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 

Abstract: Android OS, which is the most prevalent operating 

system (OS), has enjoyed immense popularity for smart phones 

over the past few years. Seizing this opportunity, cybercrime will 

occur in the form of piracy and malware. Traditional detection 

does not suffice to combat newly created advanced malware. So, 

there is a need for smart malware detection systems to reduce 

malicious activities risk. Machine learning approaches have been 

showing promising results in classifying malware where most of 

the method are shallow learners like Random Forest (RF) in 

recent years. In this paper, we propose Deep-Droid as a deep 

learning framework, for detection Android malware. Hence, our 

Deep-Droid model is a deep learner that outperforms exiting 

cutting-edge machine learning approaches. All experiments 

performed on two datasets (Drebin-215 & Malgenome-215) to 

assess our Deep-Droid model. The results of experiments show the 

effectiveness and robustness of Deep-Droid. Our Deep-Droid 

model achieved accuracy over 98.5%. 

Keywords: Android Malware; Malware Detection; Static 

Analysis; Deep-Droid; Deep-Learning.  

I. INTRODUCTION 

In recent years, Mobiles and tablets have come to 

prominence. The number of dynamic cell phones worldwide 

was about 7 billion, and in the countries in which they were 

created, the ratio between individuals and cell phones was 

valued at 120.8% In the end of 2016. Due to its massive 

circulation as well as its capabilities, over the last two years’ 

smart phones have become the basic focus of attackers. 

Android is a Google's open-source framework (OS), now has 

the biggest piece of the cake, or in other words, 80%. Due to 

its responsiveness and popularity, Android [1] is the basic 

goal of the attackers against smart phones (98.5%), in the 

range of the more than a million malicious apps. 

Malware [2] is the primary carrier of security attacks 

against smart phones. Malware can be blind and obfuscate, 

they hide complex code that performs out of sight activities 

that undermine customer protection, device respect, or even 

customer credit. Many the usual forms of knock out malicious 

Android apps are the transfer of contacts, login certificates, 

instant messages, or malicious purchases in the customer to 

expensive premium departments. Hence, all these problems 

can be done on Android phones without the customer 

notification. The primary concern in the Android 

development stage is the malware website. The malware 

detection strategies in the Android stage are similar to the 
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systems used at any stage. Malware detection is basically 

divided into static detection, by examining Android app 

without running; Dynamic detection, by analyzing runtime 

behavior, for example: memory, battery, and system usage of 

the tool; Or the examination of half and half, by joining 

Dynamic and Static detection. Machine learning methods 

have shown promising results in categorizing Android 

malware. The methods can provide a rewarding degree of 

accuracy and overcome the limitations of traditional methods 

for Android Malware. Machine learning methods such as 

Decision Tree (DT) Support Vector Machine (SVM), and 

Logistic Regression (LR) have been previously suggested for 

malware detection [3]. Currently, Neural networks are in wide 

use for many applications entitlement to flexibility in 

architecture design and extremely non-linear systems 

capacity. In this paper, we introduce a deep learning neural 

network framework for Android malware detection called 

Deep-Droid. Our contributions include: 

 We are conducting a comprehensive assessment with 

rigorous beta setup to assess Deep-Droid's performance 

with two sets of Android application data available to the 

public in the real world (Malgenome Project [4] and 

Drebin [5]). 

 Deep-Droid provides low false positive rate, high true 

positive rate and high accuracy based on deep learning 

neural network framework. 

The rest of the paper is summarized as follows in Section 2 

provides a summary of relevant past research. Section 3 

describes the model proposed, and in Section 4, the dataset of 

benign and malware Android applications is presented and 

experimental results, and Section 6 concludes the paper and 

points to future work. 

II. RELATED WORK 

Traditional methods have been applied to categorize  

Android malware detection. Detection by Signature is the  

most widely used by anti-malware system. Recognizes the 

malware sample by looking at specific byte sequences (called 

signatures) in an object to investigate matching with known 

signatures from blacklisted malware. This method of 

detection is not effective against "zero-day attacks" as the 

system is configured based on known malware signatures [6]. 

Detection by Signature has been suggested for detection 

Android Malware that makes use of signature matching 

algorithms. A signature-based extension has been suggested 

that combines signature and anomaly approaches. The 

combined approach achieved 96% accuracy in categorizing 

malicious applications by using 

3 different data sets [7]. 
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In [8] the authors suggested detecting malware for 

Android apps. using the API call sequence and constructing a 

convolutional neural network model (CNN) for classification. 

They did better with CNN compared to other n-gram methods 

called LSTM (Repetitive Neural Network Model). 

