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Abstract— In this paper, a distributed, non-cooperative and 

dynamic load-balancing algorithm is proposed in the context of 
multi-commodity adversarial network equilibria with constrained 
providers’ capacities. The algorithm is proven to converge to a 
generalised Wardrop user-equilibrium, referred to as Beckmann 
equilibrium in the literature, in which, for each commodity, the 
latencies of the unsaturated providers are equalized. The 
algorithm is then used as a Multi-connectivity algorithm in the 
context of 5G heterogeneous networks, in which the user 
equipments are able to use different access networks 
simultaneously to increase the transmission capacity and/or to 
improve the transmission reliability. The proposed controller 
provides a solution for dynamic traffic steering by distributing the 
traffic load over the available heterogeneous access points, 
considered as capacity providers. Simulation results validate the 
approach. The developed network simulator is available as an 
open-source environment [1]. 

Index Terms— Load balancing, Lyapunov design, Beckmann 
equilibrium, 5G networks. 
 

NOMENCLATURE 
 

𝑐𝑐𝑝𝑝   Maximum load of provider 𝑝𝑝 
ℐ  Set of commodities 
𝑙𝑙𝑝𝑝𝑖𝑖 (𝑥𝑥𝑝𝑝𝑖𝑖 )   Latency of commodity 𝑖𝑖 on provider 𝑝𝑝 under 

load 𝑥𝑥𝑝𝑝𝑖𝑖  
ℒ(𝒙𝒙)  Candidate Lyapunov function under flow 𝒙𝒙 
𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]  Migration rate of commodity 𝑖𝑖 from provider 𝑝𝑝 

to provider 𝑞𝑞 at time 𝑘𝑘 
𝒫𝒫,𝒫𝒫𝑖𝑖   Set of providers, set of providers available to 

commodity 𝑖𝑖 
𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]  Load of commodity 𝑖𝑖 over provider 𝑝𝑝 at time 𝑘𝑘 
𝑥𝑥𝑝𝑝[𝑘𝑘] =  
  = ∑ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑖𝑖∈ℐ   

Total load over provider 𝑝𝑝 at time 𝑘𝑘 

𝒙𝒙 = �𝑥𝑥𝑝𝑝�𝑝𝑝∈𝒫𝒫  Flow vector at time 𝑘𝑘 
𝒳𝒳  Feasible state space 
𝒳𝒳𝑒𝑒𝑝𝑝 , 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀   Set of Beckmann and 𝜀𝜀-Beckmann equilibria 
𝜆𝜆𝑖𝑖   Flow demand of commodity 𝑖𝑖 

 
 

Φ(𝒙𝒙)  Beckmann, McGuire and Winsten potential 
under flow 𝒙𝒙 

𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 (𝑙𝑙𝑝𝑝𝑖𝑖 , 𝑙𝑙𝑝𝑝𝑖𝑖 )  Migration policy of commodity 𝑖𝑖 from provider 
𝑝𝑝 to provider 𝑞𝑞 

𝜎𝜎𝑖𝑖  Migration gain of commodity 𝑖𝑖 

I. INTRODUCTION 
Load Balancing is a classic problem of network control and can 
be interpreted as a particular case of traffic routing with 
providers representing unitary paths and latency functions 
describing the performance of each provider. In adversarial (or 
selfish) routing, the control algorithms are aimed at leading the 
network into convenient equilibrium states without the 
cooperation of its agents. One of such states is known in mean-
field game theory as Wardrop equilibrium (which can be 
regarded as a Nash equilibrium for infinite players [2]): in such 
state, the latencies experienced by the agents that constitute the 
traffic flows are equalised over all their available routes, and, 
as a consequence, no agent may improve its routing unilaterally. 
In this paper, we study a particular case of selfish capacitated 
load balancing, in which the capacities of the service providers 
are limited. Therefore, as it will be discussed, the proposed 
control law objective will be to equalize the latencies of all the 
providers which are not saturated. This network state is a 
generalization of the Wardrop equilibrium in capacitated 
networks and is known in the literature as the Beckmann user 
equilibrium [3]. 

Multi-connectivity is an emerging challenge in the 
heterogeneous network scenario envisaged by 5G, where 
multiple Radio Access Technologies (RATs), such as LTE, 5G 
and Satellite networks, are available to connect the network 
users to the core network [4]. According to the multi-
connectivity paradigm, each User Equipment (UE) may be able 
to be served by several of the various Access Points (AP) of the 
available RATs, potentially at the same time. The problem, 
referred to in the 5G literature as multi-connectivity, consists in 
dynamically choosing which APs shall serve each UE and 
deciding how much traffic relevant to each UE shall be routed 
through each of the serving APs. This paper focuses on the 
downlink direction, i.e., it refers to the traffic transmitted from 
the core network to the UEs via the APs; nevertheless, similar 
considerations apply when considering the uplink direction. 

In this paper, the performance of the network APs are 
measured in terms of latency functions that capture the amount 
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of resources (in terms of resource blocks) required from each 
AP to serve the various commodities. In the considered 5G 
scenario, such commodities consist in the so-called QoS-Flows, 
which are streams of data toward a User Equipment (UE) that 
are characterised by standardised Quality of Service (QoS) 
requirements (e.g., bit error rate, maximum tolerated delay…). 
In general, the latency functions may account for different 
connection-specific performance indexes (e.g., amount of 
network resources utilised on a given AP, power consumption, 
service reliability), and may include additional factors, as 
operator preferences or different usage tariffs.  

Overall, the objective of the proposed control law for load 
balancing is to dynamically steer the downlink traffic in such a 
way that the values of the latency functions are equalized.  

The described scenario is typical in adversarial routing and 
load balancing problems, as the various connections are not 
concerned with the overall network state and aim at optimising 
their own, individual, performances. The two main problems in 
the algorithm development are i) the fact that the latency 
functions are not known apriori, but can be only measured, ii) 
the fact that a distributed approach is needed since a centralized 
approach would require too much control traffic to exchange 
information among the potentially thousands of UEs. 

In this paper, a distributed, non-cooperative and dynamic 
load balancing algorithm is consequently developed in the 
context of adversarial network equilibria; specifically, the 
algorithm considers every single packet included in a QoS-
Flow as an agent, able to make a decision regarding the AP it is 
assigned to. Such decisions are based on the measurements of 
the latency functions, obtained starting from the observation of 
the resource blocks allocated on the APs over which the 
commodity is routed to sustain the connection, and are made 
unilaterally in an adversarial framework, with no concern for 
the overall system performance.  

The main motivations behind this work are then (i) to design 
a dynamic adversarial capacitated load balancing algorithm and 
to prove, using Lyapunov and Invariance Principle arguments, 
how the difference equation governing the global state of the 
system converges to an approximated Beckmann equilibrium, 
and (ii) to show the effectiveness of such an approach through 
its application to the multi-connectivity problem in a simulated 
5G network scenario. 

The work presented in this paper was carried out within the 
H2020 5G-ALLSTAR project (www.5g-allstar.eu), aimed at 
the seamless, reliable and ubiquitous provision of broadband 
services over heterogeneous 5G networks. However, we note 
that, since the algorithm is developed within the research 
framework of selfish routing, it can be applied to several 
problems and scenarios other than the one considered here. 

The paper is organized as follows: Section II presents the 
state-of-the-art on multi-connectivity in 5G-networks  and on 
Wardrop load balancing and the proposed novelties; Section III 
presents the algorithm and the convergence proof; Section IV 
introduces the open-source simulator and reports the simulation 
results; Section V draws the conclusions.  

II. STATE OF THE ART AND PROPOSED INNOVATIONS 
Section II.A motivates the choice of a distributed adversarial 

load-balancing algorithm to address the multi-connectivity  

 
Figure 1. Dynamic Traffic Steering framework from [5] 
 

problem in 5G networks, whereas Section II.B summarizes the 
works in the literature relevant to dynamic selfish routing and 
load balancing and the proposed innovations. 

