otherwise.

4.2.3. Mapping VNFs to paths
The next equation maps the activated VNF to the activated paths

defined in the previous constraints. The first one defines how many
times a VNF can be replicated:

∀𝑠 ∈ S,∀𝑣 ∈ V𝑠 ∶
∑

𝑓 𝑣,𝑠
𝑥 ≤ 𝑅𝑡(𝑣)

∑

𝑧𝑠𝑝 + 1 −𝑅𝑡(𝑣) , (9)
5

𝑥∈X 𝑝∈P𝑠
where 𝑅𝑡(𝑣) specifies if a certain VNF 𝑣 of type 𝑡 is replicable. When
𝑅𝑡(𝑣) is 0, the total number of activated VNFs 𝑣 ∈ V𝑠 from SFC 𝑠 ∈ S is
∑

𝑥∈X 𝑓 𝑣,𝑠
𝑥 ≤ 1. In case the VNF is replicable, then the maximum number

of replicas is limited by the total number of activated paths ∑

𝑝∈P𝑠 𝑧
𝑠
𝑝

for that specific SFC 𝑠. The next constraint activates the VNFs on the
activated paths:

∀𝑠 ∈ S,∀𝑝 ∈ P𝑠,∀𝜆 ∈ 𝛬𝑠,∀𝑣 ∈ V𝑠 ∶ 𝑧𝜆,𝑠𝑝 ≤
∑

𝑥∈X𝑝

𝑓 𝑣,𝑠
𝑥,𝜆 . (10)

If the variable 𝑧𝜆,𝑠𝑝 is activated, then every VNF 𝑣 ∈ V𝑠 from SFC 𝑠 ∈ S
has to be activated in some server 𝑥 ∈ X𝑝 from the path 𝑝 ∈ P for a
specific traffic demand 𝜆. When 𝑧𝜆,𝑠𝑝 is deactivated, then no VNFs can
be placed for that specific traffic demand. The last general constraint
controls that all VNFs 𝑉𝑠 from a specific SFC 𝑠 are traversed by every
traffic demand 𝜆 ∈ 𝛬𝑠 in the given order, i.e.:

∀𝑠 ∈ S,∀𝜆 ∈ 𝛬𝑠,∀𝑝 ∈ P𝑠,∀𝑣 ∈ V𝑠,∀𝑛, 𝑚 ∈ N ∶
(𝑛
∑

𝑚=1

∑

𝑦∈X𝑚

𝑓 (𝑣−1),𝑠
𝑦,𝜆

)

−
∑

𝑥∈X𝑛

𝑓 𝑣,𝑠
𝑥,𝜆 ≥ 𝑧𝜆,𝑠𝑝 − 1

{

1 < 𝑣 ≤ |V𝑠|

𝑛 ≠ 𝑚
,

(11)

where the variable 𝑧𝜆,𝑠𝑝 activates the ordering constraint side (left side)
when is 1 and deactivates it, otherwise. Then, if path 𝑝 ∈ P is activated,
the ordering is checked for every traffic demand 𝜆 ∈ 𝛬𝑠 individually by
using the variable 𝑓 𝑣,𝑠

𝑥,𝜆. Hence, for every traffic demand 𝜆 of SFC 𝑠, the
𝑣th VNF is allocated at server 𝑥 ∈ X𝑛 only if the previous (𝑣 − 1)th VNF
is allocated at any server 𝑦 ∈ X𝑚, where 𝑚 is the ith node from 1 until
𝑛 traversed by path 𝑝. It should be noted, that the correct sequence of
VNFs relies on the correct sequence of subset of servers, i.e. 𝑥 ∈ X𝑛.
This assumes that the correct sequence of VNFs inside these subsets is
organized by the local routing, which may be located at the node 𝑛 or
at a local switch not modeled in detail.

Computer Networks 203 (2022) 108582F. Carpio et al.

t

w
a
d
i
w
c
o

∀

𝑝

w
c
n
𝑝
p
v

4

∀

w

4

i
a
p
e
d
o

d
a
V

∀

𝑑

a
𝑓
a
a
a
u
t
t
b

a
t
S

∀

w
𝑥
𝑦
h

p
e

𝑑

T
l
s
S
e
t
o

4.3. Traffic and performance constraints

4.3.1. Synchronization traffic
When performing replications of VNFs, the stateful states between

the original and replicas has to be maintained in order to be reliable
against VNF failures and avoiding the loss of information. For this
reason, we consider that when a VNF is replicated, the generated
synchronization traffic between replicas and the original has to be also
considered. The amount of the state synchronization traffic depends
on the state space and its time dynamic, where it is assumed, that
each VNF has full knowledge on the state of all its instances used
to implement the VNF 𝑣 ∈ V𝑠. Let us assume, that this amount is
proportional to the total traffic offered to the SFC weighted by an
synchronization ratio 𝛤 syn

𝑡(𝑣) , which depends on the type of VNF 𝑡. In
summary, the directional traffic from a VNF to its replica is given by
𝛤 syn
𝑡(𝑣) |𝛬𝑠|, and its routing should be optimized within the network.

In order to know if the same VNF 𝑣 ∈ V𝑠 from SFC 𝑠 is placed in
wo different servers 𝑥 ∈ X and 𝑦 ∈ X, we define:

∀𝑠 ∈ S,∀𝑣 ∈ V𝑠,∀𝑥 ∈ X,∀𝑦 ∈ X ∶

𝑔𝑣,𝑠𝑥,𝑦 = 𝑓 𝑣,𝑠
𝑥 𝑓 𝑣,𝑠

𝑦 , for 𝑦≠𝑥 ,
(12)

here the variable 𝑔𝑣,𝑠𝑥,𝑦 is 1 only when both variables 𝑓 𝑣,𝑠
𝑥 and 𝑓 𝑣,𝑠

𝑦 are
lso 1, and 0 otherwise. In this way, this variable is used to know if two
ifferent servers have the same VNF placed, which means that model
s allocating one replica. We use the well-known linearization method
hen multiplying two binary variables. In case 𝑔𝑣,𝑠𝑥,𝑦 = 1, we need to

arry the synchronization traffic from server 𝑥 to 𝑦, by selecting only
ne predefined path between them, i.e.:

𝑠 ∈ S,∀𝑣 ∈ V𝑠,∀𝑛, 𝑚 ∈ N,∀𝑥 ∈ X𝑛,∀𝑦 ∈ X𝑚 ∶

𝑔𝑣,𝑠𝑥,𝑦 ≤
∑

𝑝∈P
ℎ𝑣,𝑠𝑝 ⋅ 𝑇 𝑛,𝑚

𝑝 ≤ 1, for 𝑛 ≠ 𝑚 , (13)

∀𝑠 ∈ S,∀𝑣 ∈ V𝑠,∀𝑛, 𝑚 ∈ N ∶
∑

∈P
ℎ𝑣,𝑠𝑝 ⋅ 𝑇 𝑛,𝑚

𝑝 ≤
∑

𝑥∈X𝑛

∑

𝑦∈X𝑚

𝑔𝑣,𝑠𝑥,𝑦, for 𝑛 ≠ 𝑚 , (14)

here the constant 𝑇 𝑛,𝑚
𝑝 = 1 indicates, that the path 𝑝 ∈ P exists which

onnects servers 𝑥 ∈ X𝑛 and 𝑦 ∈ 𝑋𝑚 using the shortest path between
odes 𝑛 and 𝑚. The right term of (13) guarantees that only one path
∈ P is selected by variable ℎ𝑣,𝑠𝑝 . Moreover, (14) guarantees that this
ath is only used if at least one 𝑔𝑣,𝑠𝑥,𝑦 is 1. Note that ℎ𝑣,𝑠𝑝 is a binary
ariable used for every VNF 𝑣 of SFC 𝑠.