The authors proposed in [9] a fully connected deep learning 

model for Android malware detection. The proposed model is 

a Static Analysis. They used the name of the Android 

malware, and the release packages with an installed as a main 

features and they achieved high accuracy 94.65%. 

In [10] the authors proposed Droid-NNet is a deep 

learning framework for categorizing Android malware. 

Whereas, their Droid-NNet method is a deep learner who 

outperforms current state-of-the-art machine learning 

methods. All experiments performed on two datasets 

(Drebin-215 & Malgenome-215) Android apps to assess 

Droid-NNet. They achieved high accuracy for Malgenome 

dataset of 99.3% and Drebin dataset of 98.8% compared to 

newer machine learning classifiers such as DT, SVM, and LR. 
The authors focus in [11] on discovering malware that can 

install through permissions on Android, using a deep neural 

network model. Their proposed model detects 

malware-dependent permissions on Android APKs in real 

time with more than 85% accuracy for a dataset of 398 APK 

files. 

III. PROPOSED METHODOLOGY 

Sequential neural networks are currently widely used for 

many applications due to the flexibility in architecture design 

and the ability of non-linear systems. The essential 

architecture of a serial neural network includes input layers, 

one or more hidden layers, and output layers where each layer 

contains a certain number of neurons. To capture nonlinear 

data, a nonlinear method, called the activation function, can 

be applied to weighted aggregates of neurons. All neural 

network weights are set to random values in the initial phase 

of the training phase. The data is entered into the input layer in 

the network, then it transfers through the hidden layers, and 

finally the output is produced in the output layer. The network 

is constantly updating the weights by applying 

backpropagation-based on the outputs and the desired target 

of the neural network. Thus the network reduces the error 

between output and target in each iteration [12]. In this phase, 

the loss function is used to calculate the network error and 

reduce the error by the optimization function during 

backpropagation. Deep-Droid is a framework for a sequential 

neural network that we propose it in this paper. Figure 1 

shows the Deep-Droid architecture, a chained neural network 

that contains 3 layers: an input layer, a hidden layer, and an 

output layer to classify Android applications as benign or 

malware. The input layer includes 215 neurons (number of 

application features), the hidden layer includes 25 neurons, 

and finally, the output layer contains only one neuron because 

the problem is binary classification. We applied binary 

entropy as a loss function and an optimizer to estimate the 

adaptive moments (ADAM) to calculate the error and update 

the network weights. Also, Figure 1 consists of the training 

phase and testing phase. In the training phase, both malicious 

and benign software samples are identified through a serial 

neural network model. To train the model, Melgenome and 

Drebin datasets were used which consist of 18,835 APK files 

with 215 features. In the testing phase, the neural network 

model is tested using data collected from Google Play Store 

and the Virusshare website that contains both benign and 

malicious APK files. 

 
Fig. 1 Deep-Droid Architecture 

IV. EXPERIMENTAL & RESULTS 

A. Dataset Description 

All experiments performed on two datasets (Drebin-215 & 

Malgenome-215) of Android apps to evaluate our proposed 

mode Deep-Droid. In Table I, we are shown the details of 

each dataset. Malgenome-215 dataset is collected from the 

supplementary section of [12]. Malgenome dataset has a total 

of 3,799 app samples, where 2,539 benign samples and 1,260 

malware samples from the Android malware genome project 

[4]. Drebin-215 dataset is publicly available, it consists of 

15,036 app samples, where 9,476 are benign samples and the 

remaining 5,560 are malware samples from the Drebin project 

[5]. Both datasets involve 215 features. Some statistical about 

features are shown in Table II where there are four categories  

from features Manifest Permission, Intents, Commands, and 

API- Calls. Each category contains specific number of feature 

such Manifest Permission contains 113 features like 

WRITE_SETTINGS and SET_TIME, API-Calls contains 73 

features like URLClassLoader and PathClassLoader. 

Table I Dataset’s details 
Datasets #samples #malware #benign #features 

Malgenome-215 3,799 1,260 2,539 215 

Drebin-215 15,036 5,560 9,476 215 

Malgenome+Drebin 18,835 6,820 12,015 215 

  

Table II Samples of Features 
Feature Name Feature 

Category 

#Features 

WRITE_SETTINGS 

SET_TIME 

ADD_VOICEMAIL 

… 

Manifest 

Permission 
113 

intent.action.BOOT_COMPELETED 

intent.action.TIME_SET 

intent.action.ACTION_SHUTDOWN 

… 

Intents 23 

remount 

chown 

… 

Commands 6 
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URLClassLoader 

PathClassLoader 

… 
API Calls 73 

B. Model Evaluation Metrics 

Both sets of data that we used in this paper are unbalanced. 

