
The SPIDER Cyber Security Investment
Component (CIC)

Maria Tsiodra and
Michail Chronopoulos

City, University of London,
Cass Business School,

EC1Y 8TZ London, UK
michalis.chronopoulos@city.ac.uk

Matthias Ghering and
Eirini Karapistoli

CyberLens,
18 King William St,

London EC4N 7BP, UK
matthias.ghering@cyberlens.eu

Neofytos Gerosavva and
Nicolas Kylilis

8bells,
23 Agias Paraskevis,

Strovolos, Nicosia 2002, Cyprus
neofytos.gerosavva@8bellsresearch.com

Abstract—Recent security incidents worldwide
demonstrate the increase in the complexity and severity
of cyber security threats. The attackers become better
organized and the attack vectors are using more advanced
methods and tools. Therefore, within the currently
evolving and complex 5G cyber security landscape, both
businesses and end-users need to find ways to enhance
their cyber security preparedness level in order to
safeguard their infrastructures and assets. Additionally,
modern organizations need to invest in cyber security
technologies to proactively address the identified cyber
risks, based on the specific individual characteristics of
their infrastructures. For this reason, investing in cyber
security constitutes nowadays an essential financial and
operational decision aiming to reduce the financial risk
that successful cyber-attacks entail. In this paper, we
demonstrate how capital budgeting techniques for gauging
the financial risk of cyber attacks may be integrated
within an optimisation model for optimal selection of
mitigation measures into a single unified decision-making
framework.
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I. INTRODUCTION

The latest quarterly security forecast report by Canalys
[1], estimates a global spending of $60.2 billion on
security products and services in 2021, which reflects
a 10% growth compared to 2020. In the same report’s
worst-case scenario, the perspective is for annual growth
of 6.6% taking into account a deeper and longer eco-
nomic impact due to COVID-19. Thus, cyber security
will remain a high priority as the range of threats
gets broader and new vulnerabilities emerge, while the

frequency of attacks is unlikely to decrease. Furthermore,
according to [2], [3], many boards of directors will
formally request improved data and understanding of
the returns after years of intensive investment in cyber
security. This is mainly due to a growing spending in
cyber security proportionately to the investment made in
new technologies.

However, despite the continuous growth in cyber
security investment during the last years, over 12 billion
records, containing various types of personal identifi-
able information, were reportedly compromised in 2020,
while the number of known ransomware attacks in-
creased by nearly 60% [4]. This demonstrates how cyber
adversaries have been improving their modus operandi
and manage to stay one step ahead of those attempting to
protect their networks [5]. Eventually, as a result of the
constantly increasing risk, companies must become more
sophisticated and upgrade their methods of securing
their assets, as attackers tend to be more incentivized to
compromise an organization’s infrastructure in order to
achieve a variety of goals [6]. Moreover, the complexity
of the methodologies used by adversaries put the organi-
zations in a position to prioritize their security strategies.
Hence, each company should consider the threats to
which it is most exposed, identify the associated system
vulnerabilities and take measures to mitigate them.

Consequently, investing in cyber security constitutes
an essential financial and operational decision. However,
it is often not feasible from a cost-benefit standpoint,
since patching most, if not all, of a firm’s possible
security vulnerabilities may result in over-investment.



Hence, identifying the financial impact of a cyber breach
and choosing the best set of mitigation measures are
two of the most important challenges that organizations
must tackle, yet, doing so, requires the implementation of
innovative methodologies that combine risk assessment
and optimization techniques. In this paper, we demon-
strate how a risk assessment framework based on the
discounting cash flow (DCF) method can be combined
with the optimal selection of mitigation measures, for-
mulated as a set cover problem, into the Cyber security
Investment Component (CIC) of the H2020 SPIDER
platform1.

We proceed in Section II by discussing some related
work and then present the integration of the CIC within
the general SPIDER platform in Section III. Section IV
presents an overview of the risk assessment and opti-
misation framework and Section V concludes offering
directions for further research.

