
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-12, October 2020

122

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.L78891091220

DOI: 10.35940/ijitee.L7889.1091220



Abstract: Android OS, which is the most prevalent operating

system (OS), has enjoyed immense popularity for smart phones

over the past few years. Seizing this opportunity, cybercrime will

occur in the form of piracy and malware. Traditional detection

does not suffice to combat newly created advanced malware. So,

there is a need for smart malware detection systems to reduce

malicious activities risk. Machine learning approaches have been

showing promising results in classifying malware where most of

the method are shallow learners like Random Forest (RF) in

recent years. In this paper, we propose Deep-Droid as a deep

learning framework, for detection Android malware. Hence, our

Deep-Droid model is a deep learner that outperforms exiting

cutting-edge machine learning approaches. All experiments

performed on two datasets (Drebin-215 & Malgenome-215) to

assess our Deep-Droid model. The results of experiments show the

effectiveness and robustness of Deep-Droid. Our Deep-Droid

model achieved accuracy over 98.5%.

Keywords: Android Malware; Malware Detection; Static

Analysis; Deep-Droid; Deep-Learning.

I. INTRODUCTION

In recent years, Mobiles and tablets have come to

prominence. The number of dynamic cell phones worldwide

was about 7 billion, and in the countries in which they were

created, the ratio between individuals and cell phones was

valued at 120.8% In the end of 2016. Due to its massive

circulation as well as its capabilities, over the last two years’

smart phones have become the basic focus of attackers.

Android is a Google's open-source framework (OS), now has

the biggest piece of the cake, or in other words, 80%. Due to

its responsiveness and popularity, Android [1] is the basic

goal of the attackers against smart phones (98.5%), in the

range of the more than a million malicious apps.

Malware [2] is the primary carrier of security attacks

against smart phones. Malware can be blind and obfuscate,

they hide complex code that performs out of sight activities

that undermine customer protection, device respect, or even

customer credit. Many the usual forms of knock out malicious

Android apps are the transfer of contacts, login certificates,

instant messages, or malicious purchases in the customer to

expensive premium departments. Hence, all these problems

can be done on Android phones without the customer

notification. The primary concern in the Android

development stage is the malware website. The malware

detection strategies in the Android stage are similar to the

Revised Manuscript Received on September 25, 2020.

* Correspondence Author

Ahmed Hashem El Fiky *, Systems and Computer Engineering Dept.,

Faculty of Engineering, Al-Azhar University, Cairo, Egypt. Email:

0x4186@gmail.com

systems used at any stage. Malware detection is basically

divided into static detection, by examining Android app

without running; Dynamic detection, by analyzing runtime

behavior, for example: memory, battery, and system usage of

the tool; Or the examination of half and half, by joining

Dynamic and Static detection. Machine learning methods

have shown promising results in categorizing Android

malware. The methods can provide a rewarding degree of

accuracy and overcome the limitations of traditional methods

for Android Malware. Machine learning methods such as

Decision Tree (DT) Support Vector Machine (SVM), and

Logistic Regression (LR) have been previously suggested for

malware detection [3]. Currently, Neural networks are in wide

use for many applications entitlement to flexibility in

architecture design and extremely non-linear systems

capacity. In this paper, we introduce a deep learning neural

network framework for Android malware detection called

Deep-Droid. Our contributions include:

 We are conducting a comprehensive assessment with

rigorous beta setup to assess Deep-Droid's performance

with two sets of Android application data available to the

public in the real world (Malgenome Project [4] and

Drebin [5]).

 Deep-Droid provides low false positive rate, high true

positive rate and high accuracy based on deep learning

neural network framework.

The rest of the paper is summarized as follows in Section 2

provides a summary of relevant past research. Section 3

describes the model proposed, and in Section 4, the dataset of

benign and malware Android applications is presented and

experimental results, and Section 6 concludes the paper and

points to future work.

II. RELATED WORK

Traditional methods have been applied to categorize

Android malware detection. Detection by Signature is the

most widely used by anti-malware system. Recognizes the

malware sample by looking at specific byte sequences (called

signatures) in an object to investigate matching with known

signatures from blacklisted malware. This method of

detection is not effective against "zero-day attacks" as the

system is configured based on known malware signatures [6].

Detection by Signature has been suggested for detection

Android Malware that makes use of signature matching

algorithms. A signature-based extension has been suggested

that combines signature and anomaly approaches. The

combined approach achieved 96% accuracy in categorizing

malicious applications by using

3 different data sets [7].

