Published May 14, 2021
| Version v1
Journal article
Open
Eurythenes atacamensis sp. nov. (Crustacea: Amphipoda) exhibits ontogenetic vertical stratification across abyssal and hadal depths in the Atacama Trench, eastern South Pacific Ocean
Creators
- 1. School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- 2. Programa de Doctorado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile & Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
- 3. School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK & Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- 4. Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
- 5. Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- 6. HGF-MPG Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany & Max Planck Institute for Marine Microbiology, 28358 Bremen, Germany & Department of Biology, Nordcee and HADAL, University of Southern Denmark, 5230 Odense M, Denmark
- 7. Department of Biology, Nordcee and HADAL, University of Southern Denmark, 5230 Odense M, Denmark & Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
Description
Weston, Johanna N. J., Espinosa-Leal, Liliana, Wainwright, Jennifer A., Stewart, Eva C. D., González, Carolina E., Linley, Thomas D., Reid, William D. K., Hidalgo, Pamela, Oliva, Marcelo E., Ulloa, Osvaldo, Wenzhöfer, Frank, Glud, Ronnie N., Escribano, Rubén, Jamieson, Alan J. (2021): Eurythenes atacamensis sp. nov. (Crustacea: Amphipoda) exhibits ontogenetic vertical stratification across abyssal and hadal depths in the Atacama Trench, eastern South Pacific Ocean. Marine Biodiversity 51 (51): 1-20, DOI: 10.1007/s12526-021-01182-z, URL: http://dx.doi.org/10.1007/s12526-021-01182-z
Files
source.pdf
Files
(3.8 MB)
Name | Size | Download all |
---|---|---|
md5:66e1ef6ccd236ac15e9d59da86ca3f9b
|
3.8 MB | Preview Download |
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:zoobank.org:pub:086134F0- E428-4C07-AE26-6BC075AF40EB
- LSID
- urn:lsid:plazi.org:pub:FFE1EF6CCD23FFC1FF9DFFDAFFCAFF9B
- URL
- http://publication.plazi.org/id/FFE1EF6CCD23FFC1FF9DFFDAFFCAFF9B
References
- Ainley DG, Fraser WR, Sullivan CW, Torres JJ, Hopkins TL, Smith WO (1986) Antarctic mesopelagic micronekton: evidence from seabirds that pack ice affects community structure. Science 232:847-849. https://doi.org/10.1126/science.232.4752.847
- Baldwin RJ, Smith KL Jr (1987) Temporal variation in the catch rate, length, color and sex of the necrophagous amphipod, Eurythenes gryllus, from the central and eastern North Pacific. Deep-Sea Res 3:425-439. https://doi.org/10.1016/0198-0149(87)90146-4
- Barnard JL (1961) Gammaridean Amphipoda from depths of 400 to 6000 meters. Galathea Rep 5:23-128
- Belyaev GM (1989) Deep sea ocean trenches and their fauna. Nauka Publishing House, Moscow
- Birstein YA, Vinogradov ME (1955) Pelagicheskie gammaridy (Amphipoda, Gammaridea) Kurilo-Kamchatskoi Vpadiny [Pelagic gammarids (Amphipoda, Gammaridea) at the Kuril Kamtchatka Trench]. Tr Inst Okeanol im P P Shirshova Akad Nauk SSSR 12: 210-287
- Birstein YA, Vinogradov ME (1958) Pelagicheskie gammaridy (Amphipoda, Gammaridea) severo-zapadnoi chasti Tikhogo Okeana. [Pelagic Gammaridea from the northwestern Pacific Ocean]. Tr Inst Okeanol im P P Shirshova Akad Nauk SSSR 27: 219-257
- Blankenship LE, Levin LA (2007) Extreme food webs: Foraging strategies and diets of scavenging amphipods from the ocean' s deepest 5 kilometers. Limnol Oceanogr 52:1685-1697. https://doi.org/10. 4319/lo.2007.52.4.1685
- Blankenship LE, Yayanos AA, Cadien DB, Levin LA (2006) Vertical zonation patterns of scavenging amphipods from the hadal zone of the Tonga and Kermadec Trenches. Deep-Sea Res Pt I 53:48-61. https://doi.org/10.1016/j.dsr.2005.09.006
