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Abstract: Bluetooth Low Energy or BLE is a technology 

targeting mostly small-scale IoT applications including wearables 

and broadcasting beacons that require devices to send small 

amounts of data using minimal power. This paper focuses on our 

implementation, which is a system, designed to filter RSSI 

(Received Signal Strength Indicator), calculate the co-ordinates 

of a BLE device that is programmed as a Beacon and display the 

coordinates. Since RSSI is susceptible to noise and a downgrade 

in its reliability is unavoidable, several filtration methods have 

been used. The ‘Kalman – Histogram’ method, which 

incorporates the usage of a histogram of the RSSI readings along 

with the Kalman filter, is our own approach to tackle issues 

regarding noisy RSSI readings. The localization of stationary 

‘Assets’, has been evaluated using the Trilateration algorithm: a 

result in mathematics which is used to locate a single point using 

its distance from three or more other points. The purpose of this 

research work is to provide a comparative result analysis of the 

results obtained using the aforementioned filters, indicating the 

effect of these filters on our localization system. As our research 

suggests, the ‘Kalman – Histogram’ filter performs better as 

compared to other filters and can be used in localization 

applications for better accuracy.   

Keywords: Bluetooth Low Energy (BLE), Raspberry Pi, 

Localization 

I. INTRODUCTION 

Since the advent of satellite navigation systems such as 

the Global Positioning System (GPS), Galileo and 

GLONASS, locating the whereabouts of an entity in an 

outdoor, large environment has become a trivial task. This is 

because most entities are within the Line of Sight of the 

satellites. However, this task becomes a bit complicated due 

to factors such as the high density of the population in urban 

areas, causing a rare Line of Sight. Furthermore, localization 

[13] [15] becomes even trickier when the entities are located 

indoors, where there is no Line of Sight. In such cases, the 

ideal solution is to implement an indoor localization system 

based on radio networks such as Wi-Fi, Zigbee, and BLE 

which is proposed in [14].  
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The location of assets is determined using different 

geometrical arrangements of transmitters and receivers, and 

mathematical algorithms such as Trilateration which is 

proposed in [5] [11]. In this paper, we will be dealing with 

BLE [1] [4]. BLE provides an option for less usage of energy 

during operation as compared to its counterparts such as 

Zigbee and Wi-Fi. As this is a low - energy protocol, the 

transmitters or „beacons‟ [9] can be powered by batteries 

continuously, for longer periods of time, ranging from months 

to years, even. Also, BLE is inexpensive and easier to 

implement as compared to Zigbee and Wi-Fi. Its ubiquitous 

nature makes it a much more general option. 

II. THEORITICAL FRAMEWORK  

A. Trilateration  

There are many techniques related to Localization 

techniques like Unilateration, Bilateration, Trilateration. The 

problem with Unilateration is it does not give exact 

coordinates in three-dimensional space. Bilateration will give 

two unique solutions in two-dimensional space, whereas in 

three-dimensional space it still does not give exact 

coordinates. Given three reference points (coordinates of 

Raspberry Pi‟s), with a known distance with each of these 

three nodes which we will calculate using RSSI, it is possible 

to determine the precise coordinates of the point at which the 

three spheres are intersecting. In our case the BLE tag is the 

point. This process is known as Trilateration. It is more 

computationally expensive than the other two techniques 

 
Figure 1: Trilateration 

B. RSSI 

Received Signal Strength Indicator (RSSI) is one of the 

most used characteristics for indoor localization. The main 

principle behind this measurement technique is it calculates 

the power present in a signal sent from an access point to a 

client device or the other way round.  
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As RF waves get attenuated due to the inverse square law, 

the distance can be approximated based on the relationship 

between transmitted and received signals strengths. This 

method will only work as long as no other errors are 

contributing to the incorrect measurements. The combination 

of this technique along with a propagation model can help to 

determine the distance between two devices. 

It can be assumed that as the number of devices increases, 

a greater amount of information can be collected. So, the 

accuracy could be increased if valid RSSI values are obtained. 

This has a negative impact on the system. An increase in the 

number of devices would increase the interference between 

different signals. The user should consider errors while 

estimating the distance between the two devices. Because in 

wireless localization systems the key challenge is the range 

measurements are often associated with errors. Although, 

RSSI technique is the cheapest and easiest method to 

implement, they do not provide the best accuracy. Filtering is 

necessary to get rid of noise and improve systems accuracy 

using RSSI based localization. 