Deep-Droid: Deep Learning for Android

Malware Detection

Ahmed Hashem El Fiky

Deep-Droid: Deep Learning for Android Malware Detection

123

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.L78891091220

DOI: 10.35940/ijitee.L7889.1091220

In [8] the authors suggested detecting malware for

Android apps. using the API call sequence and constructing a

convolutional neural network model (CNN) for classification.

They did better with CNN compared to other n-gram methods

called LSTM (Repetitive Neural Network Model).

The authors proposed in [9] a fully connected deep learning

model for Android malware detection. The proposed model is

a Static Analysis. They used the name of the Android

malware, and the release packages with an installed as a main

features and they achieved high accuracy 94.65%.

In [10] the authors proposed Droid-NNet is a deep

learning framework for categorizing Android malware.

Whereas, their Droid-NNet method is a deep learner who

outperforms current state-of-the-art machine learning

methods. All experiments performed on two datasets

(Drebin-215 & Malgenome-215) Android apps to assess

Droid-NNet. They achieved high accuracy for Malgenome

dataset of 99.3% and Drebin dataset of 98.8% compared to

newer machine learning classifiers such as DT, SVM, and LR.
The authors focus in [11] on discovering malware that can

install through permissions on Android, using a deep neural

network model. Their proposed model detects

malware-dependent permissions on Android APKs in real

time with more than 85% accuracy for a dataset of 398 APK

files.

III. PROPOSED METHODOLOGY

Sequential neural networks are currently widely used for

many applications due to the flexibility in architecture design

and the ability of non-linear systems. The essential

architecture of a serial neural network includes input layers,

one or more hidden layers, and output layers where each layer

contains a certain number of neurons. To capture nonlinear

data, a nonlinear method, called the activation function, can

be applied to weighted aggregates of neurons. All neural

network weights are set to random values in the initial phase

of the training phase. The data is entered into the input layer in

the network, then it transfers through the hidden layers, and

finally the output is produced in the output layer. The network

is constantly updating the weights by applying

backpropagation-based on the outputs and the desired target

of the neural network. Thus the network reduces the error

between output and target in each iteration [12]. In this phase,

the loss function is used to calculate the network error and

reduce the error by the optimization function during

backpropagation. Deep-Droid is a framework for a sequential

neural network that we propose it in this paper. Figure 1

shows the Deep-Droid architecture, a chained neural network

that contains 3 layers: an input layer, a hidden layer, and an

output layer to classify Android applications as benign or

malware. The input layer includes 215 neurons (number of

application features), the hidden layer includes 25 neurons,

and finally, the output layer contains only one neuron because

the problem is binary classification. We applied binary

entropy as a loss function and an optimizer to estimate the

adaptive moments (ADAM) to calculate the error and update

the network weights. Also, Figure 1 consists of the training

phase and testing phase. In the training phase, both malicious

and benign software samples are identified through a serial

neural network model. To train the model, Melgenome and

Drebin datasets were used which consist of 18,835 APK files

with 215 features. In the testing phase, the neural network

model is tested using data collected from Google Play Store

and the Virusshare website that contains both benign and

malicious APK files.

Fig. 1 Deep-Droid Architecture

IV. EXPERIMENTAL & RESULTS

A. Dataset Description

All experiments performed on two datasets (Drebin-215 &

Malgenome-215) of Android apps to evaluate our proposed

mode Deep-Droid. In Table I, we are shown the details of

each dataset. Malgenome-215 dataset is collected from the

supplementary section of [12]. Malgenome dataset has a total

of 3,799 app samples, where 2,539 benign samples and 1,260

malware samples from the Android malware genome project

[4]. Drebin-215 dataset is publicly available, it consists of

15,036 app samples, where 9,476 are benign samples and the

remaining 5,560 are malware samples from the Drebin project

[5]. Both datasets involve 215 features. Some statistical about

features are shown in Table II where there are four categories

from features Manifest Permission, Intents, Commands, and

API- Calls. Each category contains specific number of feature

such Manifest Permission contains 113 features like

WRITE_SETTINGS and SET_TIME, API-Calls contains 73

features like URLClassLoader and PathClassLoader.

