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ABSTRACT. Calculating the value of C*€{1:2°} class of smoothness real-valued
function’s derivative in point of R* in radius of convergence of its Taylor poly-
nomial (or series), applying an analog of Newton’s binomial theorem and g¢-
difference operator. (P, q)-power difference introduced in section 5. Addition-
ally, by means of Newton’s interpolation formula, the discrete analog of Taylor
series, interpolation using g-difference and p, g-power difference is shown.
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1. INTRODUCTION
Let be Taylor’s theorem (see §7 ” Taylor’s formula”, [1])

Theorem 1.1. Taylor’s theorem. Let be n > 1 an integer, let function f(x)
be n + 1 times differentiable in neighborhood of a € R. Let x be an any function’s
argument from such neighborhood, p - some positive number. Then, there is exist
some c between points a and x, such that

’ " (n)
(12) £@) = @+ L0 @0y LD ey LDy g @)
where Ry 1(x) - general form of remainder term
r—a\" (z—c)"t!
(1.3 Role) = (£22) S0 poe

Proof. Denote ¢(x,a) polynomial related to = of order n, from right part of (1.2,

(14)  glr.a) = fa) + 20

Next, denote as R, 11(z) the difference

(1.5) Ryp1(z) = f(z) — o(x,a)

Theorem will be proven, if we will find that R,41(z) is defined by (1.3]). Let fix
some z in neighborhood, mentioned in theorem [I.I} By definition, let be z > a.
Denote by t an variable, such that ¢ € [a, 2], and review auxiliary function v (¢) of
the form

f"(a)
2!

) (4
1@

2
(2= a) 4o+ T

(x —a)+

(1.6) () = f(2) = p(a,1) = (= )P Q(x)

where

(1) Q) = )

More detailed ¥(t) could be written as

(18) wt) = @)= 1)~ L0ty - LW g gp . S gy
—(z = 1)"Q(x)

Our aim - to express Q(x), going from properties of introduced function ¢ (t). Let
show that function (t) satisfies to all conditions of Rolle’s theorem [2] on [a, z].
From and conditions given to function f(z), it’s obvious, that function 1)(t)
continuous on [a,z]. Given t = a in and keeping attention to equality ,
we have

(1.9) Pla) = f(z) — ¢(z,a) = Rnya(2)
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Hence, by means of (|1.5)) obtain ¢(a) = 0. Equivalent ¢(x) = 0 immediately follows
from (|1.8)). So, ¥(t) on segment [a, | satisfies to all necessary conditions of Rolle’s
theorem [2]. By Rolle’s theorem, there is exist some ¢ € [a, z], such that

(1.10) W(c) =0

Calculating derivative ¢’ (t), differentiating equality ([1.8]), we have

(1.11) W) = —f(t) + f/l(!t) - f;(!t) (x—t)+ f;(!t)Z(:z: )
(n) (n+1)
+f n'(t)n(x _ t)n—l _ f _:L' (t) (x _ t)n +p(x _ t)p_lQ(.T)

It’s seen that all terms in right part of (L.11]), except last two items, self-destructs.
Hereby,

(n+1)
(112) v =Ly @ QU
Given t = cin and applying , obtain
(.’b — C)nierl n
(1.13) Q) = =— o ——/"" ()

By means of (|1.13]) and ([L.7]), finally, we have
r—a\” (x—c)"H!
_ 7 _ (n+1)
(L1 Realo) = (o - ar@e) = (222) 20 peg

Case = < a is reviewed absolutely similarly. (see for reference [1], pp 246-247)
This proves the theorem. (Il

Let function f(z) € C* class of smoothness and satisfies to theorem then
its derivative by means of its Taylor’s polynomial centered at a € R in radius of
convergence with f(z) and linear nature of derivative, (¢f(z)+um(z)) = gf (z)+
um’ (z), is

"(a "(a (k=1) (g
(1.15) %f(x) = fl(! )%(xfa) + f2(! )Ci(xa)2+~~'+wi(xa)k
+ R ()

Otherwise, if f € C° we have derivative of Taylor series [5] of f given the same
conditions as (|1.15))

"(a "(a ) (g
(1.16) %f(x)z fl(!)%(x—a)—f—f;! )%(x—af—i--“-i-f n!( )%(:v—a)”-i-
_|_...

Hence, derivative of function f:1 < C(f) < oo E| could be reached by differentiat-
ing of its Taylor’s polynomial or series in radius of convergence, and consequently
summation of power’s derivatives being multiplied by coefficient, according theo-
rem over k from 1 to t < oo, depending on class of smoothness. Hereby, the
properties of power function’s differentiation holds, in particular, the derivative of
power close related to Newton’s binomial theorem [4].