.3.2. Link and server utilization
The utilization of a link is calculated as follows:

𝓁 ∈ L ∶ 𝑢𝓁 = 1
𝐶max
𝓁

∑

𝑠∈S

∑

𝑝∈P𝑠

∑

𝜆∈𝛬𝑠

𝜆 ⋅ 𝑇 𝓁
𝑝 ⋅ 𝑧𝜆,𝑠𝑝 +

1
𝐶max
𝓁

∑

𝑝∈P
𝑇 𝓁
𝑝

∑

𝑠∈S

∑

𝑣∈V𝑠

𝛤 syn
𝑡(𝑣) ⋅ |𝛬𝑠| ⋅ ℎ

𝑣,𝑠
𝑝 ≤ 1 ,

(15)

where 𝜆 ⋅ 𝑇 𝓁
𝑝 adds the traffic demands from SFC 𝑠 ∈ S when a path

𝑝 ∈ P𝑠 traverses the link 𝓁 ∈ L. Then, the variable 𝑧𝜆,𝑠𝑝 specifies if the
traffic demand 𝜆 from SFC 𝑠 is using path 𝑝. The second term is the sum
of the extra traffic generated due to the state synchronization between
VNFs 𝑣 ∈ V𝑠 from SFC 𝑠, which is proportional to its total traffic |𝛬𝑠|

multiplied by the synchronization traffic ratio 𝛤 syn
𝑡(𝑣) of the VNF of type 𝑡.

This traffic is only added, if the variable ℎ𝑣,𝑠𝑝 is 1, which indicates that
path 𝑝 ∈ P is used for synchronization by a VNF 𝑣 from SFC 𝑠, and the
link 𝓁 ∈ L belongs to this path. Both summation terms are divided by
the maximum link capacity 𝐶max

𝓁 to restrict the utilization.
The processing load of a server is derived as:

𝛾𝑥 =
∑

𝑠∈S

∑

𝑣∈V𝑠

(

𝛤 pro
𝑡(𝑣)

∑

𝜆∈𝛬𝑠

𝜆 ⋅ 𝑓 𝑣,𝑠
𝑥,𝜆 + 𝛩𝑠

𝑡(𝑣) ⋅ 𝑓
𝑣,𝑠
𝑥

)

, (16)

where the first term sums the traffic 𝜆 ∈ 𝛬𝑠 that is using the VNF 𝑣 ∈ V𝑠
6

from SFC 𝑠 ∈ S at server 𝑥 ∈ X, which is determined by the variable i
𝑓 𝑣,𝑠
𝑥,𝜆, and multiplied by the processing load ratio 𝛤 pro

𝑡(𝑣) of the VNF of type
𝑡. The second term adds the overhead generated by the VM where the
VNF is running and is only added, when the variable 𝑓 𝑣,𝑠

𝑥 determines
that this VNF is placed in server 𝑥. Then, the utilization follows to be
given by:

∀𝑥 ∈ X ∶ 𝑢𝑥 =
𝛾𝑥

𝐶max
𝑥

≤ 1 , (17)

here 𝐶max
𝑥 is the maximum processing capacity.

.3.3. Service delay
Since every service has a maximum allowed delay 𝐷max

𝑠 specified
n the SLA agreement, in case of exceeding it, some penalty costs are
pplied. In our model, and for simplicity, we take into account the
ropagation delay due to the traversed links, the processing delay that
very VNF requires in the servers and, where applicable, the downtime
elays caused by the interruption of the service during the migrations
f VNFs.
Processing delay : The processing delay 𝑑pro𝑥,𝑣,𝑠 of a VNF 𝑣 in a server 𝑥

epends, on the one side, on the amount of traffic being processed by
specific VNF, described by 𝑑proq𝑥,𝑣,𝑠, and on 𝑑prox𝑥,𝑣,𝑠, which is related to the
NF type and the total server load 𝑢𝑥, given as:

𝑠 ∈ S,∀𝑣 ∈ V𝑠,∀𝑥 ∈ X𝑝 ∶ 𝑑pro𝑥,𝑣,𝑠 = 𝑑proq𝑥,𝑣,𝑠 + 𝑑prox𝑥,𝑣,𝑠 , (18a)

𝑑proq𝑥,𝑣,𝑠 = 𝐷proq
𝑡(𝑣)

𝛤 pro
𝑡(𝑣) ⋅

∑

𝜆∈𝛬𝑠
𝑓 𝑣,𝑠
𝑥,𝜆 ⋅ 𝜆

𝐶proq,max
𝑥,𝑡(𝑣)

, (18b)

prox
𝑥,𝑣,𝑠 = 𝐷pro_x,min

𝑡(𝑣) ⋅ 𝑓 𝑣,𝑠
𝑥 +𝐷prox

𝑡(𝑣) ⋅ 𝑢𝑥 . (18c)

In (18b), the numerator of 𝑑proq𝑥,𝑣,𝑠 determines the total processing load
ssigned to the VNF of type 𝑡, which is controlled by the variables
𝑣,𝑠
𝑥,𝜆. Thus, if the assigned processing load is equal to 𝐶proq,max

𝑥,𝑡(𝑣) , the VNF
dds the processing delay 𝐷proq

𝑡(𝑣) . The second delay term, given in (18c),
dds the load independent minimum delay associated to the usage of
type of this VNF, and a delay part which increases with the server

tilization. As a consequence the processing delay 𝑑pro𝑥,𝑣,𝑠(𝜆) depends on
he server 𝑥, the used VNF type and linearly increases with increasing
raffic. Furthermore, the dependency on all traffic demands is denoted
y the vector 𝜆, which is omitted for simplicity in (18).
Downtime duration: If a VNF 𝑣 of SFC 𝑠 has to be migrated, we

ssume an interruption of the service with duration 𝐷dwt . Thus, the
otal service downtime will consider the migration of all VNFs in that
FC which yields a constraint as follows:

𝑠 ∈ S ∶ 𝑑dwt𝑠 = 𝐷dwt
∑

𝑥∈X

∑

𝑣∈V𝑠

𝐹 𝑣,𝑠
𝑥 (1 − 𝑓 𝑣,𝑠

𝑥) , (19)

here the parameter 𝐹 𝑣,𝑠
𝑥 determines if a VNF 𝑣 was placed on server

during the first placement. Thus, if a VNF migrates to another server
≠ 𝑥, the variable 𝑓 𝑣,𝑠

𝑥 is equal to zero and the service downtime 𝐷dwt

as to be taken into account.
Total delay : Because the model allows that different traffic demands

er service can be assigned to different paths, we define individual
nd-to-end delay 𝑑𝜆,𝑠𝑝 for every traffic demand, as follows:

∀𝑠 ∈ S,∀𝜆 ∈ 𝛬𝑠,∀𝑝 ∈ P𝑠 ∶
̂𝜆,𝑠
𝑝 =

∑

𝓁∈L
𝐷𝓁 ⋅ 𝑇 𝓁

𝑝 +
∑

𝑥∈X𝑝

∑

𝑣∈V𝑠

𝑑pro𝑥,𝑣,𝑠(𝜆) ⋅ 𝑓
𝑣,𝑠
𝑥,𝜆 + 𝑑dwt𝑠 . (20)

he first term is the propagation delay, where 𝐷𝓁 is the delay of the
ink 𝓁, and 𝑇 𝓁

𝑝 specifies if the link 𝓁 is traversed by path 𝑝 ∈ P𝑠. The
econd term adds the processing delays caused by all VNFs from the
FC placed on the servers 𝑥 ∈ X𝑝, in which the variable 𝑓 𝑣,𝑠

𝑥,𝜆 has to
nsure that the demand 𝜆 is processed at a specific server 𝑥. Finally,
he third term is the total downtime duration due to the migrations
f that service chain. It should be noted that the second term of (20)

𝑣,𝑠
ncludes a nonlinear relation between the binary variable 𝑓𝑥,𝜆 and the

Computer Networks 203 (2022) 108582F. Carpio et al.