Table I Dataset’s details
Datasets #samples #malware #benign #features

Malgenome-215 3,799 1,260 2,539 215

Drebin-215 15,036 5,560 9,476 215

Malgenome+Drebin 18,835 6,820 12,015 215

Table II Samples of Features
Feature Name Feature

Category

#Features

WRITE_SETTINGS

SET_TIME

ADD_VOICEMAIL

…

Manifest

Permission
113

intent.action.BOOT_COMPELETED

intent.action.TIME_SET

intent.action.ACTION_SHUTDOWN

…

Intents 23

remount

chown

…

Commands 6

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-12, October 2020

124

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.L78891091220

DOI: 10.35940/ijitee.L7889.1091220

URLClassLoader

PathClassLoader

…
API Calls 73

B. Model Evaluation Metrics

Both sets of data that we used in this paper are unbalanced.

The ratio between benign and malicious software samples in

the Malgenome-215 dataset ranges from approximately 66%

to 33% and in the Drebin-215 dataset approximately from

63% to 37%. Therefore, we cannot consider the scale of

accuracy to assess the performance of the models.

Consequently, Table III shown the performance metrics that

used in evaluation [12].

Table III Performance Metrics
Performance metric Formula

TPR (True Positive Rate) / Recall TP/(TP+FN)

FPR (False Positive Rate) FP/(FP+TN)

Precision TP/(TP+FP)

F-Measure (2.Precision.Recall)/(Precision+Recall

)

Where:

 TP: represents the number of Android applications as

benign.

 TN: represents the number of Android applications as

malware.

 FP: represents the number of benign Android applications

as malware.

 FN: represents the number of malware Android

applications as benign.

C. Experimental Design

The performance of our proposed model assessed by

comparing it with the performance of the RF, SVM, and KNN

methods. To check the consistency of the proposed model, we

tested each of the models with 10-fold validation. The

proposed model is a sequential neural network. We used the

“ReLu” activation function in the hidden layer and the

“Sigmoid” function in the output layer. 'Adam' and 'binary

entropy' were used to improve the loss function respectively.

Experiments were performed on a MacBook Pro at a speed of

2.8 GHz Intel Core i7 with 16.0 GB RAM. We implemented

our experiment with the Keras framework in Python 3.7.

D. Experimental Results

The results of our proposed model Deep-Droid compared

with the other 3 classifiers. An F-measure was used to

evaluate the performance of the models. Cross validation was

used 10-fold for each trial. The same settings were applied to

all of the Drebin-215 and Malgenome-215 dataset to maintain

consistency.

1) Performance evaluation on Drebin-215 dataset:

Our proposed model Deep-Droid trained for 100 epochs

with an early stop. All classifiers were trained on 90% of the

dataset and Deep-Droid tested on the remaining 10% of the

dataset. Table IV shows the experimental results for the

different classifiers in this dataset.

Table IV Drebin-215 dataset classifiers results
Classifiers F-measure TPR FPR

RF 0.985 0.976 0.003

SVM 0.959 0.939 0.012

KNN 0.983 0.985 0.011

Deep-Droid 0.987 0.978 0.011

2) Performance evaluation on Malgenome-215 dataset:

The testing and training segmentation ratio for all

classifiers was 10% and 90%. Experimental results of

implementing our proposed model Deep-Droid and the other

3 algorithms on the Malgenome-215 dataset are shown in

Table V.

Table V Malgenome-215 dataset classifiers results
Classifiers F-measure TPR FPR

RF 0.990 0.981 0.001

SVM 0.966 0.942 0.004

KNN 0.989 0.991 0.007

Deep-Droid 0.992 0.983 0.007

3) Performance evaluation on combination of two datasets

(Drebin-215 and Malgenome-215):

The testing and training segmentation ratio for all

classifiers was 10% and 90%. Experimental results of

implementing our proposed model Deep-Droid and the other

3 algorithms on a combination of two datasets (Drebin-215

and Malgenome-215 dataset) are shown in Table VI.

Table VI Drebin-125 and Malgenome-215 dataset

classifiers results
Classifiers F-measure TPR FPR

RF 0.985 0.976 0.003

SVM 0.955 0.934 0.013

KNN 0.984 0.985 0.010

Deep-Droid 0.989 0.982 0.011

The results obtained are compared with the results

obtained from other previous research studies in several

different ways based on static analysis to detect Android

malware. In particular, we consider [9] and [11] to be the best

published references to our knowledge. Table VII shows a

comparison between the results of the current work and the

published results of the references mentioned above.