Lemma 1.17. Derivative of power function equals to limit of Binomial expansion
of (x + Ax)", iterated from 1 to n, divided by Ax : Az — 0.

IFor example, let f be a k-smooth function, then C(f) = k.



4 KOLOSOV PETRO

Proof.

(1.18) d(dx:) = Jim. {kz": (Z)xn—k(Ax)k—l} _ (le)wn_l

(]

According to lemma ([1.17)), Binomial expansion is used to reach derivative of
power, otherwise, let be introduced expansion, based on forward finite differences,
discussed in [3]

(1.19) " =2 4 Z k-x" 2 —k*.2"3  x€eN
kec(x)

where j = 3! and €(z) := {0, 1, ..., =} C N. Particularize] (1.19), one has
(1.20) 2= > jekeat =gk

kesl(x)
where U(z) :={0, 1, ..., z—1} CN.
Property 1.21. Let S(z) be a set S(x) := {1, 2, ..., z} C N, let be
written as T(x, U(x)), then we have equality
(1.22) T(xz, Mx))=T(z, &(z)), x €N
Let be denoted as U(z, €(x)), then
(1.23) Uz, €x))=U(z, 6(x)) =U(x, M)

Proof. Let be a plot of jkx™ 2 — jk2z" 3 + 2" 3 by k over R;O, given x = 10

T
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Figure 1. Plot of jkx" 2 — jk?2" 3 4+ 2773 by k over R;m =10

2Transferring 2™~ 2 under sigma operator, decreasing the power by 1 and taking summation
over k € (x)
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Obviously, being a parabolic function, it’s symmetrical over 7, hence equivalent
T(x, Wzx)) = T(z, 6(x)), v € N follows. Reviewing (1.19) and denote u(t) =

tz"=2 — #2273 we can make conclusion, that u(0) = wu(z), then equality of
Uz, €x)) =U(z, S(z)) =U(z, H(z)) immediately follows.
This completes the proof. O

By definition we will use set 4(z) C N in our next expressions.
Since, for each x = xg € N we have equivalent

Lemma 1.24. Vz =z € N holds

r n r—1
(1.25) ZZ <Z)t”k EZjulfur"*z —j k2 a3 g3
k=0

t=1 k=1

Tn

Proof. Proof can be done by direct calculations. O

By lemma we have right to substitute ([1.20)) into limit (1.18)), replacing Bi-

nomial expansion, and represent derivative of power by means of expression (|1.20]).
Note that,

n
(1.26) A(z") = Z <") LI I T e e B T L L
k=1 k

As (1.20) is analog of Binomial expansion of power and works only in space of
natural numbers, different in sense, that Binomial expansion, for example, could
be denoted as M(z, €(n)), where n - exponent. While could be denoted
T(z, U(z) = S(x)), it shows that in case of Binomial expansion the set over which
we take summation depends on exponent n of initial function, when for (|1.20)
it depends on point x = zg € N. To provide expressions’ usefulnes
taking power’s derivative over RT, derivative in terms of quantum calculus should
be applied, as next section dedicated to.

2. APPLICATION OF Q-DERIVATIVE

Derivative of the function f defined as limit of division of function’s grow rate
by argument’s grow rate, when grow rate tends to zero, and graphically could be
interpreted as follows

Y

f(z)

tangent line at xg as Az — 0%
f(zo + Ax)

f(xo)

3By classical definition of derivative, we have to use upper summation bound (x + Az) € Rt

on |j which turns false result as li works in space of N.



6 KOLOSOV PETRO

Figure 2. Geometrical sense of derivative
In 1908 Jackson [10] reintroduced [I1], [12] the Euler-Jackson ¢-difference operator

9]

f(z) — flgz)
2.1 D,f)(z) = ——"——, 2#0
The limit as ¢ approaches 17 is the derivative
df
2.2 — = lim (D
(22) = lim (D))
More generalized form of g-derivative
o) W) _ @) =S S~ @)
dx q—1- T —xq =1t  Tqg—x
—— —
(Dgf~)(=) (Dgf¥)(2)

where (Dyf1)(z) and (D, f~)(z) forward and backward ¢-differences, respectively.
The follow figure shows the geometrical sense of above equation as g tends to 17

Yy
f(@)
A ) tangent line at zg as ¢ — 17
) S ‘
fxo) fmmmm-—2> ‘ |

0 o To - q z

Figure 3. Geometrical sense of right part of (2.3])

Review the monomial ™, where n-positive integer and applying right part of (2.3)),
then in terms of g-calculus we have forward ¢-derivative over R

d(z™) . + a2t - 1)
2.4 =1 D,x" = lim ———=
(24) dx q—1>r{1+( 07" )(@) q—1>r{l+ z(g—1)
n—1
= lim "' ) ¢", qeR
q_lglJr T ;q )y 4