- Borowsky B (1984) The use of the males' gnathopods during precopulation in some gammaridean amphipods. Crustaceana 47: 245-250. https://doi.org/10.1163/156854084X00504
- Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina A et al (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15: e1006650. https://doi.org/10.1371/journal.pcbi.1006650
- Bowman TE, Manning RB (1972) Two Arctic bathyal crustaceans: the shrimp Bythocaris cryonesus new species, and the amphipod Eurythenes gryllus, with in situ photographs from ice Island T-3. Cru staceana 23 : 187 - 201 . https : // doi . or g / 10.116 3 / 156854072X00363
- Brandt A, Blazewicz-Paszkowycz M, Bamber RN, Muhlenhardt-Siegel U, Malyutina MV, Kaiser S, De Broyer C, Havermans C (2012) Are there widespread peracarid species in the deep sea (Crustacea: Malacostraca)? Pol Polar Res 33:139-162. https://doi.org/10.2478/ v10183-012-0012-5
- Bregazzi PK (1972) Life cycles and seasonal movements of Cheirimedon femoratus (Pfeffer) and Tryphosella kergueleni (Miers) (Crustacea: Amphipoda). Br Antarct Surv Bull 20:1-34. http://nora.nerc.ac.uk/ id/eprint/526165
- Buhring SI, Christiansen B (2001) Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone? Prog Oceanogr 50:369-382. https://doi.org/10.1016/S0079-6611(01) 00061-1
- Chakrabarty P, Warren M, Page LM, Baldwin CC (2013) GenSeq: an updated nomenclature and ranking for genetic sequences from type and non-type sources. ZooKeys 346:29-41. https://doi.org/10.3897/ zookeys.3465753
- Charette MA, Smith WHF (2010) The volume of Earth' s ocean. Oceanography 23:112-114. https://doi.org/10.5670/oceanog.2010. 51
- Chevreux E (1899) Sur deux especes geantes d'amphipodes provenant des campagnes du yacht Princesse Alice. Bull Soc Zool Fr 24:152- 158
- Chevreux E (1905) Description d' un amphipode (Katius obesus, nov. gen. et sp.), suivie d' une liste des amphipodes de la tribu des Gammarina ramenes par le filet a grand eouverture pendant la derniere campagne de la Princesse-Alice en 1904. Bull Inst Oceanogr Monaco 35:1-7
- Christiansen B, Pfannkuche O, Thiel H (1990) Vertical distribution and population structure of the necrophagous amphipod Eurythenes gryllus in the West European Basin. Mar Ecol Prog Ser 66:35-45. https://doi.org/10.3354/meps066035
- Coleman CO (2003) "Digital inking": How to make perfect line drawings on computers. Org Divers Evol 3:1-14. https://doi.org/10.1078/ 1439-6092-00081
- Coleman CO (2009) Drawing setae the digital way. Zoosyst Evol 85: 305-310. https://doi.org/10.1002/zoos.200900008
- d' Udekem d' Acoz C, Havermans C (2015) Contribution to the systematics of the genus Eurythenes S.I Smith in Scudder 1882 (Crustacea: Amphipoda: Lysianassoidea: Eurytheneidae). Zootaxa 3971:1-80. https://doi.org/10.11646/zootaxa.4196.3.9
- Dahl E (1959) Amphipoda from depths exceeding 6000 m. Galathea Rep 1:211-241
- Dana JD (1849) Synopsis of the genera of Gammaracea. American Journal of Science and Arts, Series 2, 8:135-140
- Danovaro R, Della Croce N, Dell' Anno A, Pusceddu A (2003) A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Res Pt I 50:1411-1420. https://doi.org/10.1016/ j.dsr.2003.07.001
- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969-1973. https://doi.org/10.1093/molbev/mss075
- Duffy GA, Gutteridge ZR, Thurston MH, Horton T (2016) A comparative analysis of canyon and non-canyon populations of the deep-sea scavenging amphipod Paralicella caperesca. J Mar Biolog Assoc 96:1687-1699. https://doi.org/10.1017/S0025315415002064
- Ebbe B, Billett DS, Brandt A, Ellingsen K, Glover A, Keller S, Malyutina M, Martinez Arbizu P, Molodtsova T, Rex M, Smith C (2010) Diversity of abyssal marine life. In: McIntyre A (ed) Life in the World' s Oceans: Diversity, Distribution, and Abundance, Blackwell Publishing, pp 139-160