A. Multi-Connectivity and Traffic Steering in 5G Networks 
This work addresses the problem of traffic steering, i.e., of 

selecting which APs a QoS-Flow shall utilise to connect the 
UEs with the core network by modelling it as a load-balancing 
problem. 

This vision is compliant with the latest developments of the 
5G architecture (see Figure 1), as designed by 5GPPP in [5]. 
Multi-connectivity comprises the concept of dynamic traffic 
steering, which envisages the ability of dynamically steering the 
traffic, partitioned into QoS-Flows among the various available 
APs of the RATs, based on feedbacks on the current AP 
performances. In this framework, QoS-Flows may be 
duplicated over different APs to increase their resiliency, while 
other ones may be split over multiple RATs to increase their 
throughput or to better meet their QoS requirements. 

Within the 5G architecture, the traffic steering problem is 
solved in three different ways: (i) with a User-Centric approach, 
where each UE decides its connection preferences according to 
local measures of some performance indicator; (ii) in a Radio 
Access Network (RAN)-Assisted fashion, in which the decision 
is still made by the UEs but the RAN provides them with 
additional information on the network state; (iii) with a RAN-
Controlled approach, where all decisions are made by the RAN, 
which is a centralised unit by nature, or delegated to the 
distributed control units that govern the single APs. 

Several works study the problem of multi-connectivity in the 
heterogeneous network framework proposed by 5G, from both 
architectural [6], [7] and algorithmic [8]–[10] points of view. 
Multi-connectivity enables the problem of optimally steering 
the network traffic over the available APs, in such a way that 
the QoS requirements of the various QoS-Flows are met [11], 
[12]. The problem of access network selection has been studied 
utilising several different approaches, spacing from fuzzy-logic 
control to multiple-attribute decision-making and 
combinatorial optimisation [8]. Common solutions utilise the 
concept of utility and latency functions, as in this work, to 
capture the network performances [8], [13], [14]. Several works 
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in the literature also employ game-theoretic approaches for the 
AP selection, typically in adversarial frameworks, as [8], [15], 
[16], leading the networks to Nash equilibrium states. 

Regarding game-theoretic solutions, one possible modelling 
choice is to have an adversarial game between the users, as in 
[15], [17] that envisage a setup similar to the one used in this 
work. In such scenarios, the users compete to attain the best 
connection quality while eventually also minimising their costs. 
An alternative approach is to set up a game between the various 
network operators, each controlling a set of APs as in [14], [16], 
and focusing on their economic performances. 

The algorithm proposed in this work utilises differential game 
theory, a branch of game theory that studies dynamical systems, 
and shares some of the characteristics of the previously 
mentioned works, as the adversarial nature of its equilibrium. 
The control algorithm designed in this work will be proven to 
drive the communication network state to a convenient 
equilibrium state, and this convergence will be attained by 
following an explicit discrete-time control law, with no need for 
round-games or price/cost bidding auctions. Contrary to 
optimisation-based works, the proposed control law is also 
suitable to steer the traffic flows in real-time, and, being a 
distributed decision process, it does not require any significant 
control traffic overhead. 

The previous aspects, together with the explicit inclusion of 
constraints on the available transmission capacity, makes the 
proposed approach a suitable candidate for the deployment in 
5G scenarios implementing network slicing [18], in which the 
APs provide a limited quantity of resources to the QoS-Flows 
of a given service type or managed by third party tenants (e.g., 
video streaming, autonomous guidance, voice…). With 
reference to the mentioned Dynamic Traffic Steering 
framework [5], the algorithm can be implemented in the RAN-
Assisted and in the RAN-Controlled configurations: in the 
former case, the algorithm would run in the UEs based on the 
information received by the RAN; in the latter case, the 
algorithm would run directly in the RAN and, in particular, for 
Non-StandAlone 5G systems (5G-NSA), in either the 
centralised unit (CU) or in the distributed units (DU) [19] of the 
next-generation-Node-Bs (gNodeBs or gNBs) [20] that govern 
the various APs. 

B. Adversarial Load Balancing in 5G Networks and 
Beckmann Equilibria 

The problem of optimally distributing the flow is one of the 
most fundamental and challenging aspects of any network 
operation. In the framework of selfish routing, the network flow 
is formed by a stream of infinitely-many decision-making agent 
[21] that compete for attaining the best performance, without 
consideration for the congestion, and consequent performance 
degradation, that their decisions cause to the other agents. 

Wardrop equilibria [22] were then introduced to describe a 
network state in which no single agent can unilaterally improve 
its performances (e.g., in terms of travel time, as in the original 
Wardrop formulation). Being an adversarial kind of equilibria, 
the overall network performance is not optimised and the 
performance loss is referred to as the price of anarchy in the 

literature [23]. The concept of Wardrop equilibrium has been 
extended to various families of networks, among which the 
capacitated ones [3], [24]–[26], and problems, as the load 
balancing one [27]–[29]. Even if Wardrop equilibria can be 
computed by centralized algorithms in polynomial time [30], 
for the low connection latency promised by 5G – and the 
consequent agile and fast traffic steering requirements – 
distributed approaches are more suitable, motivating the 
development of a dynamic algorithm.  

Based on a simple representation of the network dynamics in 
terms of difference equations derived from the flow 
conservations laws, this paper proposes a load balancing 
solution over the nodes of a dynamical network that represents 
the 5G infrastructure [31], [32], consisting in the connections 
between several APs and their users with the core network. In 
doing so, the algorithm takes into account that the amount of 
traffic each AP can support is limited, or capacitated, due to 
transmission power constraints and, in general, resource 
scarcity as in network slicing scenarios. This limitation implies 
that the user equilibrium to which the network will converge 
may not be in principle the Wardrop equilibrium [26], which is 
defined for unconstrained networks. Several works [3], [24]–
[26] extended the original formulation of the Wardrop user 
equilibrium, which corresponds to a situation in which all the 
latencies of each commodity are equalised, to deal with 
capacitated networks. The resulting equilibrium, known as 
Beckman user equilibrium, is such that the latencies of all the 
unsaturated APs of each commodity are equalised. Differently 
from [3], [24]–[26], this work proposes a dynamic algorithm 
which will be proven to converge to a Beckmann equilibrium. 

Regarding dynamic load balancing solutions for Wardrop 
equilibria in the literature, several works utilise the concepts of 
learning and exploration to cope with the limited feedback 
information that the decision-making agents have access to. To 
attain a better knowledge of the system state and dynamics, the 
agents sample different flow distribution strategies and then 
exploit the learned system characteristics to converge to 
optimal states. The authors of [33] present an asynchronous and 
distributed algorithm that employs reinforcement learning to 
update transmission probabilities, based on an estimation of the 
network edges latencies. In [34],  an iterative and distributed 
learning solution is proven to converge to a Wardrop 
equilibrium state using Lyapunov arguments, as in this work. 

An important contribution has been given by Fischer et al. in 
[35]–[37]. In [35] and [37], a round-based algorithm is 
developed to solve a game among the various commodities, 
aimed at redistributing the traffic flow and reaching an 
approximated Wardrop equilibrium. In [36], a similar set up is 
analysed assuming that the information available to the agents 
may be stale. In [38], a dynamic discrete-time load-balancing 
algorithm, later extended to the time-delayed case in [39], is 
presented in the context of Virtual Private Networks, which 
converges to an approximate Wardrop equilibrium. 

The present work extends the results of previous works, 
starting from the algorithm in [38], mainly in two directions: 
i) the convergence properties of the algorithm are studied in 

the multi-commodity case (a requirement for application in 



4 
 

 

the 5G framework), that was not explicitly discussed in the 
cited works; 

ii) the algorithm analysis and design are extended to the case 
of capacitated networks, not dealt with by the dynamic 
algorithms in the literature, enabling the application of the 
solution to more realistic case studies in several domains. 