Otherwise, see reference [9], equation (109).
Generalized view of high-order power’s derivative by means of (2.4])

(2.5) M = lim (Dkz"+)(z) = lim 2" * lﬁ g qm
' dz* q—1+ a g—1t ;
7=0 \m=0
Since, the main property of power is

Property 2.6.

n n

(x-y)"=2a"-y
Let be definition
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Definition 2.7. By property (2.6) and (1.20]), definition of c=z-t:t € R, = €
N = ce€R topower n e N

x—1
(2.8) =€z, t)y = ij:as"_2 A ) S LR Lt S
k=0

Hereby, applying definition (2.7) and (2.4)), derivative of monomial ™ : n € N
by x in point xy € N is

d(x™ — 1 Dy —
SR o | N L CA) PRy SC08 VP { L M 1 CO )Y
de |,_,, — a=1t T-q—T q—1- x-q—x
E P> o] EPycalen]

Let us approach to extend the definition space of expression (2.9)) from zy € N to
zo € RY. Let be g = &(to, p)1 € RT 2 Nasp e Rt 2 Nand tg € N, then
applying (p, q)-difference discussed in [I3]

(2.10) Dy qf(x) = W, x#0

by means of definition (2.7)) and (2.10)), (p, ¢)-differentiating of monomial 2™, n € N
gives us
d(z™)

(2.11) = lim D, 2" = lim £(@, p)n —&(@, @)n

dx o=ty P p—qt rT-p—x-q

E Dy glan]

) tOGNv [p7q}€]R+2N
q—p~ r-p—x-q

def
=9 pe—qlz”]

Geometrical interpretation is shown below
Y

f(z) ="

§(xo, P)n tangent line at zg as p — ¢+

5(3707 q)n

T

Figure 4. Geometrical interpretation of (2.11))

3. APPLICATION ON FUNCTIONS OF FINITE CLASS OF SMOOTHNESS

In this section we will get derivative of function f € C™ in point zyp € R* by
means of its Taylor’s polynomial and ([2.9)), where n - some positive integer. Let
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f(x) be an n-smooth function, then derivative of its Taylor’s polynomial at radius
of convergence with f in g : (xg — a) € Nis

- (k)
df () Z [f . am} + Dy R ()]

(3.1) L=

r=x

") ()
Z[f Dper(z >k]]+@q<1mn+l<x>}

k=1
Otherwise, let (g — a) satisfies to conditions of (2.11), i.e (zo —a) € R*, then
applying operator &, defined in we can reach derivative of f : f € C™ in
point xg : (g — a) € R*, by differentiation of its Taylor’s polynomial in radius of
convergence with f, that is

df (z) _ Zn: [f(’z!(a) Dyl — a)k]] + Dpsq|Rns1(2)]

dxr o=to 1=

n TR (g
= Z |:f k'( )‘@Iﬂ—q[(aj - a)k}] + -@m—q[Rn—H(l‘)]

(3.2)

4. APPLICATION ON ANALYTIC FUNCTIONS

If f € C™ (i.e analytic), then approximation by means of Taylor series holds in
neighborhood of its center at @ € R. Suppose that f is real-valued and satisfies to
conditions of Taylor’s theorem then derivative of f at zp: x < xg < a is

df (x d & R (g &) (g

k=0

Let xz( satisfies to conditions of (3.1)), then, applying definition (2.7]), we have de-
rivative of f in point zo € RT

£ < ) (g
[z

q>1 .’E — a = Z
k=1

Otherwise, if z( satisfies to conditions of (3.2) and z in radius of convergence with
f, then derivative of f € C'°°, by means of its Taylor’s series and (2.7)), is

- £k (g ® £(k) (g
gy T [Zf i Sl =) =3 )%H[@—a)k]]

(4.2) Dyl - a)k]l

x=tg
5. INTRODUCTION OF (P, ¢)-POWER DIFFERENCE

Lemma 5.1. Let be m € R/T and m could be represented as m = at, then exists
some ¢ € R/I, such that

(5.2) m = a’

Reviewing ([2.3]), we can see, that argument’s differential Az is given by x-q — x,
according to lemma JeeR/l, -t —x =2a°— z, then, from (2.4 immediately
follows g-power difference, (see [14], page 2, equation 3)

fa) — f(a")

zd — gl

(5.3) Dys1f(z) == , ©#0
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As ¢ tends to 17 we have reached derivative

df@) L @) - @)
o4 ar A Dot/ @) = Jlim T
E'D o [f ()]
o f@) =@
= Jm i =i P /(@)

LD [f(@)]

where lim D, f(x) denotes the derivative through backward ¢-power difference
q—1—

By lemma from (2.10) immediately follows (p, g)-power difference

fa?) = f(2?)