- Escobar-Briones E, Najera-Hillman E, Alvarez F (2010) Unique 16S rRNA sequences of Eurythenes gryllus (Crustacea: Amphipoda: Lysianassidae) from the Gulf of Mexico abyssal plain. Rev Mex Biodivers 81:177-185. https://doi.org/10.22201/ib.20078706e. 2010.0.221
- Eustace RM, Kilgallen NM, Lacey NC, Jamieson AJ (2013) Population structure of the hadal amphipod Hirondellea gigas (Amphipoda: Lysianassoidea) from the Izu-Bonin Trench. J Crustac Biol 33: 793-801. https://doi.org/10.1163/1937240X-00002193
- Eustace RM, Kilgallen NM, Ritchie H, Piertney SB, Jamieson AJ (2016) Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus (Amphipoda: Lysianassidae) from the Peru-Chile Trench. Deep-Sea Res Pt I 109:91-98. https://doi.org/10. 1016/j.dsr.2015.11.005
- Ezard T, Fujisawa T, Barraclough T (2017) splits: SPecies' LImits by Threshold Statistics. R package version 1.0-19/r52. https://R-Forge.R-project.org/projects/splits/
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294-299
- France SC, Kocher TD (1996) Geographic and bathymetric patterns of mitochondrial 16S rRNA sequence divergence amount deep-sea amphipods, Eurythenes gryllus. Mar Biol 126:633-643. https:// doi.org/10.1007/BF00351330
- Fujii T, Kilgallen NM, Rowden AA, Jamieson AJ (2013) Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches. Mar Ecol Prog Ser 492:125- 138. https://doi.org/10.3354/meps10489
- Geersen J (2019) Sediment-starved trenches and rough subducting plates are conducive to tsunami earthquakes. Tectonophysics 762:28-44. https://doi.org/10.1016/j.tecto.2019.04.024
- Geersen J, Voelker D, Behrmann JH (2018) Oceanic Trenches. In: Micallef A, Krastel S, Savini A (eds) Submarine Geomorphology. Springer Geology. Springer, Cham
- Glud RN, Berg P, Thamdrup B, Larsen M, Stewart HS, Jamieson AJ, Glud A, Oguri K, Sanei H, Rowden AA, Wenzhofer F (2021) Hadal trenches are dynamic hotspots for early diagenesis in the deep-sea. Comm Earth Environ 2:1-8. https://doi.org/10.1038/s43247-020- 00087-2
- Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313-341. https://doi.org/10.1086/285329
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307-321. https://doi.org/10.1093/sysbio/syq010
- Hampel A, Kukowski N, Bialas J, Huebscher C, Heinbockel R (2004) Ridge subduction at an erosive margin: the collision zone of the Nazca Ridge in southern Peru. J Geophys Res Solid Earth 109: B02101. https://doi.org/10.1029/2003JB002593
- Hargrave BT (1985) Feeding rates of abyssal scavenging amphipods (Eurythenes gryllus) determined in situ by time-lapse photography. Deep-Sea Res Pt I 32(4):443-450. https://doi.org/10.1016/0198- 0149(85)90090-1
- Hargrave BT, Prouse NJ, Phillips GA, Cranford PJ (1994) Meal size and sustenance time in the deep-sea amphipod Eurythenes gryllus collected from the Arctic Ocean. Deep-Sea Res Pt I 41:1489-1508. https://doi.org/10.1016/0967-0637(94)90057-4
- Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Mol Evol 22:160-174. https://doi.org/10.1007/BF02101694
- Havermans C (2016) Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17:12-25. https://doi.org/10.1080/ 14888386.2016.1172257
- Havermans C, Smetacek V (2018) Bottom-up and top-down triggers of diversification: A new look at the evolutionary ecology of scavenging amphipods in the deep sea. Prog Oceanogr 164:37-51. https:// doi.org/10.1016/j.pocean.2018.04.008
- Havermans C, Sonet G, d' Udekem d' Acoz C, Nagy ZT, Martin P, Brix S, Riehl T, Agrawal S, Held C (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and bipolar species. PLoS One 8: e74218. https://doi.org/10.1371/journal.pone.0074218