II. RELATED WORK

A strand of the cyber security literature draws on
the theory of investment under uncertainty [7], with the
main objective to derive the expected value of investment
in cyber security controls along with the investment
threshold price and the probability of investment within
a given time horizon [8]. For example, Gordon et al. [9]
show that information sharing regarding vulnerabilities
can decrease uncertainty about risks, and, in turn, the
value of deferment options. More recently, Benaroch
[10] develops a real options model to cast the cyber
security investment problem as one of selecting a sub-
set of uncertainty-reducing mitigation measures, whose
availability is controlled by decision-makers and their
size is log-normally distributed. In the same line of
work, Chronopoulos et al. [2] analyse how uncertainty
over the cost of a cyber attack and the arrival of a
control impacts the optimal time of investment in cyber
security. Although this line of work has contributed
significantly to the area of investment under uncertainty,
it ignores the degree to managerial discretion hedges
financial risk, which can be measured by its Value at
Risk (VaR) and by its conditional VaR (CVaR). Such risk
measures can be developed to gauge the financial risk
exposure of an organisation following a security breach,

1SPIDER: a cyberSecurity Platform for vIrtualiseD 5G cybEr Range
services

however, applications within cyber security economics
remain underdeveloped.

Examples of empirical models that focus on the
development of risk measures within a cyber security
context include Wang et al. [11], who develop a model
of investment in information security and utilise VaR
to evaluate different investment tradeoffs. Specifically,
using data on daily activities from a large US financial
institution, they measure the risk of daily losses an or-
ganisation faces due to security exploits and use extreme
value analysis to simulate the distribution of the daily
losses and estimate the VaR. Rakes et al. [12] present
an integer programming model for determining optimal
countermeasure selection based on threat likelihoods,
under expected value and worst-case conditions. An
extension of this line of work is presented in Sawik
[13], who utilises the same source of data but applies
VaR and CVaR within the integer programming model
of [12]. Taking the perspective of a smart grid, Law &
Alpcan [14] investigate the impact of false data injection
attacks and present a game-theoretic approach to smart
grid security by combining quantitative risk management
techniques with decision making on protective measures.
Results indicates that different risk measures may lead
to different defence strategies, but the CVaR allows a
decision maker to prioritise high-loss tail events.

Despite their novelty, the aforementioned models over-
look key uncertainties, such as the time it takes to
exploit a vulnerability and the cost a system incurs
once a vulnerability is compromised. Such features are
also ignored in models for optimal selection of miti-
gation measures. Indeed, while the latter have evolved
considerably from standard to multi-objective, bi-level
optimisation models, these have been developed mainly
within a deterministic context. For example, the problem
of optimal selection of mitigation measures is often
cast as a set cover problem, motivated by the appli-
cation potential of coverage models to the allocation
of emergency response resources [15] and to homeland
security, e.g. for optimally screening checked baggage on
commercial aviation flights [16]. More pertinent to cyber
security is Zheng et al. [17], who cast the problem of
optimal selection of mitigation measures as a set cover
problem, whereby they first solve a deterministic version
to analyse the incentive to implement complementary
mitigations to reduce supply chain vulnerabilities. Sub-
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sequently, they extend the deterministic version to allow
for limitations on the choice, as well as uncertainty
over the efficacy of the different mitigation measures.
Also, in the same line of work as [18], [19] and [20],
[21] develop a game-theoretic framework, whereby the
defender chooses a security plan seeking to minimise
its security risk, while the attacker aims to maximise it
via the most effective attack path. This is modelled as a
min-max optimisation problem, where the maximisation
problem is the attacker’s, and the minimisation problem
is the defender’s, keeping in mind the reaction of the
attacker.

In order to quantify the risk exposure that a security
breach entails and propose a set of optimal mitigation
measures, we will draw upon the aforementioned optimi-
sation techniques and combine them with capital budget-
ing methods for the evaluation of serial projects within
a cyber security context. Examples of the latter within
the context of project scheduling include Creemers [22],
who studies the Net Present Value (NPV) of a project
with multiple phases that are executed in sequence. A
cash flow may be incurred at the start of each phase
and a payoff is obtained at the end of the project,
while the duration of each phase is a random variable
with a general distribution function. The novelty of this
work is that it derives an exact closed-form expression
for the moments of the NPV of a project as well as
a closed-form approximation of the distribution of the
project’s NPV. This combination of capital budgeting and
optimisation techniques reflects the main functionality
of the CIC, which will implement the cyber economic
models within the project context. In this paper, we
will present the innovation aspects of this tool, its refer-
ence architecture and the process of suggesting security
controls, the details of the sub-components composing
the CIC, the investment decision support mechanisms
implemented by the CIC, the interactions of the CIC with
other SPIDER components and the way of visualising
the results to the end user.