T
a

𝑑

I
b
V
a
v
s
a

𝑑

i
d

5

m
a
R

5

A
p
s
c
e
b
P
f
p
𝑠

1
1

s
w
T
i
𝐴
t
w
c
t
r
t
i
w
i
p
t
p
a

delay variable 𝑑pro𝑥,𝑣,𝑠, which also depends on all decision variables 𝑓 𝑣′ ,𝑠′
𝑥,𝜆′ .

o solve that, we introduce a new delay variable 𝑑𝑣,𝑠𝑥,𝜆, which is bounded
s follows:
pro
𝑥,𝑣,𝑠 −𝐷pro,max

𝑡(𝑣) (1 − 𝑓 𝑣,𝑠
𝑥,𝜆) ≤ 𝑑𝑣,𝑠𝑥,𝜆 ≤ 𝐷pro,max

𝑡(𝑣) ⋅ 𝑓 𝑣,𝑠
𝑥,𝜆 . (21)

f the VNF is selected at server 𝑥 by 𝑓 𝑣,𝑠
𝑥,𝜆 = 1, the variable is lower

ounded by the exact delay 𝑑pro𝑥,𝑣,𝑠 and upper bounded by the maximum
NF delay 𝐷pro,max

𝑡(𝑣) . Since 𝑑pro𝑥,𝑣,𝑠 ≤ 𝑑𝑣,𝑠𝑥,𝜆 ≤ 𝐷pro,max
𝑡(𝑣) , the specific delay of

VNF can be restricted. If the VNF is not selected, i.e., 𝑓 𝑣,𝑠
𝑥,𝜆 = 0, the

ariable has value 𝑑𝑣,𝑠𝑥,𝜆 = 0, since the constant 𝐷pro,max
𝑡(𝑣) makes the left

ize of (21) to be negative. Hence, the end-to-end delay is mapped to
n upper and lower bounded variable 𝑑𝜆,𝑠𝑝 given as

∀𝑠 ∈ S,∀𝜆 ∈ 𝛬𝑠,∀𝑝 ∈ P𝑠 ∶
𝜆,𝑠
𝑝 =

∑

𝓁∈L
𝐷𝓁 ⋅ 𝑇 𝓁

𝑝 +
∑

𝑥∈X𝑝

∑

𝑣∈V𝑠

𝑑𝑣,𝑠𝑥,𝜆 + 𝑑dwt𝑠 , (22)

n which the bounding feature is used in the optimization scenarios
escribed next.

. Online heuristic approaches

Since the model presented is a MILP optimization problem and these
odels are known to be NP-hard [34], in this section we propose
greedy algorithm to work as an online solution and, First-Fit and

andom-Fit algorithms for comparison purposes.

.1. First-fit and random-fit algorithms

Both First-Fit (FF) and Random-Fit (RF) algorithms are described in
lgorithm 1. While both approaches share most of the code, the FF_RF
arameter specifies whether the code has to run FF or RF. The process
tarts with a loop where every demand from every SFC is going to be
onsidered (line 1). The first step is to then retrieve all the paths with
nough link resources to assign traffic demand 𝜆 and that also connect
oth source and destination nodes (line 2). These paths are saved into
′
𝑠, from where one admissible path 𝑝, first one for FF or a random one
or RF, is selected (line 3). In this point, we make sure here that in this
ath, there are enough server resources to allocate all the VNFs for SFC
. Then, from that path, for every VNF 𝑣 from SFC 𝑠 (line 4) we start

with the process of selecting servers for allocations. First, we retrieve all
servers with enough free capacity to allocate the VNF 𝑣 and to provide
service to demand 𝜆 (line 5), and then we choose the first available
server in FF or a random one in RF (line 6). It is to be noted here,
that to satisfy VNF ordering (see Eq. (11)), the procedure chooseServer
will return a valid server from before/after the previous/next VNF
allocated. While for the FF case, we assure in line 3 that there will
always be a server where to allocate the next VNF in the chain, in RF
case we make sure here (line 6) that after the random server selected
there is still place to allocate all the rest of the VNFs from the chain in
next servers in the path, or we select another server instead. In line 7,
we assign the demand and the VNF to the server (i.e. Eqs. (6) and (7)).
After all the VNFs have been placed, the next step is to route traffic
demand 𝜆 to path 𝑝 (line 9), to finally add the synchronization traffic
for the service chain (line 10).

5.2. Greedy algorithm

The greedy algorithm main function is described in Algorithm 2.
The procedure starts with the natural ordering of SFCs by the total
traffic demand value (line 1). This is done in order to first allocate
services with lower impact on the utilization resources in order to avoid
the creation of bottlenecks in servers and links during the firsts phases
of the allocation. Then, it starts iterating over each service (line 2)
and over each traffic demand for certain service (line 3). Then, for
7

each traffic demand we first retrieve all paths with enough free link t
Algorithm 1: First-Fit/Random-Fit: main(FF_RF)
1: for 𝑠 ∈ S, 𝜆 ∈ 𝛬𝑠 do
2: P′

𝑠 ← getAdmissiblePaths(𝑠, 𝜆)
3: 𝑝 ← choosePath(FF_RF, P′

𝑠)
4: for 𝑣 ∈ V𝑠 do
5: X′

𝑝 ← getAvailableServers(𝑠, 𝜆, 𝑣, 𝑝)
6: 𝑥 ← chooseServer(FF_RF, X′

𝑝)
7: addVNFToServer(𝑠, 𝑣, 𝜆, 𝑥)
8: end for
9: routeDemandToPath(𝑠, 𝑝, 𝜆)
0: addSynchronizationTraffic(𝑠)
1: end for

resources in P′
𝑠 (line 4). Then, we choose a path 𝑝 inside of a loop

from all retrieved paths (line 6, details explained later). This is done
to ensure that in case a path cannot be used for allocating all VNFs,
the algorithm tries with the next one. Once the path is selected, we
start with the placement of all VNFs on the selected path. First, all the
available servers for a specific VNF 𝑣 on path 𝑝 are retrieved in variable
X′
𝑝 (line 8), then we choose one server 𝑥 for that specific VNF in line 9

(this procedure explained later) and place the VNF (line 10). In case the
VNF has been already placed by another demand of the same service,
the demand is associated to that VNF, instead. Finally after all VNFs
are placed, we map the demand over path (line 12). Finally, as in the
previous case, the synchronization traffic for that service is added (line
15)

When selecting a path for a specific traffic demand in line 6, the
procedure described in Algorithm 3 is executed. This procedure execute
the following methods in this specific order: return an already used path
for the same demand 𝜆 during the initial placement (line 1), return any
used path for SFC 𝑠 during the initial placement (line 4), return any
used path for SFC 𝑠 (line 7) or return the path with shortest path delay
(line 10). If one method does not return a path, then the next one is
executed.

Going back to Algorithm 2, when choosing a server for a specific
VNF in line 9, the procedure described in Algorithm 4 is executed. In
this point, we first remove servers from the set X′

𝑝 that have already
allocated VNFs before/after the current VNF in the path (lines 1 and
2), in order to satisfy with sequence order Eq. (11). Then, we follow
up with the selection of a server from the remaining ones. Here, in
case it exists, we first retrieve the cloud server 𝑐 in the path (line
3). Then, we retrieve a server already used for VNF 𝑣 and demand
𝜆 during the initial placement (line 4) into server 𝑥. In line 5, we
check the position in the path of that server, where the procedure is
specified in line 13. This procedure receives the server 𝑥, the cloud
erver 𝑐 in case it exists and the boolean variable 𝐴 which specifies
hether this is the last attempt in terms of remaining available paths.
he objective here is to first check if 𝑥 is valid (line 14), otherwise

t finishes. In case is valid, then we return 𝑥 if it is the last attempt
, if a cloud server exists in the path and if the index of 𝑥 is lower

han the index of 𝑐 in the array. In case this condition does not apply,
e continue with the next condition in line 17 with the difference of

hecking whether 𝑥 is after the cloud server in the array. In that case,
he cloud server is returned. If none of the previous applies, then 𝑥 is
eturned in line 19. This procedure is basically performed to make sure
hat in all cases there will be a location where to place VNFs which
s in the cloud server, but choosing it as the last option. Continuing
ith line 6, similarly here we try to retrieve a server used during the

nitial placement for service 𝑠 regardless for which traffic demand and
erform the same procedure like in the previous case (line 7). While
he first method tries to reuse the same exact server like in the initial
lacement in order to avoid a migration, here we try to use a server
lready used by some other demand during the initial placement for

he same service in order to avoid a replication. Similarly, the next case

Computer Networks 203 (2022) 108582F. Carpio et al.
Algorithm 2: Greedy: main()
1: S′ = orderServicesByTotalDemandValue(S)
2: for 𝑠 ∈ S′ do
3: for 𝜆 ∈ 𝛬𝑠 do
4: P′