- Hessler RR, Ingram CL, Yayanos AA, Burnett BR (1978) Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Res 25:1029-1047. https://doi.org/10.1016/0146-6291(78)90585-4
- Holmquist JG (1985) The grooming behaviour of the terrestrial amphipod Talitroides alluaudi. J Crustac Biol 5:334-340. https://doi.org/10. 2307/1547882
- Horton T, Thurston MH (2014) A revision of the bathyal and abyssal necrophage genus Cyclocaris Stebbing, 1888 (Crustacea: Amphipoda: Cyclocaridae) with the addition of two new species from the Atlantic Ocean. Zootaxa 3796:507-527. https://doi.org/ 10.11646/zootaxa.3796.3.6
- Horton T, Cooper H, Vlierboom R, Thurston M, Hauton C, Young CR (2020) Molecular phylogenetics of deep-sea amphipods (Eurythenes) reveal a new undescribed species at the Porcupine Abyssal Plain, North East Atlantic Ocean. Prog Oceanogr 183: 102292. https://doi.org/10.1016/j.pocean.2020.102292
- Ichino MC, Clark MR, Drazen JC, Jamieson A, Jones DO, Martin AP, Rowden AA, Shank TM, Yancey PH, Ruhl HA (2015) The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Res Pt I 100:21-33. https://doi.org/10. 1016/j.dsr.2015.01.010
- Ingram CL, Hessler RR (1987) Population biology of the deep-sea amphipod Eurythenes gryllus: inference from instar analyses. Deep-Sea Res 34:1889-1910. https://doi.org/10.1016/0198-0149(87)90090-2
- Jamieson AJ, Fujii T, Mayor DM, Solan M, Priede IG (2009) Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol 25:190-197. https://doi.org/10.1016/j.tree.2009.09.009
- Jamieson AJ, Kilgallen NM, Rowden AA, Fujii T, Horton T, Lorz AN, Kitazawa K, Priede IG (2011) Bait-attending fauna of the Kermadec Trench, SW Pacifc Ocean: evidence for an ecotone across the abyssal-hadal transition zone. Deep-Sea Res I 58:49-62. https://doi.org/ 10.1016/j.dsr.2010.11.003
- Jamieson AJ, Brooks LS, Reid WD, Piertney SB, Narayanaswamy BE, Linley TD (2019) Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R Soc Open Sci 6:180667. https://doi.org/10.1098/rsos. 180667
- Johnson WSWS, Stevens M, Watling L (2001) Reproduction and development of Marine Peracaridans. Adv Mar Biol 39:105-260. https:// doi.org/10.1016/S0065-2881(01)39009-0
- Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinfor bbx108. https://doi.org/10.1093/bib/bbx108
- Kilgallen NH (2015) Three new species of Hirondellea (Crustacea, Amphipoda, Hirondelleidae) from hadal depths of the Peru-Chile Trench. Mar Biol Res 11:34-48. https://doi.org/10.1080/ 17451000.2014.889309
- Klages M, Gutt J (1990) Comparative studies on the feeding behaviour of high Antarctic amphipods (Crustacea) in laboratory. Polar Biol 11: 73-79. https://doi.org/10.1007/BF00236524
- Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Lacey NC, Rowden AA, Clark MR, Kilgallen NM, Linley T, Mayor DJ, Jamieson AJ (2016) Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific Trenches. Deep-Sea Res Pt I 111:121-137. https://doi.org/10.1016/ j.dsr.2016.02.014
- Lacey NC, Mayor DJ, Linley TD, Jamieson AJ (2018) Population structure of the hadal amphipod Bathycallisoma (Scopelocheirus) schellenbergi in the Kermadec Trench and New Hebrides Trench, SW Pacific. Deep Sea Res Pt II 155:50-60. https://doi.org/10.1016/ j.dsr2.2017.05.001
- Latreille PA (1816) Amphipodes. In: Biot J-B, Bosc L-A-G, Chaptal J-A, Desmarest A-G, Dutour M, Huzard J-B, Lamarck J-B-P-A, de Monet de, Latreille P-A, Lucas J-A-H, Olivier G-A, Palisot de Beauvois A-M-F-J, Parmentier A-G, Patrin E-M-L, Richard L-C, Sonini C-S, Thouin A, Tollard C, Vieillot L-P, Virey J-J, Yvart J-A-V (Ed.), Nouveau dictionnaire d'histoire naturelle, appliquee aux arts, a l'agriculture, a l'economie rurale et domestique, a la medecine, etc. 2nd edition. Vol. 1. Librairie Deterville, Imprimerie d'Abel Lanoe, Paris, pp. 467-469.