III. PROPOSED WARDROP LOAD BALANCING ALGORITHM 
Section III.A describes the basic definitions needed for the 

algorithm analysis; Section III.B presents the load balancing 
algorithm and the convergence proof; Section III.C. models the 
5G traffic steering problem as a load balancing one. 

A. Preliminaries on Wardrop and Beckmann Equilibria and 
on Lyapunov Stability 

As anticipated in Section II, this paper further develops a 
well-known model for selfish routing [35], where an infinite 
population of agents carries an infinitesimal amount of load 
each and builds on the previous work [38] concerning 
distributed load balancing algorithms. The proposed control 
scheme relies on common assumptions on the latency functions. 
The considered network consists in a set of 𝒫𝒫 providers, which 
serve a set ℐ of commodities. Each commodity 𝑖𝑖 ∈ ℐ is 
characterised by a flow demand 𝜆𝜆𝑖𝑖  and is served by a subset of 
providers 𝒫𝒫𝑖𝑖 ⊂ 𝒫𝒫. Each commodity 𝑖𝑖 using provider 𝑝𝑝 is 
characterised by a latency function 𝑙𝑙𝑝𝑝𝑖𝑖  and each provider 𝑝𝑝 is 
characterized by a capacity 𝑐𝑐𝑝𝑝.  

 
Assumption 1. The latency functions 𝑙𝑙𝑝𝑝𝑖𝑖 (𝜉𝜉) are positive, non-

decreasing and Lipschitz continuous with constant 𝛽𝛽𝑝𝑝𝑖𝑖 , for 𝜉𝜉 ∈
[0, 𝑐𝑐𝑝𝑝], where 𝑐𝑐𝑝𝑝 is the capacity of provider 𝑝𝑝, for all 𝑝𝑝 ∈ 𝒫𝒫. 
Furthermore, the maximum Lipchitz constant of all the 𝑙𝑙𝑝𝑝𝑖𝑖 ’s is 
denoted as �̅�𝛽 = max

𝑝𝑝∈𝒫𝒫𝑖𝑖,𝑖𝑖∈ℐ
𝛽𝛽𝑝𝑝𝑖𝑖 . 

 
The assumption is not restrictive in real use-cases since the 

provider performances decrease with their load and poses a very 
mild design constraint on the function classes choices. 

In non-capacitated algorithms, if 𝑥𝑥𝑝𝑝𝑖𝑖  indicates the amount of 
the flow of commodity 𝑖𝑖 allocated on the provider 𝑝𝑝, the set of 
feasible states is defined as 

 
𝒳𝒳 = �𝒙𝒙 = �𝑥𝑥𝑝𝑝�𝑝𝑝∈𝒫𝒫|𝑥𝑥𝑝𝑝 = ∑ 𝑥𝑥𝑝𝑝𝑖𝑖𝑖𝑖∈ℐ , 𝑥𝑥𝑝𝑝𝑖𝑖 ≥ 0,∀𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖 ,

∑ 𝑥𝑥𝑝𝑝𝑖𝑖𝑝𝑝∈𝒫𝒫𝑖𝑖 = 𝜆𝜆𝑖𝑖 ,∀𝑖𝑖 ∈ ℐ�,  (1) 
 

and a flow 𝒙𝒙 ∈ 𝒳𝒳 is at a Wardrop equilibrium if, for each 
commodity 𝑖𝑖 ∈ ℐ, the latencies of the loaded providers are 
equalized, i.e., if 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 � ≤ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 � for all 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖 such that 𝑥𝑥𝑝𝑝𝑖𝑖 >
0, for all 𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖 and for all 𝑖𝑖 ∈ ℐ. 
By defining the Beckmann-McGuire-Winsten potential 

 

Φ(𝒙𝒙) = ∑ ∑ ∫ 𝑙𝑙𝑝𝑝𝑖𝑖 (𝜉𝜉)𝑑𝑑𝜉𝜉𝑥𝑥𝑝𝑝𝑖𝑖

0𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖∈ℐ ,  (2) 
 
the Wardrop equilibria are the solutions of the optimization 
problem  

min𝒙𝒙∈𝒳𝒳  Φ(𝒙𝒙). (3) 
 
Capacity-constrained networks are characterized by the 

additional capacity constraints 
 

𝑥𝑥𝑝𝑝 ≤ 𝑐𝑐𝑝𝑝,∀𝑝𝑝 ∈ 𝒫𝒫. (4) 
 

A flow 𝒙𝒙 ∈ 𝒳𝒳 is feasible if constraints (4) hold, and the set 
of feasible states is defined as 

 
𝒳𝒳𝐶𝐶𝐶𝐶 = �𝒙𝒙 ∈ 𝒳𝒳 |𝑥𝑥𝑝𝑝 ≤ 𝑐𝑐𝑝𝑝 ,∀𝑝𝑝 ∈ 𝒫𝒫�. (5) 

 
Considering a flow 𝒙𝒙 ∈ 𝒳𝒳𝐶𝐶𝐶𝐶 , provider 𝑝𝑝 ∈ 𝒫𝒫 is defined as 
capacity-constrained or saturated if 𝑥𝑥𝑝𝑝 = 𝑐𝑐𝑝𝑝. 

A flow 𝒙𝒙 ∈ 𝒳𝒳𝐶𝐶𝐶𝐶  is at a Beckmann user equilibrium if, for 
each commodity, the latencies of the loaded and unconstrained 
providers are equalized, i.e., more precisely: 

 
Definition 1 [3]. A flow 𝒙𝒙 ∈ 𝒳𝒳𝐶𝐶𝐶𝐶  is at a Beckmann user 

equilibrium if 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 � ≤ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 � for all 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖  such that 𝑥𝑥𝑝𝑝𝑖𝑖 > 0, 
for all 𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖  such that 𝑥𝑥𝑝𝑝 < 𝑐𝑐𝑝𝑝  and for all 𝑖𝑖 ∈ ℐ.  

 
The set of equilibria is then 
 

𝒳𝒳𝑒𝑒𝑝𝑝 = �𝒙𝒙 ∈ 𝒳𝒳𝐶𝐶𝐶𝐶|𝑙𝑙𝑝𝑝𝑖𝑖 (𝒙𝒙) ≤ 𝑙𝑙𝑝𝑝𝑖𝑖 (𝒙𝒙),∀𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖  s. t.  𝑥𝑥𝑝𝑝𝑖𝑖 > 0,∀𝑞𝑞 ∈
𝒫𝒫𝑖𝑖  s. t.𝑥𝑥𝑝𝑝 < 𝑐𝑐𝑝𝑝 ,∀𝑖𝑖 ∈ ℐ�. (6) 

 
Let us consider the minimization problem (3) with 

constraints (4), hereinafter referred to as capacity-constrained 
problem (CP). The Beckman user equilibria [25] are the optimal 
solutions of the CP. 

 
Property 1 [3]. If the set of feasible solutions 𝒳𝒳𝐶𝐶𝐶𝐶  of the CP 

is nonempty, the optimization problem consists in minimizing 
a convex function over a nonempty polytope and, thus, the set 
of optimal flows 𝒳𝒳𝑒𝑒𝑝𝑝  is nonempty and convex.  

 
The algorithm convergence proof of Section III.B relies on 

LaSalle invariance principle for discrete-time nonlinear 
systems [40], [41]. 
 