C. Filtering Methods 

Average filtering: 

The moving average filter is a simple Low Pass FIR 

(Finite Impulse Response) filter commonly used for 

smoothing an array of sampled signals. It takes n samples of 

input at a time and takes the average of those n samples and 

produces a single output point. A moving average filter is 

represented by the following difference equation, 

Y(n)=  (x (n) + x (n-1) +…+ x (n – 

(windowSize-1)))                                                             (1) 

It is based on a rational transfer function defined by the 

numerator and denominator coefficients a and b respectively. 

Also, it considers the window size which specifies the number 

of samples that are to be used at a time. In MATLAB there is 

an inbuilt function to execute moving average of the input 

data, 

Avg Filter RSSI = Filter (b, a, RSSI1)      (2) 

where, b = (1/windowSize)*ones(1,windowSize) and it 

represents the numerator coefficients of the rational transfer 

function and a represents the denominator coefficients of the 

rational transfer function and is taken as 1 (mentioned in the 

MATLAB help section). The output of the moving average 

filter is the smoothened version of the input that is the raw 

RSSI data. 

Kalman filtering: 

The Kalman filter is nothing but a state estimator algorithm 

that makes an estimate of unobserved variables considering a 

noisy environment(measurements). It is simply a recursive 

algorithm that considers the history of measurements. In the 

present case, a Kalman filter is used to smooth out our raw 

RSSI data. 

Here, every step is a step from current state to the next 

state and the translation from a state to a measurement is 

assumed to be linear, i.e., it assumes linear models. The 

general equation of transition model is given by:  

           Xt=At*Xt-1 + Bt * μt + ∊t                            (3) 

Here, Xt represents the current state and is dependent on the 

previous state Xt-1 (given some transformation matrix A), a 

control input μ (that could be the movement of the beacon) 

and noise ∊. ∊ is the process noise caused by the system itself. 

In our application, we assume that the position and the time 

frame of the measurement is static. That means, we expect a 

constant RSSI value and everything else is noise. So, we 

modify the transitional model in such a way that we 

completely ignore μ and set A to an identity matrix. 

Thus, the equation becomes, 

            Xt ≈  Xt -1 + ∊t                                                 (4)     

The latter part of implementing the Kalman filter is 

defining the observation model, that is, what exact transition 

takes place between state X and the measurement Z. We 

model RSSI directly, i.e. our state and measurements are 

equal. This results in the following reduced measurement 

model: 

 

                               Zt = Ct * Xt + δt                          (5)         

Next comes the prediction/estimation step of the Kalman 

filter which is nothing but updating the filter. This step 

describes what we expect our state to be without using any 

measurements. As we have assumed our system to be static, 

therefore, 

                                 ͞µt  = µt-1                                  (6) 

Here, μ represents our prediction/estimation. The bar above 

μ denotes that we still must incorporate information from the 

measurement. The certainty of our prediction/estimation 

depends on the previous certainty of our prediction and the 

process noise. It is expressed as: 

                                  ∑t = ∑t-1 + ∊t                   (7) 

So, if we are uncertain about the previous measurement, 

we will not be sure about the next one. In our application, we 

have considered a low value of process noise (0.008) because 

we assume that all the noise is added during measurement. 

Now we compute the Kalman gain using the prediction 

estimate. We have used a simplified formula for our 

application. 

                                  Kt= t ( Σt * δt)
−1      

                    (8) 

The Kalman gain depends on the certainty of our estimate 

and the certainty of our measurement which is influenced by 

the measurement noise δ (variance of the RSSI signal). 

In the final update step, the final prediction of the system 

is computed. This is given by, 

                     μt= t + Kt(zt− t)                         (9) 

                      Σt = t - (Kt* t)                         (10) 

In MATLAB, there is a dedicated toolbox to execute the 

whole process, called “dsp.Kalmanfilter”. The input 

parameters are: 

1) ProcessNoiseCovariance 

2) MeasurementNoiseCovariance 

3) InitialStateEstimate 

4) InitialErrorCovarianceEstimate 

5) ControlInputPort 

Kalman filter using mode estimation: 

We can eliminate the uncertainty of our estimate by simply 

taking the mode of our raw RSSI data.  
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This will consider the maximum occurrences of a particular 

RSSI value. Thus, we will not be uncertain about the next 

state. Thus, the InitialStateEstimate parameter will be equal to 

the mode of RSSI value. 