- Lichtenstein, H. (1822) Crustacea. In: Mandt MG (Ed), Observationes in historiam naturalem et anatomiam comparatam in itinere Groenlandico factae. Dissertatio in auguralis quam consensu et auctoritate gratiosi medicorumordinis in universitate literaria berolinensi ut summi in medicina et chirurgia honores rite sibi concedantur die XXII. M. Iulii A. MDCCCXXII H.L.Q.S., publice defendet auctor Martinus Gulielmus Mandt Beyenburgensis. Opponentibus: J.Th. v. Brandt Med. Cd., J. Ollenroth Med. Cd., E. Gabler Med. Cd.; Formis Brueschckianis, Berlin, 31-37
- Linley TD, Gerringer ME, Yancey PH, Drazen JC, Weinstock CL, Jamieson AJ (2016) Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae.Deep-Sea Res Pt I 114:99-110. https://doi.org/10.1016/j.dsr.2016.05.003
- Lowry JK, De Broyer C (2008) Alicellidae and Valettiopsidae, two new callynophorate families (Crustacea: Amphipoda).Zootaxa 1843:57- 66. https://doi.org/10.11646/zootaxa.1843.1.5
- Milne Edwards H (1848) Sur un crustace amphipode, remarquable par sa grand etaille. Ann Sci Nat Zool 3:98. https://doi.org/10.5962/bhl. title.15975
- Montecino V, Lange CB (2009) The Humboldt Current System: ecosystem components and processes, fisheries, and sediment studies. Prog Oceanogr 83:65-79. https://doi.org/10.1016/j.pocean.2009.07.041
- Narahara-Nakano Y, Nakano T, Tomikawa K (2018) Deep-sea amphipod genus Eurythenes from Japan, with a description of a new Eurythenes species from off Hokkaido (Crustacea: Amphipoda: Lysianassoidea). Mar Biodivers 48:603-620. https://doi.org/10. 1007/s12526-017-0758-4
- Palumbi S, Martin A, Romano S (2002) The simple fool' s guide to PCR, version 2.0. Department Zoology, University of Hawaii
- Perrone FM, Dell'Anno A, Danovaro R, Della Croce N, Thurston MH (2002) Population biology of Hirondellea sp. nov. (Amphipoda: Gammaridea: Lysianassoidea) from the Atacama Trench (south-east Pacific Ocean). J Mar Biol Assoc UK 82:419-425. https://doi.org/ 10.1017/S0025315402005672
- Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R (2020) nlme: linear and nonlinear mixed effects models. R Package Vers 3:1-148 https://CRAN.R-project.org/package=nlme
- Premke K, Graeve M (2009) Metabolism and physiological traits of the deep-sea amphipod Eurythenes gryllus. Vie et Milieu-Life Environ 59:251-260
- Premke K, Klages M, Arntz WE (2006) Aggregations of Arctic deep-sea scavengers at large food falls: temporal distribution, consumption rates and population structure. Mar Ecol Prog Ser 325:121-135. https://doi.org/10.3354/meps325121
- Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Tracer v1.7. http://tree.bio.ed.ac.uk/software/tracer
- Reid WDK, Cuomo NJ, Jamieson AJ (2018) Geographic and bathymetric comparisons of trace metal concentrations (Cd, Cu, Fe, Mn, and Zn) in deep-sea lysianassoid amphipods from abyssal and hadal depths across the Pacific Ocean.Deep-Sea Res Pt 1(138):11-21. https://doi. org/10.1016/j.dsr.2018.07.013
- Ritchie H, Jamieson AJ, Piertney SB (2015) Phylogenetic relationships among hadal amphipods of the superfamily Lysianassidae: implications for taxonomy and biogeography. Deep-Sea Res Pt I 105:119- 131. https://doi.org/10.1016/j.dsr.2015.08.014
- Ritchie H, Jamieson AJ, Piertney SB (2017) Genome size variation in deep-sea amphipods. R Soc Open Sci 4:170862. https://doi.org/10. 1098/rsos.170862
- Sainte-Marie B (1991) A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223:189-227. https://doi.org/10.1007/978-94-011-3542-9_19