Definition 2. ℒ:𝒳𝒳 → ℝ is a candidate Lyapunov function for 
a discrete-time nonlinear system 𝒙𝒙[𝑘𝑘 + 1] = 𝑓𝑓(𝒙𝒙[𝑘𝑘]) if 
i) ℒ ∈ 𝒞𝒞1 and is bounded from below; 
ii) If 𝒙𝒙𝑒𝑒𝑝𝑝 ∈ 𝒳𝒳𝑒𝑒𝑝𝑝 , where 𝒳𝒳𝑒𝑒𝑝𝑝  is the set of equilibrium points, 

ℒ�𝒙𝒙𝑒𝑒𝑝𝑝� = 0 and ℒ(𝒙𝒙) > 0 if 𝒙𝒙 ∉ 𝒳𝒳𝑒𝑒𝑝𝑝; 
iii) Along forward trajectories, ℒ satisfies 

 
Δℒ(𝒙𝒙[𝑘𝑘]) ≔ ℒ�𝑓𝑓(𝒙𝒙[𝑘𝑘])� − ℒ(𝒙𝒙[𝑘𝑘]) ≤ 0, 𝑘𝑘 = 0,1,2, … 

 
Theorem 1 ([40]). Let ℒ(𝒙𝒙) be a candidate Lyapunov 

function for the discrete-time nonlinear system 𝒙𝒙[𝑘𝑘 + 1] =
𝑓𝑓(𝒙𝒙[𝑘𝑘]). Then, any bounded trajectory tends to the largest 
invariant subset ℳ contained in the set of points defined by 
Δℒ(𝒙𝒙) = 0. 
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B. Capacitated Load Balancing Algorithm and Convergence 
Proof 

For each commodity 𝑖𝑖 ∈ ℐ, the control action consists in the 
decision, at time 𝑘𝑘, of migrating part of the flow mapped onto 
a given provider 𝑝𝑝 to another provider 𝑞𝑞, with 𝑝𝑝, 𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖. By 
denoting the rate of such migration with 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘], the system 
dynamics is written as 

 
𝒙𝒙[𝑘𝑘 + 1] = 𝑓𝑓(𝒙𝒙[𝑘𝑘]), 𝑘𝑘 = 0,1,2, …  (7) 

 
with  
 
𝑥𝑥𝑝𝑝[𝑘𝑘] = ∑ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑖𝑖∈ℐ , (8) 
 
𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1] = 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] + 𝜏𝜏 ∑ �𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]�𝑝𝑝∈𝒫𝒫𝑖𝑖 , (9) 
 
and with feasible initial conditions 
 
𝒙𝒙[0] ∈ 𝒳𝒳𝐶𝐶𝐶𝐶. (10) 
 
for all 𝑝𝑝, 𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖 and 𝑖𝑖 ∈ ℐ 

The proposed controller builds on the dynamic algorithm in 
[38], which expresses the migration rate as 
 
𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] = 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝜎𝜎𝑖𝑖𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘], (11) 
 
where 𝜎𝜎𝑖𝑖 is a positive migration gain and 𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] is the 
migration policy, representing the decision of whether (if it is 
positive) or not (if it is equal to zero) migrate some flow from 
provider 𝑝𝑝 to provider 𝑞𝑞. 

As in [38] for the Wardrop equilibria, approximated 
Beckmann user equilibria are defined. 

 
Definition 3. The set of 𝜀𝜀-Beckmann user equilibria is 

defined as 
 
𝒳𝒳𝑒𝑒𝑝𝑝

ε = �𝒙𝒙 ∈ 𝒳𝒳𝐶𝐶𝐶𝐶|𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 � ≤ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 � + 𝜀𝜀,∀𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖  s. t.  𝑥𝑥𝑝𝑝𝑖𝑖 >

0,∀𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖  s. t. 𝑥𝑥𝑝𝑝 ≤ 𝑐𝑐𝑝𝑝 −
𝜀𝜀
2𝛽𝛽�

,∀𝑖𝑖 ∈ ℐ�. (12) 
 
where 𝜀𝜀 ≥ 0 represents a maximum tolerated latency mismatch. 
 

Remark 1. The defined sets are such that 𝒳𝒳𝑒𝑒𝑝𝑝
𝜀𝜀

𝜀𝜀→0
�⎯� 𝒳𝒳𝑒𝑒𝑝𝑝  and 

𝒳𝒳𝑒𝑒𝑝𝑝 ⊆ 𝒳𝒳𝑒𝑒𝑝𝑝
𝜀𝜀 ⊆ 𝒳𝒳𝐶𝐶𝐶𝐶: the objective of the controller is then, 

starting from a physically admissible state in 𝒳𝒳𝐶𝐶𝐶𝐶 , to reach an 
approximated equilibrium state in 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀 , whose degree of 
approximation with respect to the equilibrium state in 𝒳𝒳𝑒𝑒𝑝𝑝  
reduces with 𝜀𝜀. 

 
The tolerance 𝜀𝜀 is introduced since the kind of migration rates 

of equation (11) cannot guarantee convergence in the discrete-
time case, however small the sampling period [36]. A flow 𝒙𝒙 ∈
𝒳𝒳𝐶𝐶𝐶𝐶  is then at 𝜀𝜀-Beckman equilibrium if, for each commodity 
𝑖𝑖, the latencies of the loaded and 𝜀𝜀-unconstrained providers are 

equalized, where we define a provider 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖 to be 𝜀𝜀-
unconstrained if 𝑥𝑥𝑝𝑝 < 𝑐𝑐𝑝𝑝 −

𝜀𝜀
2𝛽𝛽�

. 

In the proposed algorithm, the migration decision is defined 
as 
 
𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] =

�
0, if 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]� − 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]� ≤ 𝜀𝜀 or if 𝑥𝑥𝑝𝑝[𝑘𝑘] ≥ 𝑐𝑐𝑝𝑝 −

𝜀𝜀
2𝛽𝛽�

1,    otherwise                                                                   
. (13) 

 
The controlled system dynamics, hereafter denoted as load-
balancing (20) dynamics, is then expressed by equations (9), 
(11), (13), with control gains set as 
 
𝜎𝜎𝑖𝑖 = 𝜀𝜀

2𝜏𝜏𝛽𝛽�𝜆𝜆𝑖𝑖��𝒫𝒫𝑖𝑖�−1�|ℐ|
, (14) 

 
and with the tolerance set as 
 
0 < 𝜀𝜀 ≤ min

𝑖𝑖∈ℐ
�̅�𝛽𝜆𝜆𝑖𝑖|ℐ|. (15) 

 
Remark 2. The approximated capacity-constrained user 

equilibria are such that, for each commodity, the latencies of the 
loaded and 𝜀𝜀-unconstrained providers are equalized within the 
tolerance 𝜀𝜀. Then, for a given equilibrium flow 𝒙𝒙 ∈ 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀  and for 
each commodity 𝑖𝑖 ∈ ℐ, three classes of providers exist: the 
unloaded providers 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖 such that 𝑥𝑥𝑝𝑝𝑖𝑖 = 0; the 𝜀𝜀-constrained 
providers 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖  such that 𝑥𝑥𝑝𝑝 > 𝑐𝑐𝑝𝑝 −

𝜀𝜀
2𝛽𝛽�

; the 𝜀𝜀-unconstrained 

providers, whose latencies are equalized. 
The convergence property of the algorithm relies on the 

following 3 lemmata. 
 

Lemma 1. Under Assumption 1, considering the LB 
dynamics, the latency variation of a provider 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖 in one 
time-step is bounded by 

 
�𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1]� − 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]�� ≤ 𝜀𝜀

2|ℐ|
. (16) 

 
Proof: See Appendix A. 
 
Lemma 2. 𝒳𝒳𝐶𝐶𝐶𝐶  is a positively invariant set for the LB 

dynamics. 
 
Proof: See Appendix A. 
 