Kalman filter using Histogram approximation: 

One drawback of the mode estimation is that, for a distance, 

the mode value is different for every iteration as it depends on 

the raw RSSI data which is unstable and full of undesired 

values. Also, the mode value can vary from the desired range. 

For example, if the desired range of RSSI values at 1 meter is 

from -57 dB to -51 dB and the number of values in this range 

are 210 but the number of occurrences of -43 dB are 90 times 

which can be more the occurrences of individual values in the 

desired range and this can cause significant errors. To 

eliminate that, we have used the Histogram approximation 

method. Here we consider an entire range of values where the 

range has a maximum number of occurrences. The redundant 

data is dropped out, i.e. the RSSI values out of the range. 

While extracting the values from a range, we usually get the 

mean of the extreme values and not the whole range. To tackle 

this problem, we have considered the values between (mean 

of the range – n) and (mean of the range + n) where n is the 

factor that helps to capture the whole range. The factor n 

depends on the amount of data you are using. This method 

reduces the difference between the maximum and the 

minimum RSSI value. Then the Kalman filter is applied over 

this range to get a smoother output. 

D. Literature Survey: 

The development of Real-Time Locating Systems (RTLS) 

has become an important add-on to many existing localization 

systems. While GPS has solved most of the outdoor RTLS 

problems, it fails to repeat this success indoors due to a lack of 

resolution. A number of technologies have been used to 

address this problem. The ability to accurately track the 

location of assets indoors has many applications ranging from 

medical, military, and logistical to entertainment. However, 

some systems are not capable enough to track moving targets 

or are not accurate enough when coverage is poor. 

Kevin C. et al [11] attempt to provide such a useful 

comparison by providing a review of the practicalities of 

installing] certain location sensing systems. They also 

comment on the accuracy achieved and problems encountered 

using the position-sensing systems. 

Elena S. et al [12] analyzes the fluctuations in received 

signal strength and positioning accuracy in indoor 

environments for three types of wireless area networks: 

Wireless Local Area Networks (WLANs) in essence: Wi-Fi at 

2.4 GHz and 5 GHz frequency, respectively, and the 

Bluetooth Low Energy (BLE). In this paper, the similarities, 

and differences between WLAN and BLE signals operating at 

2.4 and 5GHz have been investigated, in terms of path-loss 

modeling and RSSI-based positioning accuracy. The general 

conclusion is that the WLAN and BLE signal propagation in 

multi-floor buildings is very similar. 

Ramsey F. et al [13] investigated the impact of Bluetooth 

Low Energy devices in advertising/beaconing mode on 

fingerprint-based indoor positioning schemes. This paper has 

used the fingerprinting algorithm for localization. 

Fingerprinting is a method that does not require the 

coordinates of the relaying nodes. The paper has shown that 

significant positioning improvement over that available from 

existing Wi-Fi infrastructure is possible even using a 

relatively sparse deployment of beacons once the 

characteristics of BLE signals are accounted for. Since Wi-Fi 

is a power-hungry technology, BLE is seemingly preferred in 

this case. 

Hyunwook P. et al [14] propose a novel three-dimensional 

positioning system using Bluetooth low-energy– based 

beacons. Conventional methods estimate distances by 

obtaining two-dimensional coordinates (x,y) on the basis of 

received signal strength indicator value, the proposed method 

improves the measurement accuracy by obtaining 

three-dimensional coordinate values (x,y,z). In this article, the 

receiving rate for different signal powers has also been 

recorded at different distances. This paper is a reference for 

preliminary RSSI recording and future developments in our 

projects, should we consider implementing 3 - dimensional 

positioning instead of two - dimensional positioning. 

Jinze D. et al [7] propose a received signal strength 

indicator (RSSI)-based parameter tracking strategy for 

constrained position localization is proposed. To estimate 

channel model parameters, the „Least Mean Squares‟ method 

(LMS) is associated with the trilateration method. In this 

paper, the distance is estimated using the Median RSSI values 

and the trilateration algorithm is adopted to estimate the 

position. This tracking strategy uses grid correction and the 

Least Mean Squares method. 