𝑠 ← getAdmissiblePaths(𝑠, 𝜆)
5: for 𝑝 ∈ P′

𝑠 do
6: 𝑝 ← choosePath(𝑠, 𝜆, P′

𝑠) ⊳ go to Alg. 3
7: for 𝑣 ∈ V𝑠 do
8: X′

𝑝 ← getAvailableServers(𝑠, 𝜆, 𝑝, 𝑣)
9: 𝑥 ← chooseServer(𝑠, 𝜆, 𝑝, 𝑣, X′

𝑝) ⊳ go to Alg. 4
10: mapVNFToServer(𝑣 , 𝑥)
11: end for
12: mapDemandToPath(𝑠, 𝑝, 𝜆)
13: end for
14: end for
15: addSynchronizationTraffic(𝑠)
16: end for

Algorithm 3: Greedy: choosePath(𝑠, 𝜆, P′
𝑠)

1: 𝑝 ← getUsedPathDemandInitPlacement(𝑠, 𝜆, P′
𝑠)

2: if 𝑝 then return 𝑝
3: end if
4: 𝑝 ← getUsedPathInitialPlacement(𝑠, P′

𝑠)
5: if 𝑝 then return 𝑝
6: end if
7: 𝑝 ← getUsedPathForSFC(𝑠, P′

𝑠)
8: if 𝑝 then return 𝑝
9: end if

10: return getPathWithShortestDelay(𝑠, 𝜆, P′
𝑠)

in line 8 retrieves an already used server by the same service regardless
it is from initial placement or allocated during the current placement.
Here again we are trying to avoid an unnecessary replication and we
check again like before the position of the returned server in line 9. If
none of the previous methods returned a valid server, then we return
null in line 10 in order to later try with the next available path in case
this is not the latest path. If it is the latest path, then we just return the
first available server in the set (line 11).

In terms of complexity from bottom to top, for the Algorithm 4
considering 𝑉𝐿 as the length of the longest SFC, it is in the order of
𝛩 = 𝑂(𝑉𝐿 ⋅ |X|). The Algorithm 3 is in the order of 𝛩′ = 𝑂(𝑃𝑆) where
𝑃𝑆 is the number of paths per SFC. The Algorithm 2 is calculated
based on the complexity of Algorithm 3 and 4, and the complexity
of the synchronization traffic (line 15) which is in the order of 𝛩′′ =
𝑂(𝑉𝐿 ⋅ |X2

| ⋅ |P|). Considering 𝐿𝑃 as the length of the longest path,
then the complexity of the entire Algorithm 2 is in the order of
𝑂(|S2| + |𝛬| ⋅ 𝐿𝑃 ⋅ 𝑃𝑆 ⋅ [𝛩′ + 𝑉𝐿 ⋅ 𝛩] ⋅ 𝛩′′), which can be simplified as
𝑂(|S2| + |𝛬| ⋅ 𝐿𝑃 ⋅ 𝑉𝐿 ⋅ |X2

| ⋅ |P| ⋅ [𝑃 2
𝑆 + 𝑉 2

𝐿 ⋅ |X| ⋅ 𝑃𝑆]).

6. Performance evaluation

We use MILP model implemented with Gurobi Optimizer tool to
evaluate a smaller size network N7 (7 nodes, 20 directed links with
500 units of capacity each, see Fig. 3(a)) and heuristics for a larger-
size network N45 (45 nodes, 140, directed links with 1000 units of
capacity, Fig. 3(b)). In N7, every node is equipped with one server,
whereas in N45 there are 8 servers per node. In both networks, we
assume that all nodes can establish on-demand connectivity to a third-
party cloud server of which the geographic location is determined based
on the closest common locations used by cloud providers. Thus, for the
7-nodes network, in N7 the geographic locations are based regionally,
such as the area of Braunschweig (Germany) for the network and
8

Algorithm 4: Greedy: chooseServer(𝑠, 𝜆, 𝑝, 𝑣, X′
𝑝, A)

1: X′
𝑝 ← removeServersPreviousVNFs(X′

𝑝)
2: X′

𝑝 ← removeServersNextVNFs(X′
𝑝)

3: 𝑐 ← getCloudServer(X′
𝑝)

4: 𝑥 ← getUsedServerDemandInitialPlace(𝑠, 𝑣, 𝜆, X′
𝑝)

5: checkPosition(x, c, A) ⊳ go to line 13
6: 𝑥 ← getUsedServerInitialPlacement(𝑠, 𝑣, X′

𝑝)
7: checkPosition(x, c, A) ⊳ go to line 13
8: 𝑥 ← getUsedServerForSFC(𝑠, 𝑣, X′

𝑝)
9: checkPosition(x, c, A) ⊳ go to line 13

10: if !A then return null
11: else return X′

𝑝[0]
12: end if
13: procedure checkPosition(𝑥, 𝑐, A)
14: if 𝑥 != null then
15: if 𝐴 & 𝑐 & indexOf(𝑥) < indexOf(𝑐) then
16: return x
17: else if 𝐴 & 𝑐 & indexOf(𝑥) > indexOf(𝑐) then
18: return c
19: else return 𝑥
20: end if
21: end if
22: end procedure

Fig. 3. Network topologies used in the performance evaluation.

the area of Frankfurt, for the cloud server, respectively. For N45, we
use a modified version of Palmetto network in South Carolina, USA
and the cloud server in North Virginia, USA. The propagation delay
is correspondingly calculated considering the distance between nodes
from their latitude and longitude using the Haversine method using
2/3 of the speed of light. We thereby assume the links used to connect
to the third-party cloud have sufficient capacity for any demand, and
therefore do not impact the analysis of server utilization.

For each source–destination pair of nodes, 3 paths are pre-computed
that do not traverse the cloud node and 1 additional path that does.
Also 2 additional paths per node are computed for the synchronization
traffic between possible VNFs allocated in the cloud and in the network.
The path computation is carried out in this way to make sure the model
has enough freedom to allocate all SFCs in the network and at least
there is one admissible path per SFC to allocate VNFs in the cloud. We
assume that every source–destination pair of nodes (except the cloud
node) instantiates independent SFCs with variable length from 1 to
10 VNFs depending on the scenario. The processing load of a certain
VNF is calculated from the total amount of processed traffic in the
VNF multiplied by a random load ratio (𝛤 pro

𝑡(𝑣)) between 1% and 100%.
Additionally, an overhead (𝛩𝑠

𝑡(𝑣)) is calculated as a random percentage
between 1% and 10% of the processing load [35]. The synchronization
traffic between VNFs (𝛤 syn

𝑡(𝑣)) is calculated as 10% of the processing
load of the VNF. The delay parameters per VNF, already explained is

Computer Networks 203 (2022) 108582F. Carpio et al.

S

T
w

t

Fig. 4. Traffic prediction model results.

Fig. 5. Optimization scenarios.

ection 4.3.3, are specified using typical values as follows: 𝐷proq
𝑡(𝑣) = 3 ms,

𝐷prox
𝑡(𝑣) = 5 ms, 𝐷pro_x,min

𝑡(𝑣) = 2 ms and 𝐷pro,max
𝑡(𝑣) = 10 ms. In the networks

studied, for all SFCs the service delay is constrained to 𝐷max
𝑠 = 400 ms.

he round trip time is, for both networks, always shorter than 5 ms
hich leads to a service downtime of duration 𝐷dwt = 27.5 ms when

performing a migration, in the worst case scenario [9].
Two types of results are produced: (i) one setting all SFCs with a

certain length while all servers have the same capacity and (ii) one
setting all servers to the certain capacity while all SFCs have a random
length. The reason for that is to independently see the effects that SFCs
lengths and server capacities have on the network. In case (i), the server
capacities are set to 1000 for N7 and 2000 units for N45, and all SFC
lengths are chosen in increments from 1 to 10. In case (ii), the server
capacities vary from 250 to 3000 units and every SFC is of random
length between 1 and 10.