III. THE CIC INTEGRATION IN THE SPIDER
ARCHITECTURE

The CIC takes into account and integrates uncer-
tainties regarding the time that an adversary needs to
exploit a vulnerability and the associated cost, with
the aim of assessing the estimated value of the cost

that the 5G network will bring to its owners once its
weaknesses have been exploited. Then, by implementing
the necessary mitigation measures (controls), the CIC
focuses on improving the coverage of the vulnerabilities
in each asset. The CIC’s outputs will be fed into the
SPIDER dashboard enabling the 5G system adminis-
trators to reach the best investment decisions, taking
into account any required resource constraints. This is
achieved by enabling the 5G infrastructure risk auditors
and investment decision support managers to commu-
nicate actively with the SPIDER platform in order to
provide preferences, rules, policies, recommendations,
and risk priorities, which will be used afterwards to
instantiate the SPIDER cyber economic models. The
ultimate goal is to produce a CIC whose outcomes would
be interpretable and adaptable to risk and monetary
changes and constraints. Hence, the novelty of the CIC
is twofold:

i. The economic framework facilitates a thorough as-
sessment of the organisation’s risk exposure, taking
into account the sequential nature of a cyber attacks
and key associated uncertainties.

ii. The results from the economic models are used by
optimisation functions to determine the optimal sets
of measures for mitigating cyber risk subject to a
budget constraint and risk preferences.

The CIC incorporates user expectations, rules, poli-
cies, suggestions and risk priorities generated by the
SPIDER dashboard, as well as system data provided by
the Continuous Risk Assessment Engine (CRAE) and the
SPIDER platform in order to provide personalized real-
time investment suggestions. Figure 1 illustrates how
the CIC outputs could be displayed in the SPIDER
dashboard. Each rectangle in the diagram represents a
distinct page with specific functionality and information.
The first page of Figure 1 provides a summary of vul-
nerability statistics allowing the Risk Auditor to quickly
assess the system’s status. The Asset Overview section
presents a network of all the assets inside the system; the
presence of vulnerabilities in assets can be indicated by
colour coding them. Page 3 presents a complete list of
vulnerabilities in the system. Each of the vulnerabilities
is represented by their respective identifier. Through
the vulnerability list section, the Risk Auditor can also
proceed to the Vulnerability details page. An overview
of the vulnerability, remediation recommendations, and a
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list of affected assets can be found on this section. The
fifth page shown in Figure 1 allows the user to select
optional constraints and preferences to be used in the
control optimisation. The suggested optimal controls can
be found on the last page of the UI.

Fig. 1. CIC related pages of the SPIDER dashboard.

The CIC, which is also referred to as Decision Support
System (DSS), is highlighted in red in the partial view of
the SPIDER reference architecture presented in Figure 2.
As shown in the SPIDER platform’s reference architec-
ture the DSS receives the measured risk from the Risk
Calculation Engine (the part of SPIDER that calculates
risks based on given assets relationships, vulnerabilities,
controls, and threat appetites) and sends the suggested
mitigation actions/security controls to the Operational
Dashboard for Emulated Scenarios as well as to the
Operational Dashboard for Simulated Scenarios.