III. SYSTEM DESIGN 

A. Hardware Specifications 

Manufacturers such as Texas Instruments, Nordic 

Semiconductor, Bluegiga, make BLE Beacons. A beacon 

consists of a Bluetooth chipset (including its firmware), a 

battery providing power supply, and an antenna. We have 

used BLE enabled dongles made by Nordic Semiconductors, 

which are programmed as BLE beacons in our project. These 

dongles, due to their form factor can be easily placed at a 

certain location or embedded inside an object. They broadcast 

BLE radio signals which can be received and interpreted by 

any other BLE enabled receiver device, unlocking its 

application in indoor localization. To be able to perceive 

these beacons, it is necessary to have a device that supports 

Bluetooth 4.0 or higher. The devices we are using as beacons 

are the Nordic Semiconductor nrf52840 dongles. The 

nRF52840 Dongle is a small, low-cost USB dongle that 

supports Bluetooth 5, Bluetooth mesh, Thread, ZigBee, 

802.15.4, ANT, and 2.4 GHz proprietary protocols. It is 

based on the nrf52840 SoC.  

When programmed, a beacon simply transmits BLE 

packets with the payload as its identity. These packets are 

called advertisements and they are broadcasted to all the 

devices that are within its range at regular intervals of time. 

Beacons do not communicate with the surrounding devices 

using any other sophisticated way. These Advertisements 

contain the following data: 
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1) MAC Address. 

2) Universally Unique Identifier (UUID) – common for a 

single deployment at a venue. 

3) Major number- designated for dividing the beacon sets 

into smaller segments. 

4) Minor numbers- designated for dividing the segments 

into smaller subsegments.  

The beacon parameters such as its identity, advertising 

interval, and TX power can be configured in Configuration 

Mode. In the configuration mode, beacons use advanced 

bidirectional communication with a master device (e.g., a 

smartphone) with the aid of which they are configured. 

Furthermore, beacons can also be hard configured by 

modifying the contents of the code they are programmed with. 

At the physical layer, BLE uses the industrial, scientific, 

and medical (ISM) band with 40 channels, each 2.0 MHz 

wide. 37 channels are used for data exchange among paired 

devices and 3 channels are designated for broadcasting 

advertisements. These 3 channels are thus primarily used by 

beacons and are chosen deliberately so that they collide with 

other communication channels as little as possible. The 

beacon broadcasts its advertisement packet repetitively based 

on the selected advertising interval while hopping over the 3 

designated channels.  

As receiving devices in our indoor localization system, we 

have chosen the Raspberry Pi. The Raspberry Pi is essentially 

an onboard microcomputer which comes with an on-chip 

Bluetooth 4.2 antenna. Hence, it is BLE enabled. For our 

research, we have used the Raspberry Pi 3 B+ model. 

B. Working and Architecture 

1. The BLE indoor positioning system is composed of three 

elements. The first element is one or several BLE 

beacons, who send the BLE advertisements. We are 

using the nrf52840 dongle manufactured by Nordic 

Semiconductors as the BLE beacon [13]. The second 

element is a set of at least three receivers. Each receiver is 

a Raspberry Pi 3B+ [15] Finally, a platform (server) is 

needed to receive the RSSI [12] obtained by each 

receiver to estimate the current position of the sender 

nodes (BLE beacons). The three receivers are connected 

to a console device namely a laptop using Wi-Fi. The 

three Raspberry Pi‟s and the laptop need to be connected 

to the same Wi-Fi network. 

2. The nrf52840 dongle is a BLE enabled device that can be 

programmed as a BLE beacon using the proprietary SDK 

provided by Nordic Semiconductors. As the device is 

programmed as a beacon, its period of advertisement and 

identifier can also be modified.  

3. The signals sent by the BLE beacons are received by the 

Raspberry Pi‟s and then further computation is done. In 

our proposed system, it is the BLE beacon that is to be 

located. E.g. Suppose an asset is a box of screws, the 

BLE beacon will be placed on the box. 