6.1. Optimization scenarios

We assume that every source–destination pair of nodes generates
between 1 and 3 traffic flows, with traffic demand per flow set to a
random value between 1 and 100 traffic units. For each traffic demand,
24 values are generated in one time period following a lognormal
distribution with time-varying mean and variance, as explained in
Section 3.3. For the time series forecasting, one LSTM network is
created and trained per each traffic flow for a certain number of time
periods, and then evaluated for 1 time period.

To determine the optimum number of required training time pe-
9

riods, the model has been tested using from 1 to 1000 time periods f
for training. The resulting RMSE is shown in 4(a) where it shows that
above 50 periods of time, the performance is not improving anymore
and it starts decreasing for 1000 training time periods. The reason why
to train with larger dataset is typically to solve overfitting, but in our
specific the RMSE does not improve due to high variance on our input
data even when using more data or applying the dropout technique.
The training time, however, continues to increase with the number of
training time periods as expected, see Fig. 4(b). Taking 1 time period
as the worst case and 50 as the best case, Figs. 4 and 4(d) show the
predicted and observed normalized traffic demand values over time
during the evaluation period, respectively. Here, we can see how the
number of training time periods impacts the accuracy of the model.

To illustrate the issues of computation time, we show the results
obtained by using the CPU of a machine with an Intel Core i7-6700
and 32 GB of RAM. The total computation time considering all traffic
demands for takes ≈7 min in N7, when training for 1 time period
and ≈12 min when training for 50 time periods. For N45, it takes
in total ≈13 h for 50 training time periods. While the specific total
computational time can be improved by using GPUs or by training
models in parallel, it should be noted that the network size needs to
be considered when using predictions.

From the generated traffic demand values produced for the evalu-
ation period, three optimization scenarios are derived based on which
values are considered during the first placement: (i) observed values
(obsv), (ii) 80% of the maximum individual traffic demand values,
which corresponds to overprovisioning (over) and (iii) predicted val-
ues (pred). After the first placement, the second placement is carried
out considering the location of the VNFs during the first placement,
as explained in Eq. (3) and considering the new traffic demand values
after a 𝛥𝑡 time shift from the set of traffic demand values (see Fig. 4(d)).
In our case, the first time step for the first placement is taken randomly
from the first 18 time values and 𝛥𝑡 is set to 6 time periods. Hence, for
the first scenario obsv, only the current observed values at time 𝑡 are
considered for the placement of VNFs. In the second scenario over, the
observed values are ignored, and instead, the VNFs are placed assuming
the traffic is always at the 80% of the maximum traffic demand value.
The third scenario places VNFs considering the predicted traffic values
after 𝛥𝑡.

Fig. 5 illustrates the optimization process. The second placement
uses the first placement as input, and it optimizes the placement again
by considering the real monitored and observed traffic demand values.
The first placement is carried out using either the MILP model in N7,
or the greedy algorithm (GRD) in N45. In all cases, the objective is
to allocate VNF while minimizing the number of replications and the
number of virtual functions placed in the cloud. In the first placement,
the are no migrations from any previous step to consider. In the second
placement, the MILP model in N7, and all heuristics for both networks,
all by considering the same objectives which is to minimize the number
of migrations, replications and cloud VNFs. Regarding computational
time, for every optimization using the MILP model, the times vary in
the order of seconds/minutes for the N7 network. When using heuris-
tics, the computational time is always in the order of milliseconds,
for the N7 network, or seconds for the N45 network. Finally, for the
reminder of the paper we show the results obtained from the second
placement, while using the three scenarios during the first placement,
as described.

6.2. Objective function

Since the objective function (Eq. (2)) is a joint optimization from
three different weighted terms, we first show the results when min-
imizing all terms, so all three weights 𝑊𝑚, 𝑊𝑟 and 𝑊𝑐 are equal to
1. Fig. 6 shows the objective value for the three scenarios obsv,
over and pred when varying the SFC lengths and when varying
he server capacities in N7. It should be noted that some zero values

or certain SFC lengths or server capacities are omitted in the plots

Computer Networks 203 (2022) 108582F. Carpio et al.

t

d
c
o

t
w

w

r
w
t
r
a
r
t
c
c
T
r
w
r
t
o
c

6

F
t
N
t

Fig. 6. Objective function value for obsv, over and pred scenarios in the N7
network using the MILP model.

Fig. 7. Objective function values of RF, FF, GRD and MILP for the pred scenario in
he N7 network.

ue to clarity. We can observe that pred overperforms the other two
ases. Between over and obsv, when the servers are overloaded the
ver case performs slightly better than obsv as expected, due to the

overprovisioning factor.
Before analyzing the three scenarios in large network N45, let us

first compare how heuristics compare to MILP model in N7. Fig. 7
shows again the objective values for pred scenario, but now comparing
he MILP model with the heuristic algorithms RF, FF and GRD. Here
e can see that both RF and FF are far from the optimal solution, being

RF slightly better than FF in most cases.
When using the greedy algorithm for the N45 network, we compare

again the three scenarios obsv, over and pred in Fig. 8. Here, we can
see a more clear difference between the three cases, being again the
pred scenario the one with a clear advantage compared to the other
two. This case also better illustrates how over case overperforms obsv
case mostly when the servers are overloaded confirming what we could
slightly see with the N7 network. From Fig. 9 we can compare RF, FF
and GRD, in this case for the N45 network. Different from N7, here we
can see how FF outperforms RF in all cases. We see here a trend on FF
working better the more free the network and servers are, but in any
case the achieved values are comparable to the GRD algorithm which
performs always better.

6.3. Migrations, replications and cloud VNFs

In order to better see how the model behaves individually when
minimizing only one of the terms, we set a certain weight (i.e. 𝑊𝑚,
𝑊𝑟 or 𝑊𝑐) equal to 1, and the others close to 0 in such a way that
the sum of all secondary terms is within interval [0, 1). By doing that,
we limit the freedom of the model while, at the same time, we ensure
there is no impact on the main term which value is always going to be a
positive integer. In this regard, Fig. 10(a) shows the results in terms of
number of replications (rep) and number of cloud VNFs (cld), when
minimizing the number of migrations for the three scenarios obsv,
over and pred and different SFC lengths in N7. By looking at over-
rep and over-cld, we see how overprovisioning does not allocate
replicas and places more functions in the cloud compared to other
cases. In comparison, the obsv case allocates less functions in the cloud
at expenses of deploying a considerable number of replicas. The pred
10
Fig. 8. Objective function value for obsv, over and pred scenarios in the N45
network using the GRD algorithm.

Fig. 9. Objective function values for RF, FF and GRD for the pred scenario in the
N45 network.

case can be seen as a trade-off solution, as it allocates considerably
less VNFs in the cloud compared to over, independently from the SFC
length, and less than obsv mostly when the servers are overloaded

ith long SFCs. In terms of replicas, the pred requires much less
resources in almost all cases compared to obsv case. When minimizing
the number of replications, see Fig. 10(b), the difference between pred
and obsv in terms of allocations in the cloud is much smaller, but
still reduces the number of migrations independently from the SFC
length. Here the over case behaves quite similar to pred in number
of migrations, but instead requires to allocate more cloud VNFs. When
minimizing the number of functions in the cloud, see Fig. 10(c), we
see how pred requires much less migrations compared to the other
two cases, but no remarkable difference regarding replications.