The ratio between benign and malicious software samples in 

the Malgenome-215 dataset ranges from approximately 66% 

to 33% and in the Drebin-215 dataset approximately from 

63% to 37%. Therefore, we cannot consider the scale of 

accuracy to assess the performance of the models. 

Consequently, Table III shown the performance metrics that 

used in evaluation [12]. 

Table III Performance Metrics 
Performance metric Formula  

TPR (True Positive Rate)  / Recall TP/(TP+FN) 

FPR (False Positive Rate) FP/(FP+TN) 

Precision TP/(TP+FP) 

F-Measure (2.Precision.Recall)/(Precision+Recall

) 

Where:  

 TP: represents the number of Android applications as 

benign. 

 TN: represents the number of Android applications as 

malware. 

 FP: represents the number of benign Android applications 

as malware. 

 FN: represents the number of malware Android 

applications as benign. 

C. Experimental Design 

The performance of our proposed model assessed by 

comparing it with the performance of the RF, SVM, and KNN 

methods. To check the consistency of the proposed model, we 

tested each of the models with 10-fold validation. The 

proposed model is a sequential neural network. We used the 

“ReLu” activation function in the hidden layer and the 

“Sigmoid” function in the output layer. 'Adam' and 'binary 

entropy' were used to improve the loss function respectively. 

Experiments were performed on a MacBook Pro at a speed of 

2.8 GHz Intel Core i7 with 16.0 GB RAM. We implemented 

our experiment with the Keras framework in Python 3.7. 

D. Experimental Results 

The results of our proposed model Deep-Droid compared 

with the other 3 classifiers. An F-measure was used to 

evaluate the performance of the models. Cross validation was 

used 10-fold for each trial. The same settings were applied to 

all of the Drebin-215 and Malgenome-215 dataset to maintain 

consistency. 

1) Performance evaluation on Drebin-215 dataset: 

Our proposed model Deep-Droid trained for 100 epochs 

with an early stop. All classifiers were trained on 90% of the 

dataset and Deep-Droid tested on the remaining 10% of the 

dataset. Table IV shows the experimental results for the 

different classifiers in this dataset. 

Table IV Drebin-215 dataset classifiers results 
Classifiers F-measure TPR FPR 

RF 0.985 0.976 0.003 

SVM 0.959 0.939 0.012 

KNN 0.983 0.985 0.011 

Deep-Droid 0.987 0.978 0.011 

2) Performance evaluation on Malgenome-215 dataset:  

The testing and training segmentation ratio for all 

classifiers was 10% and 90%. Experimental results of 

implementing our proposed model Deep-Droid and the other 

3 algorithms on the Malgenome-215 dataset are shown in 

Table V. 

Table V Malgenome-215 dataset classifiers results 
Classifiers F-measure TPR FPR 

RF 0.990 0.981 0.001 

SVM 0.966 0.942 0.004 

KNN 0.989 0.991 0.007 

Deep-Droid 0.992 0.983 0.007 

3) Performance evaluation on combination of two datasets 

(Drebin-215 and Malgenome-215): 

The testing and training segmentation ratio for all 

classifiers was 10% and 90%. Experimental results of 

implementing our proposed model Deep-Droid and the other 

3 algorithms on a combination of two datasets (Drebin-215 

and Malgenome-215 dataset) are shown in Table VI. 

Table VI Drebin-125 and Malgenome-215 dataset 

classifiers results 
Classifiers F-measure TPR FPR 

RF 0.985 0.976 0.003 

SVM 0.955 0.934 0.013 

KNN 0.984 0.985 0.010 

Deep-Droid 0.989 0.982 0.011 

The results obtained are compared with the results 

obtained from other previous research studies in several 

different ways based on static analysis to detect Android 

malware. In particular, we consider [9] and [11] to be the best 

published references to our knowledge. Table VII shows a 

comparison between the results of the current work and the 

published results of the references mentioned above. 

Table VII Comparison between proposed model and 

other works 
Reference Dataset F-Measure 

Benign Malware 

[9] NA NA 0.946 

[11] 398 0.87 

This work 12,015 6,820 0.989 

V. CONCLUSION 

Android Malware is increasingly a serious security threat to 

users of smart phones. It is an essential to develop a smart 

Android malware detection solution to reduce the risk of 

malicious activities.  In this research, we suggested a 

framework based on sequential neural network called 

Deep-Droid. All experiments performed on two datasets 

(Drebin-215 & Malgenome-215) to assess our model 

Deep-Droid. the performance of our model Deep-Droid 

evaluated by comparing it with that of the RF, SVM, and 

KNN approaches.  
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The results of experimental show that our model 

Deep-Droid achieved the highest F-measure for each of the 

datasets and outperformed the other methods. 
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