Lemma 3. The function  
 

ℒ(𝒙𝒙) ≔ Φ(𝒙𝒙) −Φ𝑚𝑚𝑖𝑖𝑚𝑚, 
 

where Φ𝑚𝑚𝑖𝑖𝑚𝑚 is the minimum value of Φ(𝒙𝒙) for all the 
minimizers of the CP, is a candidate Lyapunov function for the 
LB dynamics. 

 
Proof: See Appendix A.  
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Figure 2 Load balancing graph 

Finally, the following theorem proves the convergence 
towards an approximated Beckmann user equilibrium. 

 
Theorem 2. The trajectories of the LB dynamics 

asymptotically tend to the set of equilibria 𝒳𝒳𝑒𝑒𝑝𝑝
𝜀𝜀 . 

 
Proof: See Appendix A.  

C. 5G Traffic steering as a dynamic load-balancing problem 
In the dynamic multi-connectivity framework of 5G 

networks [5], each UE selects the serving APs for its QoS-
Flows. The network resources (capacity) are hence provided by 
the APs, and their efficient usage guides the design of traffic 
steering controllers. As introduced, in 5G systems, the dynamic 
management of such resources becomes of crucial importance 
in network slicing scenarios [18]. 

In order to model a multi-connectivity scenario in a network 
slicing environment as a dynamical network of the form (7-10),  
we regard the AP 𝑝𝑝 as a provider in the set of providers 𝒫𝒫, the 
QoS-Flow associated with a UE as a commodity 𝑖𝑖 in the set of 
commodities ℐ and we associate to the state variable 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] the 
amount of bitrate of the commodity 𝑖𝑖 that is provided by the AP 
𝑝𝑝 at time 𝑘𝑘. The bitrate demand of the commodity 𝑖𝑖 is then 𝜆𝜆𝑖𝑖 , 
which can be assumed, for limited time windows, to be 
constant. 

In the following, we will consider a network slicing scenario 
in which the network operator dedicated a certain amount of 
bitrate 𝑐𝑐𝑝𝑝 on each AP 𝑝𝑝 to the controlled slice. 

Regarding the latency functions, a natural choice is 
associating a different latency function 𝑙𝑙𝑝𝑝𝑖𝑖  to the radio 
connection between the UE of commodity 𝑖𝑖 and the AP 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖. 
This choice allows to capture quantities related to the specific 
connection performance, such as the resource blocks [42] 
usage, the power consumption of the single commodity 𝑖𝑖 or its 
QoS degradation, but in turn implies that each commodity 𝑖𝑖 is 
subject to a different latency from provider 𝑝𝑝, that may even 
depend only on 𝑥𝑥𝑝𝑝𝑖𝑖 . We mention that, in this kind of scenarios, 
in general the network admits various equilibria characterised 
by different costs (latencies) [43]. Nevertheless, in the proposed  

 
Figure 3 Network scenario 

framework depicted in Figure 2, the considered network is 
characterised by parallel arcs [43], implying that its equilibrium 
cost Φ𝑚𝑚𝑖𝑖𝑚𝑚  is unique. In fact, with simple manipulations, the 
scenario of Figure 2 can be shown to be equivalent to a network 
in which the latencies are associated to the depicted radio links, 
each of which can only be used by a single commodity. The 
scenario is then equivalent to a standard adversarial routing 
scenario with an unique equilibrium cost. 

Regarding the mapping of the proposed control law onto the 
standard 5G architecture, we mention that Access Traffic 
Steering, Switching and Splitting (ATSSS) [44] decision rules 
for multi-connectivity are typically produced by a software 
module of the 5G core network, the PCF (Policy Control 
Function). The PFC configures the UEs and the UPF (User 
Plane Function, an entity directly connected to the gNodeBs of 
the RAN) to handle traffic steering based on local 
measurements, respectively for the uplink and downlink phase. 
Such ATSSS rules may define the set of APs 𝒫𝒫𝑖𝑖 available to the 
user 𝑖𝑖, depending on its contract with the provider, their priority, 
and in general may define a control law to guide the steering of 
the QoS flows that constitute the considered PDU (Protocol 
Data Unit) session. The dynamic traffic steering functionalities 
[5] are taken at RAN level, as depicted in Figure 1, and so the 
proposed algorithm is designed to be deployed either in the 
distributed units (DU) of the gNodeBs that constitute the 
controlled RAN or in the UEs. The rules provided by the PCF 
can be included in the control logic by properly weighting or 
forbid the various AP connections. 

IV. NUMERICAL SIMULATION 
This section reports the simulation setup and results in 

sections IV.A and IV.B, respectively. 

A. Simulation Setup 
For the validation of the proposed algorithm, in the scope of 

the 5G-ALLSTAR project, we developed an open-source 
network simulator available in [1], able to model different AP 
technologies, connection protocols and interference models in 
a multi-connectivity scenario. We consider the network 
depicted in Figure 3, consisting of a 4 × 4 𝐾𝐾𝐾𝐾 area covered by 
a macro cell (provider BS1), a satellite (provider BS0) and six 
micro cells (BS2-BS7).  
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Table 1: Characteristics of micro and macro cells  

Operating band 
N° 

Carrier frequency  
(GHz) 

Bandwidth 
(MHz) 

𝒏𝒏𝒏𝒏𝒏𝒏 0.8 20 
𝒏𝒏𝒏𝒏𝒏𝒏 1.9 40 
𝒏𝒏𝒏𝒏𝒏𝒏 1.7 40 
𝒏𝒏𝒏𝒏𝒏𝒏 2 25 

 

A total of 20 UEs/commodities (grey dots in Figure 3) were 
randomly distributed in the area, each requiring a constant load 
𝜆𝜆𝑖𝑖 = 50 𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀. The implemented interference model is taken 
from [45] and the frequency characteristics of the terrestrial 
APs are summarised in Table 1 [46], [47].  

Regarding the satellite AP, we considered a Time Division 
Multiplexing (TDM) as in the example 6.6.2 of [48]. The 
satellite parameters are adapted in order to have at least 1bit per 
symbol with typical SNR values [49], [50]. According to the 
TDM frame structure used, it is possible to allocate only blocks 
of 64 symbols (1 𝜇𝜇𝑀𝑀). Moreover, each allocation must consider 
a header made of 288 symbols and a spacing between 
allocations of 64 symbols. Additional implementation details 
and updates can be found in [1]. 

We considered as latency functions 𝑙𝑙𝑝𝑝𝑖𝑖  the number of resource 
blocks utilised by the commodity 𝑖𝑖 on the access point 𝑝𝑝. This 
particular choice will drive the network towards a state in which 
each connection equalises the resource block usage over its 
available unsaturated APs 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖. 

Assuming a stationary UE 𝑖𝑖 (i.e., with constant path loss with 
all the access points 𝑝𝑝) and no interference, the amount of 
bitrate provided by a resource block on a given access point 𝑝𝑝 
is fixed. This implies that, in ideal conditions, 𝑙𝑙𝑝𝑝𝑖𝑖  is almost 
linear, with a slope that depends on the utilised frequency 
bands, in line with Assumption 1. Note that several different 
choices could be made for the latency function, spacing from 
quantities that capture connection reliability, to transmission 
delay and user satisfaction, as the only requirements that such 
functions must satisfy are represented by Assumption 1, which 
open the possibility of considering a large family of functions 
(e.g., including polynomial or exponential ones). We mention 
that in non-ideal cases, the value of �̅�𝛽 in (14) may need to be 
estimated by observing the growth of the selected latency 
functions during different network operative conditions. 

To allow a fair comparison with the terrestrial AP resource 
blocks, the assumptions made for the satellite imply that its 
latency function is equal to the number of its allocated symbols 
divided by 64. Additionally, each AP was associated to a 
multiplicative scaling factor for their latency functions to model 
different operating costs. In particular, the satellite was given 
the highest factor (0.5), the macro cell was given a medium 
value (0.2) and the lowest weight was associated to micro cells 
(0.1). Regarding the capacitated nature of the considered 
network, we assume that the network operator dedicated to the 
controlled slice 200 𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀 on all micro cells, save for BS4 that 
was capacitated at 55 𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀.  