To individually see the number of migrations, replications and cloud
VNFs with no influence from the weights (i.e. all terms the same
weight), we now study N45 network. Fig. 11(a) shows how obsv case
equires much more migrations compared to the other cases except
hen the servers are either too overloaded or too underloaded where

he values become closer to over case. On the other hand, pred case
equires the same number of migrations than over when the servers
re overloaded and improves when there is enough free available
esources. In Fig. 11(b), regarding the number of replications we see
hat there is no much difference between pred and obsv, but over
ase is the one requiring significantly less replications, except for the
ases where the servers are either too overloaded or too underloaded.
his effect can be explained by the fact that when there are no available
esources in the servers, the model cannot perform replications, and
hen there are more than enough available resources, the model avoids

eplications that are not essential. When looking at Fig. 11(c), we see
hat there is almost no difference between obsv and pred, but the
ver case allocates considerably more cloud VNFs than the other two
ases.

.4. Resource utilization and service delay

To show the difference between the three scenarios, Fig. 12(a),
igs. 12(b) and 12(c) show the average link utilization, server utiliza-
ion and service delay, respectively, versus a varying server capacity for
7. For both link and server utilization, the link capacity connecting

o the cloud and the cloud servers are not considered. Here, in most

Computer Networks 203 (2022) 108582F. Carpio et al.
Fig. 10. Number of migrations, replications and cloud VNFs for different SFC lengths
in the N7 network using MILP model.

Fig. 11. Number of migrations, replications and cloud VNFs for different server
capacity in N45 network using GRD algorithm.

cases when the network is not overloaded, the over case has slightly
lower link utilization compared to the other cases, since this case
allocates more cloud VNFs, so the edge network is less utilized and
less replicas are used, so less synchronization traffic is added to the
network. Between pred and obsv cases, the first one has slightly
lower link utilization in some specific cases. This difference is inexistent
when looking at the server utilization, and here only over case has
lower utilization for the same reason as before. When comparing the
three cases for the average service delay, we notice how over has the
lowest delay, even though it allocates generally more cloud VNFs as we
have seen before, so the propagation delay is larger. However, this case
performs less migrations compared to the other cases, and therefore,
there is less penalty due to service interruptions. When comparing
pred with obsv, we see how pred has less service delay, so less
migrations are required.

Fig. 13 shows again the same results, but this time for the N45
network. Here, we can better see the difference in the lower utilization
of links of the over case compared with the other two. This is again
11
Fig. 12. Resource utilization and service delays for different server capacities in the
N7 network.

Fig. 13. Resource utilization and service delays for different server capacities in the
N45 network.

due to the fact that overprovisioning results into a higher usage of
the cloud, so the network is less utilized. This is also confirmed when
looking at the average server utilization where pred and obsv cases
make full usage of all server resources at the edge before using the
cloud, contrary to the over case. The most interesting case is with
regard the service delay, where we can see how the pred case is able
to outperform over when the servers are not overloaded since the
number of migrations are much lower as we could see from Fig. 11(a).

6.5. Discussion and remarks

From all three scenarios analyzed, we observe that in all cases,
predicting the traffic demands helps to reduce the overall number of
migrations, replications and usage of the cloud. More specifically, the
overprovisioning case requires in general less replications compared
to the other two cases, but requires as many migrations as with the
prediction case, when the network is overloaded and considerably more
when the network is underloaded. Because overprovisioning does not
consider the fluctuations of traffic, it can, in the best case, match the
real traffic and it can, in the worst case, provision excessive resources in

Computer Networks 203 (2022) 108582F. Carpio et al.
advance, which results in using more the cloud compared to the other
two cases. Placing VNFs only considering the observed traffic results
in using a similar total amount of resources as with prediction, since
there is no much difference in the number of replications and usage
of the cloud, but it requires significantly more migrations to be able to
accommodate future demands. In summary, we can say that when using
traffic prediction, the number of migrations can be reduced up to 45%
when there is enough available resources to allocate replicas, compared
to other cases studied. This is true at expenses of using replications
and cloud placements, as much as in the observed traffic case. When
comparing it to the overprovisioning case, that statement remains true,
but also the usage of the cloud is reduced by allocating almost up
to double number of replications. However, for traffic prediction to
successfully help on this problem, it requires certain amount of training
time periods per independent traffic demand in the network, which
can result in high computational resources and computational time for
larger networks.

7. Conclusions

We studied the problem of optimal placement of VNFs from an
ISP point of view, when minimizing migrations and replications. We
proposed a traffic forecasting model using LSTM networks and used
it to place VNFs accordingly to the predicted traffic demands. We
proposed an offline MILP model as well as an online greedy algorithm
for the placement optimization problem. We compared three scenarios
by either considering: (i) the current observed traffic demands only,
(ii) overprovisioning of the 80% of every specific maximum traffic
demand value had in the past, or (iii) the predicted traffic values
based on history. We showed that with traffic prediction, the num-
ber of migrations can be reduced up to 45% when there is enough
available resources to allocate replicas. This also results in less usage
of the third-party clouds as compared to capacity overprovisioning.
While overprovisioning can be valid a solution when unexpected traf-
fic peaks appear resulting in higher usage of the cloud temporarily,
traffic prediction can minimize the need for the same by anticipating
a proper placement and replication inside the network. The usage of
LSTM networks, however, requires non-negligible training time and
computational resources which is also something that needs to be taken
into consideration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement
No 952644.

References

[1] A. Laghrissi, T. Taleb, A survey on the placement of virtual resources and
virtual network functions, IEEE Commun. Surv. Tutor. 21 (2) (2019) 1409–1434,
http://dx.doi.org/10.1109/COMST.2018.2884835.

[2] M.M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, B. Akbari, Joint energy
efficient and qos-aware path allocation and VNF placement for service function
chaining, IEEE Trans. Netw. Serv. Manag. PP (c) (2017) 1, http://dx.doi.org/10.
1109/TNSM.2018.2873225.

[3] A. Basta, A. Blenk, K. Hoffmann, H.J. Morper, M. Hoffmann, W. Kellerer, Towards
a cost optimal design for a 5G mobile core network based on SDN and NFV,
IEEE Trans. Netw. Serv. Manag. 4537 (c) (2017) 1–14, http://dx.doi.org/10.
1109/TNSM.2017.2732505.

[4] L. Qu, C. Assi, K. Shaban, M.J. Khabbaz, A reliability-aware network service
chain provisioning with delay guarantees in NFV-enabled enterprise datacenter
networks, IEEE Trans. Netw. Serv. Manag. 14 (3) (2017) 554–568, http://dx.doi.
12

org/10.1109/TNSM.2017.2723090.
[5] M. Golkarifard, C.F. Chiasserini, F. Malandrino, A. Movaghar, Dynamic VNF
placement, resource allocation and traffic routing in 5G, Comput. Netw. 188
(2021) 107830, http://dx.doi.org/10.1016/j.comnet.2021.107830.

[6] J. Xia, D. Pang, Z. Cai, M. Xu, G. Hu, Reasonably migrating virtual machine
in NFV-featured networks, in: IEEE International Conference on Computer and
Information Technology, CIT, 2016, http://dx.doi.org/10.1109/CIT.2016.96.

[7] J. Xia, Z. Cai, M. Xu, Optimized virtual network functions migration for NFV, in:
2016 IEEE 22nd International Conference on Parallel and Distributed Systems,
ICPADS, IEEE, 2016, http://dx.doi.org/10.1109/ICPADS.2016.0053.

[8] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
A. Akella, Opennf: Enabling innovation in network function control, SIGCOMM
Comput. Commun. Rev. 44 (4) (2014) 163–174, http://dx.doi.org/10.1145/
2740070.2626313.

[9] T. Taleb, A. Ksentini, P.A. Frangoudis, Follow-me cloud: When cloud services
follow mobile users, IEEE Trans. Cloud Comput. 7 (2) (2019) 369–382, http:
//dx.doi.org/10.1109/TCC.2016.2525987.

[10] R. Cziva, C. Anagnostopoulos, D.P. Pezaros, Dynamic, latency-optimal vNF
placement at the network edge, in: IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, 2018-April, IEEE, 2018, pp. 693–701, http://dx.
doi.org/10.1109/INFOCOM.2018.8486021.