Table VII Comparison between proposed model and

other works
Reference Dataset F-Measure

Benign Malware

[9] NA NA 0.946

[11] 398 0.87

This work 12,015 6,820 0.989

V. CONCLUSION

Android Malware is increasingly a serious security threat to

users of smart phones. It is an essential to develop a smart

Android malware detection solution to reduce the risk of

malicious activities. In this research, we suggested a

framework based on sequential neural network called

Deep-Droid. All experiments performed on two datasets

(Drebin-215 & Malgenome-215) to assess our model

Deep-Droid. the performance of our model Deep-Droid

evaluated by comparing it with that of the RF, SVM, and

KNN approaches.

Deep-Droid: Deep Learning for Android Malware Detection

125

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.L78891091220

DOI: 10.35940/ijitee.L7889.1091220

The results of experimental show that our model

Deep-Droid achieved the highest F-measure for each of the

datasets and outperformed the other methods.

REFERENCES

1. R. Vinayakumar, K. P. Soman and P. Poornachandran, "Deep android

malware detection and classification," 2017 International Conference on

Advances in Computing, Communications and Informatics (ICACCI),

Udupi, 2017, pp. 1677-1683.

2. P. D. Ali and T. G. Kumar, "Malware capturing and detection in dionaea

honeypot," 2017 Innovations in Power and Advanced Computing

Technologies (i-PACT), Vellore, 2017, pp. 1-5. doi:

10.1109/IPACT.2017.8245158

3. Gavrilut, D., Cimpoesu, M., Anton, D. and Ciortuz, L. (2009) Malware

Detection Using Machine Learning, Proceedings of the International

Multiconference on Computer Science and Information Technology ,

735-741.

4. Y. Zhou and X. Jiang, ”Dissecting android malware: Characterization

and evolution” In proc. 2012 IEEE Symposium on Security and Privacy

(SP), San Fransisco, CA, USA, 20-23 May, 2012 , pp. 95-109.

5. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,

”Drebin: Efficient and Explainable Detection of Android Malware in

Your Pocket” In proc. 20th Annual Network & Distributed System

Security Symposium (NDSS), San Diego, CA, USA, 23-26 Feb. 2014.

6. Mujumdar, A., Masiwal, G., & Meshram, D. B. (2013). Analysis of

signature-based and behavior-based anti-malware approaches.

International Journal of Advanced Research in Computer Engineering

and Technology (IJARCET), 2(6).

7. Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). Madam:

Effective and efficient behavior-based Android malware detection and

prevention. IEEE Transactions on Dependable and Secure Computing,

15(1), 83-97.

8. Robin Nix, JianZhang: Classification of Android apps and malware

using deep neural networks. In:2017 International Joint conference on

Neural Networks(IJCNN), Jul 03,pp 216--4407 IEEE(2017)

9. S. HR, "Static Analysis of Android Malware Detection using Deep

Learning," 2019 International Conference on Intelligent Computing and

Control Systems (ICCS), Madurai, India, 2019, pp. 841-845, doi:

10.1109/ICCS45141.2019.9065765.

10. M. Masum and H. Shahriar, "Droid-NNet: Deep Learning Neural

Network for Android Malware Detection," 2019 IEEE International

Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp.

5789-5793, doi: 10.1109/BigData47090.2019.9006053.

11. S. P., K. P. B., A. K. K. and A. T., "Detection of Permission Driven

Malware in Android Using Deep Learning Techniques," 2019 3rd

International conference on Electronics, Communication and Aerospace

Technology (ICECA), Coimbatore, India, 2019, pp. 941-945, doi:

10.1109/ICECA.2019.8821811.

12. Yerima, Suleiman Y., and Sakir Sezer. "Droidfusion: A novel

multilevel classifier fusion approach for Android malware detection."

IEEE transactions on cybernetics 49.2 (2018): 453-466.

AUTHORS PROFILE

Ahmed Hashem El Fiky received the BSc degree in

Computer Engineering Department Faculty of

Engineering Helwan University May 2012 (Grade:

Excellent and the first with honors) and Post-Grad

Diploma Degree in Computer Engineering May 2015

(Grade: Very Good). He is worked as a Teaching

Assistant of Faculty of Engineering Helwan University

Computer Engineering Department for 5 years ago (2013-2018). He is the

author of several articles paper. Currently, He is an Information Security

Team Leader at Tanmeyah Micro-Enterprise Services Company, Cairo,

Egypt. and Also, He is a MSc student in Systems and Computer Engineering

department of Faculty of Engineering Al-Azhar University. His main

research interests are focused on Information Security, Network Security,

Cryptography, Reverse Engineering, Malware Analysis, Digital Forensic

and Space Science.