- Saunders PM (1981) Practical conversion of pressure to depth. J Phys Oceanogr 11:573-574. https://doi.org/10.1175/1520-0485(1981) 011<0573:PCOPTD>2.0.CO;2
- Smith SI (1882) Eurythenes Lillgeborg. In: Scudder SH (Ed) Zoologicus. An alphabetical list of all generic names that have been employed by naturalists for recent and fossil animals from the earliest times to the close of the year 1879. 1. Supplemental list of Genera in Zoology. Washington 21(1):376. https://doi.org/10.5962/bhl.title.1143
- Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518-528. https://doi.org/10.1016/j. tree.2008.05.002
- Stewart HA, Jamieson AJ (2019) The Five Deeps: the location and depth of the deepest place in each of the world' s oceans. Earth-Sci Rev 197:102896. https://doi.org/10.1016/j.earscirev.2019.102896
- Stoddart HE, Lowry JK (2004) The deep-sea lysianassoid genus Eurythenes (Crustacea, Amphipoda, Eurytheneidae n. fam.). Zoosystema 26:425-468
- Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016. https://doi.org/10.1093/ ve/vey016
- Thiel H (2003) Anthropogenic impacts on the deep sea. In: Tyler PA (ed) Ecosystems of the World. Elsevier Science, Amsterdam, pp 427- 471
- Thurston MH, Bett BJ (1995) Hatchling size and aspects of biology in the deep-sea amphipod genus Eurythenes (Crustacea: Amphipoda). Int Rev Gesamten Hydrobiol Hydrogr 80:201-216. https://doi.org/10. 1002/iroh.19950800209
- Thurston MH, Petrillo M, Della Croce N (2002) Population structure of the necrophagous amphipod Eurythenes gryllus (Amphipoda: Gammaridae) from the Atacama Trench (south-east Pacific Ocean). J Mar Biolog Assoc 82:205-211. https://doi.org/10.1017/ S0025315402005374
- Varpe O, Ejsmond MJ (2018) Semelparity and iteroparity. In: Wellborn GA, Thiel M (eds) Natural History of Crustacea. Oxford University Press, Oxford, pp 97-124
- Wenzhofer F (2019) The Expedition SO261 of the Research Vessel SONNE to the Atacama Trench in the Pacific Ocean in 2018. Rep Polar Mar Res 729:1-111. https://doi.org/10.2312/BzPM_0729_ 2019
- Weston JNJ, Carrillo-Barragan P, Linley TD, Reid WDK, Jamieson AJ (2020a) New species of Eurythenes from hadal depths of the Mariana Trench, Pacific Ocean (Crustacea: Amphipoda). Zootaxa 4748:163-181. https://doi.org/10.11646/zootaxa.4748.1.9
- Weston JNJ, Peart RA, Jamieson AJ (2020b) Amphipods from the Wallaby-Zenith Fracture Zone, Indian Ocean: new genus and two new species identified by integrative taxonomy. Syst Biol 18:57-78. https://doi.org/10.1080/14772000.2020.1729891
- Weston JNJ, Peart RA, Stewart HA, Ritchie H, Piertney SB, Linley TD, Jamieson AJ (2021) Scavenging amphipods from the Wallaby-Zenith Fracture Zone: Extending the hadal paradigm beyond subduction trenches. Mar Biol 168:1-14. https://doi.org/10.1007/ s00227-020-03798-4
- Wilson GDF, Ahyong ST (2015) Lifestyles of the species-rich and fabulous: The deep sea crustaceans. In: Watling L, Thiel M (eds), The Natural History of the Crustacea: Life Styles and Feeding Biology. Oxford University Press, pp 279-299
- Wilson JP, Schnabel KE, Rowden AA, Peart RA, Kitazato H, Ryan KG (2018) Bait-attending amphipods of the Tonga Trench and depthstratified population structure in the scavenging amphipod Hirondellea dubia Dahl, 1959. PeerJ 6:e5994. https://doi.org/10. 7717/peerj.5994
- Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinfor 29:2869-2876. https://doi.org/10.1093/bioinformatics/ btt499