Also, as illustrated in the Figure 3 the CIC consists
of:

i. The CRAE feeds the CIC with the identified vulner-
abilities and their respective successful exploitabil-
ity probability of the 5G infrastructure, the 5G
deployment assets as well as their respective con-
nections. Also, it provides a set of controls that
can be used in order to mitigate the risk of the
potential exploitation of these vulnerabilities. Since
the CRAE is able to continuously assess the risks
related to the 5G infrastructure, the CIC must wait

until it has obtained adequate amount of informa-
tion in order to calculate an optimal decision, and
will have to automatically recalculate its decision
once new data has arrived.

ii. The SPIDER Dashboard, feeds the CIC with a va-
riety of user data, including budgeting constraints,
regulations and additional user preferences.

iii. The Kafka client helps the CIC to interact with
other SPIDER components including the CRAE and
the SPIDER Dashboard. It parses the data coming
from the CRAE as well as the input coming from
the SPIDER Dashboard and stores it within the
User/System database.

iv. The User & System DB stores the data collected
by the Kafka client for later use by the Economic
Models. Some of this data can be fed back to the
Kafka client in the form of statistics, such that they
can be visualised by the SPIDER Dashboard.

v. The economic models use the data stored in the
CIC’s database to derive the valuation of a serial
cyber security breach.

vi. The valuation produced by the Economic Models
will be optimised by the Control Optimisation. This
process results in a set of optimal controls given
constraints provided by the user.

IV. EXAMPLE SCENARIO

A. Architecture

The CIC will determine the optimal set of controls for
an emulated 5G architecture. Here, we will introduce
a simple example of a 5G architecture that can be
emulated by the SPIDER Platform. An overview of the
architecture is presented in Figure 4 and consists out of
the following components:

i. Open-Source MANO (OSM) is in charge of the
orchestration of various network functions across
all the computing domains. This makes the OSM a
valuable target.

ii. The computing domains are represented by the
(VIM #1 and VIM #2). These domains are vir-
tual machines that can be hosted in a variety of
(physical) places from datacentres to small edge
computing devices, such as a server rack near
a 5G antenna. As the name suggests, computing
domains facilitate computing resources to a number

4



Fig. 2. Partial view of the SPIDER reference architecture.

Fig. 3. Overview of the CIC architecture.

of applications and network functions. These ap-
plications can be owned by the telecommunication
company itself or by third parties. Examples of such
third parties would be streaming companies caching
high demand movies closer to the end user, or
autonomous vehicle companies offloading some of
the vehicle’s computations to nearby (low-latency)
computing domains.

iii. To ensure that applications can’t affect each other,
they are run in separate isolated docker containers.

iv. The Horizon dashboard is used by the system
administrators to preform maintenance on the com-
puting domains. A system administrator with the
appropriate permissions can use Horizon to add,
remove or modify computing domains.

v. There is a Wide Area Network connecting the OSM,
gNodeB base stations, and the computing domains.

B. Risk Assessment

Figure 5 illustrates an example scenario, where the
attack consists of 3 steps. Hence, in this case, i = 1, 2, 3

denotes the assets and each one has j = 1, 2, 3, . . . ,mi

Fig. 4. A simplistic architecture overview of an artificial 5G infras-
tructure.

vulnerabilities, i.e. Vi = {vi1, vi2, . . . , vimi
}. For exam-

ple:

• V1 = {A Malicious Tenant uses his legitimately
obtained position, An adversary leverages a Remote
Code Execution (RCE) based on the CVE-2019-
8943 vulnerability, An adversary leverages a Re-
mote Code Execution (RCE) based on the CVE-
2018-13415 vulnerability, Brute forcing Horizon
administration passwords}

• V2 ={Exploiting a docker containerisation vul-
nerability CVE-2019-14271 to escape the docker
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container, Gaining access to an existing VM by ex-
ploiting the CVE-2020-12689 vulnerability, Using
Horizon privileges to create a new VM}

• V3 = {Compromising the OSM}.
In the first step, the attack must exploit one of the
vulnerabilities in V1 in order to gain entry to the system.
Once the first step is carried out, the attack moves to the
second phase, where the attacker must exploit one of
the vulnerabilities in V2. Note that after completing the
second phase there is an optional step to move laterally
to another virtual machine. Finally, the last step would be
to compromise the OSM by exploiting the vulnerability
in V3.

Fig. 5. Attack graph representing the attacker actions (edges/ovals) and
resulting compromised states (nodes/circles) in a vulnerable artificial
5G infrastructure.