4. The Raspberry Pi 3B+ [15] is a device that comes with 

Bluetooth 4.2; hence it is a BLE enabled device. For the 

purpose of trilateration, a minimum of three receivers are 

required, therefore, three Raspberry Pi‟s are used. 

„Bluez‟ is a Linux based Bluetooth library that needs to 

be installed on the receivers. 

5. A shell script is run on each receiver that scans for nearby 

BLE [[1][14] devices. The results contain several 

attributes such as the MAC address of the device, the 

Device name, Timestamp of that result, and the RSSI.  

6. Several such readings are recorded after a certain time 

interval which corresponds to the advertisement duration 

of the beacon. 

7. These results are dumped into a „Comma Separated 

Values‟ (.csv) file and transferred to the console using an 

FTP server. This process is carried out on each receiver. 

8. The console receives the RSSI measurements from the 

receivers using FTP. However, these measurements are 

quite noisy and need to be filtered according to the 

environment they are measured in. Here, the Kalman 

filter comes into the picture. Although the Kalman filter 

is used for dynamic measurement scenarios, it can be 

modified for static measurements as well.  

9. All filtering and computations are done in MATLAB 

using a program we have designed.  

10. After Kalman filtering, the filtered RSSI values are used 

to calculate the distance of the beacon from each 

receiver. Once the distances are calculated, the values 

obtained are used to compute the coordinates of the 

beacon using the Trilateration algorithm. 

11. Trilateration is a localization technique that requires 

distances of a point from 3 fixed reference points. In our 

system, the beacon is the mobile point, and the receivers 

are the fixed points. Let us consider the RSSI values of 

the beacon obtained from each receiver as RSSI1, RSSI2, 

and RSSI3 respectively, then the distances calculated are 

d1, d2, and d3, respectively. Hence, a system of three 

equations is formed [8]. 

12. The algorithm uses a circle of radius di to compute circles 

from each fixed reference point. The Center of each 

circle represents the coordinates of the Raspberry Pi‟s. 

Ideally, the intersection of all three circles should be a 

single point, which is the coordinates (x,y) of the BLE tag 

that has been attached to the Asset in which the user is 

interested.  The distances d1, d2, and d3 are calculated 

from respective RSSI values using: 

                         (x-x1)
2 
+ (y-y1)

2
 = d1

2 
 

   (x-x2)
2 
+ (y-y2)

2
 = d2

2   
                            (11)                           

   (x-x3)
2 
+ (y-y3)

2
 = d3

2 

13. The system is implemented on hardware as described in 

Section 2.2.1.  

14. To test the performance of the designed system it has 

been deployed in a live area. This section describes the 

layout of the live area. 

15. Our system is tested in a closed environment. Testing 

area is a Living room with a lot of wooden furniture and 

walls. Layout of the testing area is presented in figure 3 

The red squares represent the Raspberry Pi 3B+ (node) 

which are placed at a calibrated distance from a reference 

point. 
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Figure 2: Block Diagram 

 
Figure 3: Testing Environment 

IV. RESULTS AND CONCLUSION 

The calculations in this section are dependent on the 

experimental estimations of the environment constant „n‟ and 

the RSSI reading at one meter „A0‟. Other values of n and A0 

give different results from the ones presented in Table 2.1.  

However, no matter how these constants are decided, RSSI 

readings are noisy. Therefore, an assumption can be made that 

similar results would be achieved with other estimations of n 

and A0 as well. For our test environment the suitable „A0‟ and 

„n‟ readings are -55.1 dBm and 4 respectively. 

 

A. Results: 

Table 1: Beacon at 1 meter 

Method Min RSSI Max RSSI Mean RSSI Min Distance Max Distance Mean Distance 

Unfiltered -74 dBm -32 dBm 
-49.53 

dBm 
0.26 2.96 0.82 

Averaging Filter 
-61.20 

dBm 
-41 dBm 

-49.32 

dBm 
0.44 1.42 0.74 

Mode 

Estimation 

Method 

-55.49 

dBm 
-48.22 dBm 

-49.86 

dBm 
0.60 0.86 0.66 

Kalman Filter 
-54.54 

dBm 
-48.22 dBm 

-49.84 

dBm 
0.67 0.968 0.74 

Histogram 

Method 

-56.34 

dBm 
-54.03 dBm 

-55.77 

dBm 
0.94 1.07 1.03 

 