[11] V. Eramo, E. Miucci, M. Ammar, F.G. Lavacca, An approach for service function
chain routing and virtual function network instance migration in network
function virtualization architectures, IEEE/ACM Trans. Netw. (2017) http://dx.
doi.org/10.1109/TNET.2017.2668470.

[12] K.S. Michael Till Beck, Juan Felipe Botero, M.T. Beck, J.F. Botero, K.S.
Michael Till Beck, Juan Felipe Botero, Resilient allocation of service function
chains, in: IEEE Conference on Network Function Virtualization and Software
Defined Networks, NFV-SDN, IEEE, 2016, http://dx.doi.org/10.1109/NFV-SDN.
2016.7919487.

[13] A. Engelmann, A. Jukan, A reliability study of parallelized VNF chaining, in:
2018 IEEE International Conference on Communications, ICC, 2018-May, IEEE,
2018, pp. 2–7, http://dx.doi.org/10.1109/ICC.2018.8422595.

[14] W. Ding, H. Yu, S. Luo, Enhancing the reliability of services in NFV with the
cost-efficient redundancy scheme, in: 2017 IEEE International Conference on
Communications, vol. 1, ICC, IEEE, 2017, http://dx.doi.org/10.1109/ICC.2017.
7996840.

[15] Q. Yuan, X. Ji, H. Tang, W. You, Toward latency-optimal placement and
autoscaling of monitoring functions in MEC, IEEE Access 8 (2020) 41649–41658,
http://dx.doi.org/10.1109/ACCESS.2020.2976858.

[16] F. Carpio, S. Dhahri, A. Jukan, VNF Placement with replication for load balancing
in NFV networks, in: IEEE International Conference on Communications, IEEE,
2017, http://dx.doi.org/10.1109/ICC.2017.7996515.

[17] F. Carpio, W. Bziuk, A. Jukan, Replication of virtual network functions:
Optimizing link utilization and resource costs, in: 2017 40th International
Convention on Information and Communication Technology, Electronics and
Microelectronics, MIPRO, Croatian Society MIPRO, 2017, http://dx.doi.org/10.
23919/MIPRO.2017.7973481.

[18] M. Huang, W. Liang, Y. Ma, S. Guo, Throughput maximization of delay-sensitive
request admissions via virtualized network function placements and migrations,
ICC, IEEE International Conference on Communications 2018-May (c) (2018)
http://dx.doi.org/10.1109/ICC.2018.8422337.

[19] F. Carpio, A. Jukan, R. Pries, Balancing the migration of virtual network
functions with replications in data centers, in: NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, IEEE, 2018, http://dx.doi.org/
10.1109/NOMS.2018.8406275.

[20] H.A. Alharbi, T.E. Elgorashi, A.Q. Lawey, J.M. Elmirghani, The impact of inter-
virtual machine traffic on energy efficient virtual machines placement, in: 2019
IEEE Sustainability Through ICT Summit, StICT, IEEE, 2019, http://dx.doi.org/
10.1109/STICT.2019.8789381.

[21] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, R. Boutaba, A connectionist
approach to dynamic resource management for virtualised network functions, in:
2016 12th International Conference on Network and Service Management, CNSM,
IEEE, 2016, http://dx.doi.org/10.1109/CNSM.2016.7818394.

[22] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, B. Mukherjee, Auto-scaling
VNFs using machine learning to improve QoS and reduce cost, in: 2018 IEEE
International Conference on Communications, ICC, IEEE, 2018, http://dx.doi.org/
10.1109/ICC.2018.8422788.

[23] Y. Yao, S. Guo, P. Li, G. Liu, Y. Zeng, Forecasting assisted VNF scaling in
NFV-enabled networks, Comput. Netw. 168 (2020) 107040, http://dx.doi.org/
10.1016/j.comnet.2019.107040.

[24] Q. Sun, P. Lu, W. Lu, Z. Zhu, Forecast-assisted NFV service chain deployment
based on affiliation-aware vNF placement, in: 2016 IEEE Global Communications
Conference, GLOBECOM, IEEE, 2016, http://dx.doi.org/10.1109/GLOCOM.2016.
7841846.

[25] H. Tang, D. Zhou, D. Chen, Dynamic network function instance scaling based
on traffic forecasting and VNF placement in operator data centers, IEEE Trans.
Parallel Distrib. Syst. 30 (3) (2019) 530–543, http://dx.doi.org/10.1109/TPDS.
2018.2867587.

[26] K. Qu, W. Zhuang, X. Shen, X. Li, J. Rao, Dynamic resource scaling for VNF over
nonstationary traffic: A learning approach, IEEE Trans. Cogn. Commun. Netw.

(2020) 1, http://dx.doi.org/10.1109/TCCN.2020.3018157.

http://dx.doi.org/10.1109/COMST.2018.2884835
http://dx.doi.org/10.1109/TNSM.2018.2873225
http://dx.doi.org/10.1109/TNSM.2018.2873225
http://dx.doi.org/10.1109/TNSM.2018.2873225
http://dx.doi.org/10.1109/TNSM.2017.2732505
http://dx.doi.org/10.1109/TNSM.2017.2732505
http://dx.doi.org/10.1109/TNSM.2017.2732505
http://dx.doi.org/10.1109/TNSM.2017.2723090
http://dx.doi.org/10.1109/TNSM.2017.2723090
http://dx.doi.org/10.1109/TNSM.2017.2723090
http://dx.doi.org/10.1016/j.comnet.2021.107830
http://dx.doi.org/10.1109/CIT.2016.96
http://dx.doi.org/10.1109/ICPADS.2016.0053
http://dx.doi.org/10.1145/2740070.2626313
http://dx.doi.org/10.1145/2740070.2626313
http://dx.doi.org/10.1145/2740070.2626313
http://dx.doi.org/10.1109/TCC.2016.2525987
http://dx.doi.org/10.1109/TCC.2016.2525987
http://dx.doi.org/10.1109/TCC.2016.2525987
http://dx.doi.org/10.1109/INFOCOM.2018.8486021
http://dx.doi.org/10.1109/INFOCOM.2018.8486021
http://dx.doi.org/10.1109/INFOCOM.2018.8486021
http://dx.doi.org/10.1109/TNET.2017.2668470
http://dx.doi.org/10.1109/TNET.2017.2668470
http://dx.doi.org/10.1109/TNET.2017.2668470
http://dx.doi.org/10.1109/NFV-SDN.2016.7919487
http://dx.doi.org/10.1109/NFV-SDN.2016.7919487
http://dx.doi.org/10.1109/NFV-SDN.2016.7919487
http://dx.doi.org/10.1109/ICC.2018.8422595
http://dx.doi.org/10.1109/ICC.2017.7996840
http://dx.doi.org/10.1109/ICC.2017.7996840
http://dx.doi.org/10.1109/ICC.2017.7996840
http://dx.doi.org/10.1109/ACCESS.2020.2976858
http://dx.doi.org/10.1109/ICC.2017.7996515
http://dx.doi.org/10.23919/MIPRO.2017.7973481
http://dx.doi.org/10.23919/MIPRO.2017.7973481
http://dx.doi.org/10.23919/MIPRO.2017.7973481
http://dx.doi.org/10.1109/ICC.2018.8422337
http://dx.doi.org/10.1109/NOMS.2018.8406275
http://dx.doi.org/10.1109/NOMS.2018.8406275
http://dx.doi.org/10.1109/NOMS.2018.8406275
http://dx.doi.org/10.1109/STICT.2019.8789381
http://dx.doi.org/10.1109/STICT.2019.8789381
http://dx.doi.org/10.1109/STICT.2019.8789381
http://dx.doi.org/10.1109/CNSM.2016.7818394
http://dx.doi.org/10.1109/ICC.2018.8422788
http://dx.doi.org/10.1109/ICC.2018.8422788
http://dx.doi.org/10.1109/ICC.2018.8422788
http://dx.doi.org/10.1016/j.comnet.2019.107040
http://dx.doi.org/10.1016/j.comnet.2019.107040
http://dx.doi.org/10.1016/j.comnet.2019.107040
http://dx.doi.org/10.1109/GLOCOM.2016.7841846
http://dx.doi.org/10.1109/GLOCOM.2016.7841846
http://dx.doi.org/10.1109/GLOCOM.2016.7841846
http://dx.doi.org/10.1109/TPDS.2018.2867587
http://dx.doi.org/10.1109/TPDS.2018.2867587
http://dx.doi.org/10.1109/TPDS.2018.2867587
http://dx.doi.org/10.1109/TCCN.2020.3018157

Computer Networks 203 (2022) 108582F. Carpio et al.
[27] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, R. Boutaba, Topology-
aware prediction of virtual network function resource requirements, IEEE Trans.
Netw. Serv. Manag. 14 (1) (2017) 106–120, http://dx.doi.org/10.1109/TNSM.
2017.2666781, URL: https://ieeexplore.ieee.org/document/7849149.