Each one of the three stages of the attack entails a
financial impact for the organisation, which, as a function
of the random exploitation time, is itself also a random
variable. Indeed, the impact of the attack on any of the
assets of the network can be expressed as:

Impact = (Asset Value) x (likelihood of being attacked)
x (probability of being compromised)

Since the attacker may require a substantial amount
of time to exploit a vulnerability [23], risk assessment
should consider the present value of this impact. In turn,
this introduces the need to estimate the distribution of
the exploitation time, and, subsequently, the notion of
discounting within the estimation of the impact of a
cyber attack. Therefore, the risk assessment functionality
of the CIC entails the calculation of the probability
distribution of the expected impact taking into account
various underlying uncertainties. The robustness and
novelty of the CIC is reflected on the calculation of the

expected impact based on input from the CRAE. The
latter combines different sources of information, such as
the business profile of organisations and cybersecurity
information collected by CERTs and/or CSIRTs, and
carries out risk analysis based on real-time monitoring
of target infrastructures simulated in cyber ranges during
training/preparedness sessions, thereby enabling a real-
time analysis of cyber risks, threats and vulnerabilities
of target systems.

Once the distribution fi(·) is determined, the CIC will
produce specific risk measures, e.g. VaRα or CVaRα, to
gauge the financial risk exposure of the cyber attack,
as shown in Figure 6. Note that VaR is the minimum
project value for a given confidence level, α, during a
specified time horizon, and CVaR is the expected value
of the project given that it is less than the VaR.

Fig. 6. Risk assessment of serial attack.

C. Optimisation of Controls

In its basic implementation, the optimisation frame-
work within the CIC is formulated as a deterministic set
cover problem but can be extended to a stochastic variant
as in [17]. The optimisation objective is to reduce the
anticipated cost of a security breach by applying patches
on the affected areas of the system based on the required
level of security coverage and patch efficacy. Thus, the
CIC aspect would strive to reduce the cost of a cyber-
attack while balancing financial and efficacy limitations.
Hence, within the SPIDER context, the optimisation
goal is constrained by: (a) budget restrictions due to
the limited availability of financial capital B that affects
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investments on mitigation measures; and (b) limitations
relating to the organization’s desired degree of efficacy.
We denote by C = {C1, C2, . . . , C`} the set of available
controls and Eijl the efficacy of control Cl against
vulnerability vij , where l ∈ {1, 2, . . . , `}. Intuitively,
Eijl reflects the degree of protection offered by control
Cl for a vulnerability vij for all assets i = 1, 2, . . . , n

of the network. Also, xl denotes whether a control is
selected and yl is the associated cost.

min
∑̀
l=1

xl (1)

s.t. ∑
l:vij∈Cl

xl ≥ 1, ∀ vij (2)

∑̀
l=1

xlyl ≤ B (3)

xl ∈ {0, 1} (4)

Note that the solution to (1)-(4) reflects the minimum
number of controls that offer a baseline coverage. Con-
sequently, this formulation does not provide information
about the residual risk following the implementation of
the controls, and, therefore, it should be extended to
include the risk measures from Section IV.B either in
the objective function or in the constraints.

V. CONCLUSION

Efficient cybersecurity risk management relies on
managerial strategies that are responsive to the various
uncertainties associated with cyber attacks. The need for
such strategies becomes particularly pronounced consid-
ering the critical impact that cyber attacks may have
on organisations and the often very limited time to
make executive decisions. In this paper, we take into
account the serial nature of a cyber attack as well as
key underlying uncertainties and develop an analytical
framework to: i. evaluate the risk exposure of an or-
ganisation; and ii. propose an optimal set of mitigation
measures. Thus, the contribution of our framework is
that it extends the traditional DCF approach beyond
a static context in order to demonstrate its application
potential within a more complex setting that combines
asset valuation, risk management and optimisation. To
demonstrate the novelty of our model, we analyse the

economic implications of a cyber attack by developing
a case study based on a 5G network.

Directions for further research may include the
extension of the proposed model for optimal selection
of mitigation measures by casting it as a knapsack
problem. This will not only address the limited scope
of set cover problem, but, in addition, it will facilitate
comparisons regarding the efficiency of different
methods in terms of mitigating cyber risk. Furthermore,
this approach will facilitate the direct integration of
different risk measures within the objective function.
Finally, game-theoretic cnsiderations as in [21] may
also be including within the same framework.
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