The results presented in Table 2.1 indicate the RSSI 

readings obtained for placing the beacon at 1m from the 

receiver. The unfiltered RSSI at one-meter distance takes 

values between -32 dBm and -74 dBm, indicating that the 

environment is noisy, which makes using RSSI for distance 

estimation a difficult task using the equation: 

 

                 RSSI =-10n log (d/d0) + A0                         (12) 

with A0 = -55.1 dBm and n = 4, RSSI1= -32 dBm and RSSI 

2 = -74 dBm, we get d1 = 0.26 m and d2 = 2.96 m, which gives 

a distance difference of △d = d1 – d2 = 2.76 m. In this case, the 

noise in the RSSI measurements can cause a potential error of 

276% in the distance estimation. Such a large potential error 

requires filtering techniques to get good accuracy in a 

localization application. 
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Figure 4: Unfiltered RSSI at 1m distance 

After the average filter is applied, keeping the same 

conditions, the RSSI values for a beacon placed at one-meter 

distance from receiver vary from -41 dBm to -61.2 dBm. 

Hence, we get d1 = 0.44 m and d2 = 1.42 m, and △d = 0.98 m. 

In this case, the potential error percentage is 98% which is a 

large improvement compared to the case where no filter was 

used.

 
Figure 5: Average filter RSSI at 1m distance. 

 

Using the Mode Estimation method, the range of RSSI 

values obtained for a beacon placed at one-meter distance 

from receiver is -52.56 dBm to -65 dBm. The distance d1 = 

0.89 m and d2 = 1.76 m. △d = 0.87 m. Therefore, the potential 

error is 87%. Although this is an improvement over the 

previous result, it is not ideal.  

When we use the Kalman filter, the RSSI values obtained 

at one-meter range between -53.43 dBm to -68.07 dBm. The 

distances d1 and d2 are 0.9 m and 2.10 m respectively, and △d 

= 1.2 m. The potential error percentage is 120%. Although the 

potential error indicates a high percentage, the readings 

approach the one-meter mark gradually. 
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Figure 6: Kalman filter at 1m distance. 

 

Using the Kalman – Histogram method, the RSSI values 

obtained lie within the range -61.62 dBm to -62.66 dBm. The 

distance d1 = 1.455 m and d2 = 1.54 m, △d = 0.085 m. Hence, 

the potential error percentage is 8.5%. In this method, a 

histogram of all RSSI readings post Kalman filtering is 

plotted, and a certain range of RSSI values having a higher 

frequency than other values is chosen. As a result, the noisier 

values are discarded, and fewer values are chosen for 

estimating the distance. Due to this filtering method, the error 

percentage drops down drastically as observed, which is 

expected. 

 
Figure 7:  Histogram post Kalman filter at 1m distance. 
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Table 2: Beacon at 2 meters 

Method Min RSSI Max RSSI Mean RSSI Min Distance Max Distance Mean Distance 

Unfiltered -79 dBm -42 dBm -56.88 dBm 0.47 3.95 1.25 

Averaging 

Filter 
-67.20 dBm -47.40 dBm -56.66 dBm 0.64 2 1.13 

Mode 

Estimation 

Method 

-65 dBm -52.56 dBm -56.84 dBm 0.89 1.76 1.10 

Kalman 

Filter 
-68.07 dBm -53.43 dBm -56.89 dBm 0.90 2.10 1.1 

Histogram 

Method 
-62.66 dBm -61.62 dBm -62.16 dBm 1.455 1.54 1.50 

 

The localization algorithm implemented in our system is 

the Trilateration algorithm. Therefore, the analysis in this 

section mainly focuses on the effect of various filtering 

techniques on the localization accuracy. The localization 

accuracy is judged on the basis of the error distance. The error 

distance is the Euclidean distance between the True Position 

and the Estimated Position. 

 

As RSSI is known to be highly unreliable for the purpose 

of distance estimation and localization, error distances 

ranging from 1 m to 1.5 m are considered to be fair results. An 

error distance below 1 m for a noisy environment indicates 

high accuracy. As the distance of the beacon from the receiver 

increases, error distance increases, and localization accuracy 

decreases. 