(5.5) Dypsof(@) == — 10— = #0
Hence, for v = 2P, p € R
df(x), . .. o f@P) = f29)
(5:6) dp (V) = im, Dpogf(z) = lim ==n——r—
ED, L, lf ()]
_ o f@P) = f@t)
o ql—l};{l* xd — xP o q1~1>r11;1* Dp(iqf(x)

D,y [f(2)]

where Dy,_[f(2)], Dpeqlf(z)] denote derivative through forward and backward
(p, q)-power differences. Let us to show geometrical interpretation of (5.4)) and (5.6

f(x)

tangent line at zp as ¢ — 17

T

Figure 5. Geometrical sense of (5.4)
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f(x)

tangent line at zg as p — ¢+

T

Figure 6. Geometrical sense of (5.6)
Applying (5.4) with monomial 2™ : m € N, we get

dzr q—)l‘*’ 1

(5‘7) d(xm) = Dq>1 = lim [i xq 1‘| = ma™ !

= lg?, Dy<i[z™] = lim [Z A (xq)mk] =ma™!
q
=1

Note that Dy<1[2™], Dg>1[z™] defined by (5.4). The high order N < m derivative,
derived from ({5.7)

N/ .m N—-1 /m—j
6o O oD = ( <zq>mk-z“1>

Let be analytic function f and let f satisfies to Taylor’s theorem [[.I on segment of
(a,z), a € R, then, applying (5.4), in radius of convergence of its Taylor’s series,
we obtain derivative

2 R (g < §(0) (g
(5.9) df (@) = Z / k"( )Dq<1 [(z —a)¥] = Z Dys1[(z — a)¥]
k=1 ’ k=

Using Dpq[f(2)], Dpeyg[f(2)] defined by (5.8)), for each v = xP, we receive

x = R (g (k)
(5.10) d];(m) = [Z ! kl( )Dpﬁq [(z —a) Z f Dy gl(z — a)k]l
k ’ r=v

Or, by means of definition (2.7) and (5.9), when (z¢ — a) € N derivative could be
taken as follows
(5.11)

x > *®)(q
dfd(x):z{f]gl( ) fo_a 1)nm nk-T f(x—a 1)k 1];}

n—>1Jr

T=T0
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Given zg, such that (xg—a) € RT, then conditions of (3.2) is reached, and, applying
definition (2.7)), derivative f’ follows
(5.12)

LIS {fk,(“) i 3260 0 Do £l 1)k_1x/}

n—1+

x=tg

Otherwise, let be f: f € C™, where n - positive integer, then under similar condi-
tions as (5.11)) and (5.13)), derivative could be reached by differentiating of n-order
Taylor’s polynomial of f in terms of g-power difference (5.3) under limit notation
over n

dz k! n—1+
k=1

(5.13 df”=2{f @ <x—a>"m-"kw’-(m—awlw’}%mx)

Similarly, as (5.13]), derivative of f € C™ in point « = xg, such that (zg —a) € N
(5.14)

d]:i(x) - Z {f k!( . lim ;ﬂx_ a; Vpm—nrt’ - §(x —a, 1)k—1$,} +R, 4 ()

n—1+
k=1

T=Tq

Otherwise, going from (5.14), V(zg — a) € RT
(5.15)

o) _ <
dz_z{

k=1

(k) U
fT(a) lim ’;ﬁ(x =, Dpm—nkt’ - &(z — a, 1)k1$'} R, (@)

! n—1t

w:to

6. NEWTON’S INTERPOLATION FORMULA

Being a discrete analog of Taylor’s series, the Newton’s interpolation formula [6],
first published in his Principia Mathematica in 1687, hereby, by author’s opinion,
supposed to be discussed

oo

(6.) =3 (")t

k=0

Given ¢ = const in (2.3) divided g¢-difference f[zq; z] is reached. Let be Af =
flzg; z](xq — ), then, by means of generalized high order forward finite difference
AFf k> 2, ([7, [§]), revised according to (2.3)), Newton’s formula (6.1)) takes the
form

(6:2) o) = g [( ) §<—1>m(f)f<x - m]

Review (5.4) and given g = const divided g-power difference follows, by similar way

as reached, could be written as
0o k

(6.3 fl) =3 [( R DNCIE (T,Z)f(x”km)]
k=0
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7. CONCLUSION

In this paper was discussed a way of obtaining real-valued smooth function’s
derivative in radius of convergence of it’s Taylor’s series or polynomial by means of
analog of Newton’s binomial theorem in terms of ¢-difference and (p, q)-
power difference operators . In the last section reviewed a discrete analog of
Taylor’s series - Newton’s interpolation formula , and applying operators of
g-difference, (p, g)-power difference interpolation of initial function is shown ,

(6.3)-
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