Concerning the parameters of the controller, the choice of 
latency functions leads to an experimentally determined value 

�̅�𝛽 = 2.44 , the latency tolerance is selected as 𝜀𝜀 = 0.5  and the  

 
Figure 4: Maximum latency mismatch during the simulation (dotted 

line: tollerance 𝜀𝜀). 

 
Figure 5 Network state in terms of total bitrate allocated on the 

various APs (solid lines: unconstrained providers, dashed line: 
constrained provider). 

 

 
Figure 6: Commodity latency examples during the simulation 

(solid lines: unconstrained providers used by the commodity; dashed 
line: constrained providers; zoomed sub-plots to show the 

convergence within the tolerance 𝜀𝜀 = 0.5). 

sampling time as 𝜏𝜏 = 10−3𝑀𝑀. The resulting values for 𝜎𝜎𝑖𝑖 are in 
the range [0.02,0.05]. 

B. Simulation Results 
Simulation runs were initialized by distributing uniformly 

the load of the commodities over �𝒫𝒫𝑖𝑖� − 1 of their available 
APs, selected randomly. 

The reported simulations showed a convergence time to an 
𝜀𝜀-Beckmann equilibrium in the order of 30𝑀𝑀, averaged over 25 
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runs. It is worth remarking that such convergence time is not 
related to the 5G QoS requirements, as it is assumed that the 
various access points are able to provide the proper QoS level 
(e.g., connection latency, average BER, reliability level,…) if 
their capacities are not violated.  

 
Figure 7 Comparison for the three considered algorithms of the 

latencies over APs for commodity 𝑖𝑖 = 20. 

Figure 4 shows, for an example run, how the maximum 
latency mismatch over all the commodities, defined as 

 

𝑒𝑒[𝑘𝑘] = max
𝑖𝑖∈ℐ

� max
𝑝𝑝∈𝒫𝒫𝑖𝑖|𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]>0

𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]� − min
𝑝𝑝∈𝒫𝒫𝑖𝑖|𝑥𝑥𝑞𝑞[𝑘𝑘]<𝑐𝑐𝑞𝑞−

𝜀𝜀
2𝛽𝛽�

𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]��, 

 
decreases with time and, even if the initial conditions are quite 
unbalanced, with 𝑒𝑒[𝑘𝑘] > 40, after 30𝑀𝑀 𝑒𝑒[𝑘𝑘] is already below 
the threshold 𝜀𝜀. 

For the example run, Figure 6 reports the evolution of the 
latencies that characterise the commodities 4 and 8, for all of 
their available APs. The upper plot shows that the latencies of 
the APs available to QoS-Flow 8 converge to a common value, 
as expected, within the threshold 𝜀𝜀; in particular, we can notice 
how the commodity rapidly starts using the (initially unused) 
micro cell BS7 and rapidly discharges the satellite. The lower 
plot of Figure 6 shows the latencies of the QoS-Flow 4 and 
highlights that the latency of micro-cell BS4 does not converge 
to the latencies of the other used APs: the reason is that the AP 
becomes 𝜀𝜀-saturated after about 3𝑀𝑀 (see Figure 5) – thus, by 
definition, the population of QoS-Flow 4 still converges to an 
𝜀𝜀-Beckmann equilibrium. Note that the latency associated to 
BS4 starts higher than its final value, as the commodity 
migrates towards BS5, but remains the lowest latency for the 
commodity 4 from 10𝑀𝑀 onwards, as the other QoS flows already 
𝜀𝜀-saturated BS4 (i.e., no bitrate can be migrated to it). 

Finally, Figure 5 shows the population dynamics over the 
APs, highlighting how the macro cell is the most utilised AP, 
while all the micro cells allocate a similar amount of bitrate. 
The satellite, whose latency was the most penalised as it is the 
most costly connection technology, is rapidly discharged.  

For the sake of comparison, in Figure 7 we benchmark the 
proposed controller against two classic examples of load 
balancing solutions in heterogeneous networks. The figure 
reports the latency functions values experienced by the 

commodity 𝑖𝑖 = 20 over the eight APs in the set 𝒫𝒫20. The choice 
of the commodity 20 was related to the fact that it is one of the 
closest to the centre of the considered area, as depicted in Figure 
3, and can hence be served by any AP. The first benchmarking 
algorithm (“uniform”) uniformly distributes the bitrate demand 
over the various available and unsaturated APs. Due to the 
capacitated nature of the network, we assume that this 
controller distributes the load of the commodities according to 
their index 𝑖𝑖, so that the traffic of commodity 𝑖𝑖 = 1 is the first 
one to be allocated while the one of commodity 𝑖𝑖 = 20 is the 
last. 

The second algorithm (“weighted”) distributes the bitrate 
considering the scaling factors associated to the latencies of the 
APs (0.5 for the satellite, 0.2 for the macro cell and 0.1 for 
micro cells), so that for every unit of traffic allocated on the 
satellite 5 are allocated on the micro cells and 2.5 on the macro 
cell.  

From the analysis of the figure, one can note that the 
proposed controller – in the figure, the values are the ones 
achieved after convergence (~30s) – successfully equalises the 
latencies up to the threshold 𝜀𝜀 = 0.5. On the contrary, the other 
two controllers fail to allocate any bitrate on BS4, as it was 
already saturated by the other commodities that were 
prioritised. The uniform distribution causes the first controller 
to experience a very high latency on the satellite (BS0), while 
the distance and consequent low signal-to-noise-ratio causes the 
weighted controller to allocate too much bitrate on BS5 (this 
behaviour is further amplified by the fact that BS5 is a micro 
cell associated to a scaling factor of 0.1), requiring a significant 
amount of resource blocks.  

Overall, we can conclude that the proposed controller better 
balances the usage of network resources because it is a 
feedback-based solution that steers the traffic flow based on 
online measurements of the latency functions. The main 
limitation of the proposed approach is related to the availability 
of the measurements needed to compute the steering decisions 
(i.e., the latency values in terms of assigned resource blocks), 
whose impact on the control traffic overhead is to be evaluated 
considering the control traffic already necessary for the 
different access technologies, and the estimation of �̅�𝛽 which, 
however, can be performed starting from the channel models 
and the expected traffic that the network is designed to support. 
Regarding the complexity of the algorithm, the computation 
overhead is negligible since the control law (11) only involves 
basic operations (summations, multiplications and comparison 
between real numbers) that remain limited in number even for 
RANs with a high number of APs. 

To conclude, we mention that the two benchmarking 
algorithms discussed above could be used to initialise the 
network resource allocation, speeding up the convergence time. 

V. CONCLUSIONS 
This paper develops a distributed, non-cooperative and 

dynamic load balancing algorithm in the framework of 
adversarial selfish routing with link capacities. Each provider is 
associated to a latency function which represents its 
performance as a function of the provider’s load. By using 
Lyapunov arguments, the proposed algorithm is proved to 
converge to an approximate Beckmann user equilibrium, in 

18

3

5

6

0

11

5 4

6.
69

1.
80

6.
80 8.

40

0

17
.6

0

7.
00

5.
507.

19

7.
00 7.
40

7.
40

7.
00 7 7 7

0

5

10

15

20

BS0 BS1 BS2 BS3 BS4 BS5 BS6 BS7

Uniform Weighted Proposed Controller



9 
 

 

which the latencies of the non-saturated providers are equalized 
up to a tolerated latency mismatch. 