Table 3:  Localization test results using Trilateration and Unfiltered RSSI 

TRUE POSITION ESTIMATED POSITION ERROR DISTANCE 

(2.25,5.19) (1.92,3.30) 1.91m 

(5.03,5.19) (2.36,3.32) 3.25m 

(1.34,0.92) (2.19,1.67) 1.13m 

(2.34,2.74) (1.97,2.75) 0.36m 

(0.43,3.36) (1.95,2.84) 1.61m 

(2.25,3.68) (2.09,2.96) 0.73m 

(0.98,5.8) (1.66,3.03) 2.85m 

 

The localization test results for unfiltered RSSI from table 

2.3 indicate that Unfiltered RSSI leads to a large error 

distance for majority of the readings, ranging from 0.36 m to 

3.25 m. This suggests that further filtering is required to 

acquire more accuracy. Once the RSSI values are average 

filtered, some noticeable changes are observed.  

Table 4: Localization test results using Trilateration and Average filtered RSSI 

TRUE POSITION ESTIMATED POSITION ERROR DISTANCE 

(2.25,5.19) (1.16,4.48) 1.29m 

(5.03,5.19) (3.99,5.74) 1.17m 

(1.34,0.92) (1.19,2.89) 1.98m 

(2.34,2.74) (2.24,2.65) 0.12m 

(0.43,3.36) (1.47,2.58) 1.29m 
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(2.25,3.68) (2.21,2.93) 0.74m 

(0.98,5.8) (1.26,3.34) 2.47m 

 

According to table 4, the error distance ranges between 0.12 

m and 2.47 m. This assures us of the fact that filtering RSSI 

values leads to better localization accuracy.  

Nevertheless, the frequency of readings having lesser error 

distance is still low. Therefore, other filtering techniques also 

must be implemented. 

Table 5: Localization test results using Trilateration and Kalman Filter 

TRUE POSITION ESTIMATED POSITION ERROR DISTANCE 

(2.25,5.19) (2.23,3.91) 1.27m 

(5.03,5.19) (2.41,3.46) 2.33m 

(1.34,0.92) (1.99,1.72) 1.03m 

(2.34,2.74) (1.71,2.77) 0.62m 

(0.43,3.36) (1.88,2.99) 1.50m 

(2.25,3.68) (1.14,3.30) 1.17m 

(0.98,5.8) (1.14,3.31) 2.49m 

   

The localization test results using the Kalman Filter, from 

table 2.5, indicate a better performance as compared to 

Average filtering. The error distance ranges from 0.62m  

to 2.47 m. However, several observations indicate error 

distances within the range of 1 m to 1.5 m. This indicates that 

the Kalman filter normalizes the RSSI values within a certain 

range. 

Table 6: Localization using Kalman Filter and Histogram method 

TRUE POSITION ESTIMATED POSITION ERROR DISTANCE 

(2.25,5.19) (2.07,3.96) 1.23m 

(5.03,5.19) (3.19,4.00) 2.18m 

(1.34,0.92) (1.57,1.28) 0.42m 

(2.34,2.74) (1.72,2.59) 0.63m 

(0.43,3.36) (1.87,2.91) 1.49m 

(2.25,3.68) (1.93,3.17) 0.59m 

(0.98,5.8) (1.14,3.33) 2.47m 

 

Table 2.6 shows us the localization test results using the 

Kalman – Histogram method. This method is a self-developed 

approach to minimize the effect of noisy readings on 

localization accuracy. As the table indicates, the error 

distances range from 0.42 m to 2.47 m. Several readings are 

under the 1 m error distance mark, indicating a higher 

accuracy than any other filter used during the testing of this 

system. 

V. CONCLUSION 

The results discussed above clearly show that filtering is 

beneficial for the purpose of RSSI distance estimation to 

remove as much noise as possible. The potential error in RSSI 

distance estimation increases as the distance of the beacon 

from the receiver increases. The Kalman filter does not 

always provide a better performance as compared to the 

Averaging filter. The Bluetooth SIG norms [18] allow us to 

design our own filter for the purpose of achieving maximum 

accuracy as possible. Hence, a new approach in the form of 

the Kalman – Histogram method was taken, which has 

provided seemingly better results than any other filter. This 

research work enables us to incorporate the usage of this 

method in the process of indoor localization, to provide better 

accuracy. 
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