[28] R. Shi, J. Zhang, W. Chu, Q. Bao, X. Jin, C. Gong, Q. Zhu, C. Yu, S.
Rosenberg, MDP And machine learning-based cost-optimization of dynamic
resource allocation for network function virtualization, in: Proceedings - 2015
IEEE International Conference on Services Computing, SCC 2015, IEEE, 2015,
pp. 65–73, http://dx.doi.org/10.1109/SCC.2015.19, URL: https://ieeexplore.ieee.
org/document/7207337.

[29] H.-G. Kim, D.-Y. Lee, S.-Y. Jeong, H. Choi, J.-H. Yoo, J.W.-K. Hong, Machine
learning-based method for prediction of virtual network function resource
demands, in: 2019 IEEE Conference on Network Softwarization, NetSoft,
IEEE, 2019, http://dx.doi.org/10.1109/NETSOFT.2019.8806687, URL: https://
ieeexplore.ieee.org/document/8806687.

[30] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, P. Bertin, Improving traffic forecasting
for 5G core network scalability: A machine learning approach, IEEE Netw. 32
(6) (2018) 42–49, http://dx.doi.org/10.1109/MNET.2018.1800104.

[31] T. Subramanya, R. Riggio, Machine learning-driven scaling and placement of
virtual network functions at the network edges, in: 2019 IEEE Conference
on Network Softwarization, NetSoft, IEEE, 2019, http://dx.doi.org/10.1109/
NETSOFT.2019.8806631.

[32] J. Pei, P. Hong, M. Pan, J. Liu, J. Zhou, Optimal VNF placement via deep rein-
forcement learning in SDN/NFV-Enabled networks, IEEE J. Sel. Areas Commun.
38 (2) (2020) 263–278, http://dx.doi.org/10.1109/JSAC.2019.2959181.

[33] S. Uhlig, B. Quoitin, J. Lepropre, S. Balon, Providing public intradomain traffic
matrices to the research community, SIGCOMM Comput. Commun. Rev. 36 (1)
(2006) 83–86, http://dx.doi.org/10.1145/1111322.1111341.

[34] A. Bulut, T. Ralphs, On the complexity of inverse mixed integer linear optimiza-
tion, 2015, URL: https://coral.ise.lehigh.edu/~ted/files/papers/InverseMILP15.
pdf, 1–18.

[35] P.V.V. Reddy, L. Rajamani, Virtualization overhead findings of four hypervisors
in the CloudStack with SIGAR, in: 2014 4th World Congress on Information
and Communication Technologies,, WICT 2014, IEEE, 2014, pp. 140–145, http:
//dx.doi.org/10.1109/WICT.2014.7077318.

Francisco Carpio received the M.Sc. degree in Telecom-
munications Engineering from universitat Politècnica de
Catalunya (UPC), Spain, in 2014. He is currently pur-
suing the Ph.D. degree with the Institute of Computer
and Network Engineering at the Technische Universität
Braunschweig, Germany. His research interests include net-
work function virtualization, edge computing networks and
machine learning applied to service management.
13
Wolfgang Bziuk received the Dipl.Ing. and Dr.Ing. degrees
in electrical engineering from Technische Universität Braun-
schweig, Germany. He has been a Senior Lecturer with the
Institute of Computer and Network Engineering, Technische
Universität Braunschweig, since 1986. He was involved in
the area of network planning tools, traffic engineering,
performance evaluation, and simulation of networks, with
applications to connection admission control. He was also
involved in the areas of mathematical methods for mobility
modeling for wireless networks as well as performance eval-
uation methods for optical networks. His current research
interests include the mathematical modeling of security
and reliability in NFV-based network architectures. He is a
member of the Section 5.2.1 System Architecture and Traffic
Engineering of the German Information Technology Society.

Admela Jukan received the Dr.Tech. degree (summa cum
laude) in electrical and computer engineering from the
Technische Universität Wien, the M.Sc. degree in infor-
mation technologies from the Politecnico di Milano, Italy,
and the Dipl.Ing. degree from the Fakultet Elektrotehnike i
Racunarstva (FER), Zagreb, Croatia. She is Chair Professor
of communication networks with the Technische Univer-
sität Carolo-Wilhelmina zu Braunschweig, Braunschweig,
Germany. Dr. Jukan was a recipient of an Award of Ex-
cellence for the BMBF/CELTIC project 100Gb Ethernet and
the IBM Innovation Award, in 2009. She has chaired and
co-chaired several international conferences, including the
IEEE/ACM IWqoS, IEEE ANTS, IFIP ONDM, IEEE ICC, and
IEEE GLOBECOM. She was an elected Chair of the IEEE
Optical Network Technical Committee (ONTC), from 2014
to 2015. She serves as a Senior Editor for the IEEE Journal
of Selected Areas in Communications. She is a Co-Editor-
in-Chief of the Elsevier Journal on Optical Switching and
Networking (OSN).

http://dx.doi.org/10.1109/TNSM.2017.2666781
http://dx.doi.org/10.1109/TNSM.2017.2666781
http://dx.doi.org/10.1109/TNSM.2017.2666781
https://ieeexplore.ieee.org/document/7849149
http://dx.doi.org/10.1109/SCC.2015.19
https://ieeexplore.ieee.org/document/7207337
https://ieeexplore.ieee.org/document/7207337
https://ieeexplore.ieee.org/document/7207337
http://dx.doi.org/10.1109/NETSOFT.2019.8806687
https://ieeexplore.ieee.org/document/8806687
https://ieeexplore.ieee.org/document/8806687
https://ieeexplore.ieee.org/document/8806687
http://dx.doi.org/10.1109/MNET.2018.1800104
http://dx.doi.org/10.1109/NETSOFT.2019.8806631
http://dx.doi.org/10.1109/NETSOFT.2019.8806631
http://dx.doi.org/10.1109/NETSOFT.2019.8806631
http://dx.doi.org/10.1109/JSAC.2019.2959181
http://dx.doi.org/10.1145/1111322.1111341
https://coral.ise.lehigh.edu/~ted/files/papers/InverseMILP15.pdf
https://coral.ise.lehigh.edu/~ted/files/papers/InverseMILP15.pdf
https://coral.ise.lehigh.edu/~ted/files/papers/InverseMILP15.pdf
http://dx.doi.org/10.1109/WICT.2014.7077318
http://dx.doi.org/10.1109/WICT.2014.7077318
http://dx.doi.org/10.1109/WICT.2014.7077318

	Scaling migrations and replications of Virtual Network Functions based on network traffic forecasting
	Introduction
	Related work and our contribution
	VNF placement, migrations and replications
	Traffic forecasting and VNF resource requirement predictions
	Our contribution

	Reference scenario
	Optimization scenarios and assumptions
	Migrations and replications
	Traffic demand model and time series forecasting

	Problem formulation
	Objective function
	General constraints
	Routing
	VNF placement
	Mapping VNFs to paths

	Traffic and performance constraints
	Synchronization traffic
	Link and server utilization
	Service delay

	Online heuristic approaches
	First-fit and random-fit algorithms
	Greedy algorithm

	Performance evaluation
	Optimization scenarios
	Objective function
	Migrations, replications and cloud VNFs
	Resource utilization and service delay
	Discussion and remarks

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