The algorithm is then applied to the problem of multi-
connectivity, one of the key features of 5G networks, which 
enables the user equipment to simultaneously transmit/receive 
traffic flows over different access networks, with the aim of 
increasing the transmission rate and/or to improve the 
transmission reliability. In multi-connectivity, the traffic 
steering functionality is in charge of distributing the traffic load 
of each flow over the different access network. This paper 
models the traffic steering problem as a capacitated load-
balancing problem by associating a latency function to each 
access point/user equipment radio link. The problem is then 
solved by means of the developed algorithm. An open-source 
simulation environment was proposed, and some numerical 
simulation results validate the approach. 

Beside the modelling of the 5G Multi-connectivity problem 
as a dynamic load-balancing one, this paper presents, up to the 
authors’ knowledge, the first multi-commodity, dynamic and 
adversarial load-balancing algorithm which explicitly considers 
capacitated providers. 

Future work is aimed i) at introducing latency constraints in 
the problem formulation in order to model more Quality-of-
Service constraints of the 5G services and ii) at considering 
time-varying loads. 
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APPENDIX A 
Proof of Lemma 1: Considering the generic commodity 𝑖𝑖 ∈

ℐ, provider 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖 and time 𝑘𝑘, the maximum latency decrease 
occurs when no commodities migrate their populations from the 
other providers to provider 𝑝𝑝: 

 
𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1]�  
= 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] + 𝜏𝜏 ∑ �𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]�𝑝𝑝∈𝒫𝒫𝑖𝑖 �  
≥ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝜏𝜏∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 �. (17) 
 

Since 𝛽𝛽𝑝𝑝𝑖𝑖  is the Lipschitz constant of the function 𝑙𝑙𝑝𝑝𝑖𝑖 (⋅) 
between 0 and 𝑐𝑐𝑝𝑝, it follows that 

 
𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1]� ≥ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]� − 𝜏𝜏𝛽𝛽𝑝𝑝𝑖𝑖 ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫i . (18) 

 
Considering equations (11) and (14), the last term of equation 

(18) is written as 
 

𝜏𝜏𝛽𝛽𝑝𝑝𝑖𝑖 ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 =  
= 𝜏𝜏𝛽𝛽𝑝𝑝𝑖𝑖 ∑ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝜎𝜎𝑖𝑖𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 =  

= 𝜏𝜏𝛽𝛽𝑝𝑝𝑖𝑖 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝜎𝜎𝑖𝑖 ∑ 𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 =  
= 𝜏𝜏𝛽𝛽𝑝𝑝𝑖𝑖 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] 𝜀𝜀

2𝜏𝜏𝛽𝛽�𝜆𝜆𝑖𝑖��𝒫𝒫𝑖𝑖�−1�|ℐ|
∑ 𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 =  

≤ 𝜀𝜀
2|ℐ|

, (19) 
 

where the inequality holds since 𝑥𝑥𝑝𝑝
𝑗𝑗[𝑘𝑘] ≤ 𝜆𝜆𝑖𝑖 , 𝛽𝛽𝑝𝑝𝑖𝑖 ≤ �̅�𝛽 and since, 

recalling equation (13), there are at most ��𝒫𝒫𝑗𝑗� − 1� terms 
equal to 1 in ∑ 𝜇𝜇𝑝𝑝𝑝𝑝

𝑗𝑗 [𝑘𝑘]𝑝𝑝∈𝒫𝒫 . It follows that 
 
𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1]� ≥ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]� − 𝜀𝜀

2|ℐ|
. (20) 

 
Similarly, the maximum latency increase occurs when no 

commodities migrate their populations from provider 𝑝𝑝 to other 
providers: 

 
𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1]� ≤ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]� + 𝜏𝜏𝛽𝛽𝑝𝑝𝑖𝑖 ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 , (21) 
 
which yields 
 
𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1]� ≤ 𝑙𝑙𝑝𝑝𝑖𝑖 �𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]� + ε

2|ℐ|
. (22) 

 ∎ 
 
Proof of Lemma 2: We need to show that, for all 𝑘𝑘 ≥ 0, for 

all 𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖 and for all 𝑖𝑖 ∈ ℐ, i) ∑ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 = 𝜆𝜆𝑖𝑖 , ii) 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] ≥ 0, 
iii) 𝑥𝑥𝑝𝑝[𝑘𝑘] ≤ 𝑐𝑐𝑝𝑝. 

Considering that 𝑥𝑥[0] ∈ 𝒳𝒳𝐶𝐶𝐶𝐶, equations (9), (11) and (8) 
yield that the population remains constant, since 
 
𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1] − 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] =  ∑ ∑ �𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]�𝑝𝑝∈𝒫𝒫𝑖𝑖𝑝𝑝∈𝒫𝒫𝑖𝑖 =  
=  ∑ ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖𝑝𝑝∈𝒫𝒫𝑖𝑖 − ∑ ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖𝑝𝑝∈𝒫𝒫𝑖𝑖 = 0, (23) 

 
and thus that ∑ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 = ∑ 𝑥𝑥𝑝𝑝𝑖𝑖 [0]𝑝𝑝∈𝒫𝒫𝑖𝑖 = 𝜆𝜆𝑖𝑖 ,∀𝑘𝑘 ≥ 0. 

i) Given that 𝑥𝑥𝑝𝑝𝑖𝑖 [0] ≥ 0, it is proven below by induction that 
𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] ≥ 0,∀𝑘𝑘 ≥ 0. Assuming that 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] ≥ 0, for a given 
𝑘𝑘, it is sufficient to prove that  

 
𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1] = 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] + 𝜏𝜏 ∑ �𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]�𝑝𝑝∈𝒫𝒫𝑖𝑖 ≥ 0,∀𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖.
 (24) 

 
If 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] = 0, it follows that 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] = 0 and thus equation 
(24) yields 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1] ≥ 0. 
If 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] > 0, from equation (11) it follows that 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] ≥
0. Thus, the following inequality holds (in the worst case, 
no providers migrate part of their population to a provider 
𝑝𝑝): 

 
𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘 + 1] ≥ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝜏𝜏∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 . (25) 

 
A sufficient condition for inequality (24) to hold is then 

 
𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝜏𝜏∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 ≥ 0. (26) 
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Recalling equations (11) and (13), eq. (26) is written as 
 

𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝜏𝜏∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 = 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝜏𝜏∑ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]𝜎𝜎𝑖𝑖𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 =    
= 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘]�1 − 𝜏𝜏𝜎𝜎𝑖𝑖 ∑ 𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖 �  

≥ 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] �1 − 𝜏𝜏𝜎𝜎𝑖𝑖��𝒫𝒫𝑖𝑖� − 1��, (27) 
 

where the inequality holds since the summation has at 
most ��𝒫𝒫𝑖𝑖� − 1� terms equal to 1. In the case 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] > 0, 
equations (14) and (15) are sufficient for equation (27) to 
be non-negative; 

ii) Given that 𝑥𝑥𝑝𝑝[0] ≤ 𝑐𝑐𝑝𝑝, it is proven below by induction 
that 𝑥𝑥𝑝𝑝[𝑘𝑘] ≤ 𝑐𝑐𝑝𝑝,∀𝑘𝑘 ≥ 0. Assuming that 𝑥𝑥𝑝𝑝[𝑘𝑘] ≤ 𝑐𝑐𝑝𝑝, for a 
given 𝑘𝑘, it is sufficient to prove that  

 
𝑥𝑥𝑝𝑝[𝑘𝑘 + 1] = 𝑥𝑥𝑝𝑝[𝑘𝑘] + 𝜏𝜏 ∑ ∑ �𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] − 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]�𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖∈ℐ ≤
𝑐𝑐𝑝𝑝,∀𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖. (28) 

 
If 𝑥𝑥𝑝𝑝[𝑘𝑘] ≥ 𝑐𝑐𝑝𝑝 −

𝜀𝜀
2𝛽𝛽�

 equation (13) entails that 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] = 0 

for all 𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖  and 𝑖𝑖 ∈ ℐ and, thus, from equation (9), that 
𝑥𝑥𝑝𝑝[𝑘𝑘 + 1] ≤ 𝑥𝑥𝑝𝑝[𝑘𝑘]. 
Otherwise, if 𝑥𝑥𝑝𝑝[𝑘𝑘] < 𝑐𝑐𝑝𝑝 −

𝜀𝜀
2𝛽𝛽�

, we consider that 
 

𝑥𝑥𝑝𝑝[𝑘𝑘 + 1] ≤ 𝑥𝑥𝑝𝑝[𝑘𝑘] + 𝜏𝜏 ∑ ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖∈ℐ =   
= 𝑥𝑥𝑝𝑝[𝑘𝑘] + 𝜏𝜏 ∑ 𝑥𝑥𝑖𝑖[𝑘𝑘]𝜎𝜎𝑖𝑖 ∑ 𝜇𝜇𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖∈ℐ =  
≤ 𝑥𝑥𝑝𝑝[𝑘𝑘] + ∑ 𝜀𝜀

2𝛽𝛽�|ℐ|𝑖𝑖∈ℐ = 𝑥𝑥𝑝𝑝[𝑘𝑘] + 𝜀𝜀
2𝛽𝛽�

 (29) 
 ■ 
 

Proof of Lemma 3: For the definition of Φ𝑚𝑚𝑖𝑖𝑚𝑚, the function 
ℒ(𝒙𝒙) is positive definite in 𝒳𝒳𝐶𝐶𝐶𝐶 . 

Let Δℒ(𝒙𝒙[𝑘𝑘]) denote the difference of the Lyapunov function 
ℒ(𝒙𝒙) along the solutions of the controlled system: 
 
Δℒ(𝒙𝒙[𝑘𝑘]) = ℒ(𝒙𝒙[𝑘𝑘 + 1]) − ℒ(𝒙𝒙[𝑘𝑘])  
= ∑ ∫ 𝑙𝑙𝑝𝑝(𝜉𝜉)𝑑𝑑𝜉𝜉𝑥𝑥𝑝𝑝[𝑘𝑘+1]

𝑥𝑥𝑝𝑝[𝑘𝑘]𝑝𝑝∈𝒫𝒫   

≤ ∑ �𝑥𝑥𝑝𝑝[𝑘𝑘 + 1] − 𝑥𝑥𝑝𝑝[𝑘𝑘]�𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]�𝑝𝑝∈𝒫𝒫   
= 𝜏𝜏 ∑ ∑ �∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫 − ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘]𝑝𝑝∈𝒫𝒫 �𝑖𝑖∈ℐ 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]�𝑝𝑝∈𝒫𝒫   
= 𝜏𝜏 ∑ ∑ ∑ 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] �𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]� − 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]��𝑝𝑝∈𝒫𝒫𝑝𝑝∈𝒫𝒫𝑖𝑖∈ℐ . (30) 
 
where the inequality holds from geometric considerations: If 
𝑥𝑥𝑝𝑝[𝑘𝑘 + 1] > 𝑥𝑥𝑝𝑝[𝑘𝑘], recalling that the 𝑙𝑙𝑝𝑝’s are nondecreasing 

functions, the definite integral ∫ 𝑙𝑙𝑝𝑝(𝜉𝜉)𝑑𝑑𝜉𝜉𝑥𝑥𝑝𝑝[𝑘𝑘+1]
𝑥𝑥𝑝𝑝[𝑘𝑘]  is smaller than 

the quantity �𝑥𝑥𝑝𝑝[𝑘𝑘 + 1] − 𝑥𝑥𝑝𝑝[𝑘𝑘]�𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]�; conversely, if 

𝑥𝑥𝑝𝑝[𝑘𝑘 + 1] < 𝑥𝑥𝑝𝑝[𝑘𝑘], the integral ∫ 𝑙𝑙𝑝𝑝(𝜉𝜉)𝑑𝑑𝜉𝜉𝑥𝑥𝑝𝑝[𝑘𝑘]
𝑥𝑥𝑝𝑝[𝑘𝑘+1]  is larger than 

the quantity �𝑥𝑥𝑝𝑝[𝑘𝑘] − 𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]�𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]�. 
Analysing each term of the inner summation, two cases hold: 

if 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 (𝑡𝑡) = 0 the term is null, otherwise, if 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 (𝑡𝑡) > 0, the term 
is negative. In fact, it is shown below that, if 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] > 0, it holds 
that 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]� − 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]� > 0. 

Lemma 1 states that 

 
𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]� − 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘 + 1]�  
≥ �𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]� − ε

2
� − �𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]� + ε

2
�  

= 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]� − 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]� − ε > 0, (31) 
 

where the inequality holds since a necessary condition for 
𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] > 0 is that 𝑙𝑙𝑝𝑝(𝑥𝑥𝑝𝑝[𝑘𝑘]) − 𝑙𝑙𝑝𝑝(𝑥𝑥𝑝𝑝[𝑘𝑘]) > 𝜀𝜀 (see equation 
(13)).  ■ 
 

Proof of Theorem 2: Given that Lemma 2 states that ℒ(𝒙𝒙) is 
a candidate Lyapunov function for the LB dynamics, the proof 
relies on the LaSalle invariance principle of Theorem 1, i.e., on 
showing that 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀  is the maximum invariant set where Δℒ = 0. 
Let 𝒙𝒙 ∈ 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀  and 𝒙𝒙[0] = 𝒙𝒙. By comparing definition (6) and 
equation (13), it holds that 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] = 0 for all 𝑝𝑝, 𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖 and 𝑖𝑖 ∈
ℐ, which entails i) that 𝒙𝒙[𝑘𝑘] = 𝒙𝒙[0] = 𝒙𝒙𝑒𝑒𝑝𝑝 ∈ 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀  for all 𝑘𝑘 > 0, 
i.e., that 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀  is a positively invariant set, and ii)  that 
Δℒ(𝒙𝒙[𝑘𝑘]) = 0 in 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀  (see equation (30)).  
To show that 𝒳𝒳𝑒𝑒𝑝𝑝

𝜀𝜀  is the maximum set where Δℒ(𝒙𝒙[𝑘𝑘]) = 0, 
it is proven below that Δℒ(𝒙𝒙[𝑘𝑘]) < 0 if 𝒙𝒙[𝑘𝑘] = 𝒙𝒙, with 𝒙𝒙 ∉
𝒳𝒳𝑒𝑒𝑝𝑝 . In fact, by definition (12), in this case there exist at least 
one pair of providers 𝑝𝑝, 𝑞𝑞 ∈ 𝒫𝒫𝑖𝑖 and a commodity 𝑖𝑖 ∈ ℐ such that 
𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]� − 𝑙𝑙𝑝𝑝�𝑥𝑥𝑝𝑝[𝑘𝑘]� > 𝜀𝜀, with 𝑥𝑥𝑝𝑝𝑖𝑖 [𝑘𝑘] > 0 and 𝑥𝑥𝑝𝑝[𝑘𝑘] < 𝑐𝑐𝑝𝑝 −
𝜀𝜀
2𝛽𝛽�

, which, in turn, yields 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] > 0 (see equations (11), (14) 

and (13)). Having established that 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖 [𝑘𝑘] > 0 with 
𝑙𝑙𝑝𝑝 �𝑥𝑥𝑝𝑝(𝑡𝑡)� − 𝑙𝑙𝑝𝑝 �𝑥𝑥𝑝𝑝(𝑡𝑡)� > 𝜀𝜀, it follows that the corresponding 
term of the inner summation of equation (30) is negative, which 
is a sufficient condition for Δℒ(𝒙𝒙[𝑘𝑘]) < 0 (recalling that, in the 
proof of Lemma 3, it is shown that the terms of equation (30) 
are non-positive).  

 ■ 
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