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1 Formal copula definition

Intuitively, a copula is a distribution function on the unit hypercube with uniform margins. In what
follows, we give the formal definition of a multivariate copula [5]:

Definition 1. A d-copula is a function C : [0, 1]d −→ [0, 1] such that ∀u ∈ [0, 1]d:

1. C(u) = 0 if at least one coordinate of u is 0.

2. C(u) = uk if all coordinates of u are 1 except uk.

3. Let VC([u,v]) =
∑2

i1=1 · · ·
∑2

id=1(−1)i1+···+idC(g1,i1 , . . . , gd,id), gj,1 = uj , gj,2 = vj,

then VC([u,v]) ≥ 0 for all v ∈ [0, 1]d with u ≤ v.

The second property implies uniform margins, whereas the first and third properties ensure that C
is a proper CDF on the unit hypercube. In particular, the third property ensures that every hypercube
contains non-negative mass.

The great strength of copulas is their utility for constructing multivariate distributions. They can
be used to couple arbitrary marginal CDFs to form a joint CDF. Sklar’s Theorem [6, 5] lays out the
theoretical foundations for this construction:

Theorem 2. Let FX be a d-dimensional cumulative distribution function with margins F1, . . . , Fd. Then
there exists a d-copula C such that ∀x ∈ Domain(FX) :

FX(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (S1)

C is unique, if X1, . . . , Xd are all continuous, and unique on Range(F1) × · · · × Range(Fd), if X1, . . . ,
Xd are discrete. Conversely, if C is a d-copula and F1, . . . , Fd are CDFs, then the function FX defined
by FX(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) is a d-dimensional CDF with margins F1, . . . , Fd.

Sklar’s Theorem allows us to construct multivariate distributions by attaching margin CDFs to copulas
and to decompose multivariate CDFs into its margins and a copula.

2 Copula-based mixed likelihoods

The construction of a copula-based model yields a CDF whereas many applications (e.g. inference, entropy
estimation) require the likelihood function. Hence, we need to calculate the likelihood based on the CDF.
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Let X denote a multivariate distribution with CDF FX(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) where C is
a copula and F1, . . . , Fd denote the margin CDFs. If X is continuous, then we can easily evaluate fX :

fX(x1, . . . , xd) =
∂dC

∂u1 . . . ∂ud
(F1(x1), . . . , Fd(xd))

d∏
i=1

fi(xi). (S2)

If X is discrete, however, then fX is a probability mass function (PMF). To calculate the PMF,
let A = {X1 ≤ x1, . . . , Xd ≤ xd} and Ai = {X1 ≤ x1, . . . , Xd ≤ xd, Xi ≤ xi − 1}, i ∈ {1, . . . , d}.
The probability P of a d-tuple of discrete values x = (x1, . . . , xd) can now be evaluated using only the
cumulative distribution function FX by applying the principle of inclusion-exclusion [4]:

fX(x1, . . . , xd) = P

(
A \

d⋃
i=1

Ai

)
= P (A)−

d∑
k=1

(−1)k−1
∑

I⊆{1....,d},
|I|=k

P

(⋂
i∈I

Ai

)

= FX(x)−
d∑

k=1

(−1)k−1
∑

m∈{0,1}d,∑
mi=k

FX(x1 −m1, . . . , xd −md)

=
∑

m1=0,1

· · ·
∑

md=0,1

(−1)m1+···+mdC(F1(x1 −m1), . . . , Fd(xd −md)).

(S3)

Similarly, if the margins are mixed, then we can combine the approaches for continuous and discrete
likelihood calculation to obtain the probability density of the mixed distribution. W.l.o.g., let X1, . . . , Xn

be discrete and Xn+1, . . . , Xd be continuous. Combining Eqs. S2 and S3, we obtain the probability density
function of the mixed distribution of X:

fX(x1, . . . , xd) =
∂d−n

∂un+1 . . . ∂ud

[ ∑
m1=0,1

· · ·
∑

mn=0,1

(−1)m1+···+mn (S4)

·C(F1(x1 −m1), . . . , Fn(xn −mn), Fn+1(xn+1), . . . , Fd(xd))

]

=
∑

m1=0,1

· · ·
∑

mn=0,1

(−1)m1+···+mn
∂d−nC

∂un+1 . . . ∂ud

(F1(x1 −m1), . . . , Fn(xn −mn), Fn+1(xn+1), . . . , Fd(xd))

d∏
i=n+1

fi(xi).

This equation has exponential complexity with the number of discrete elements.

3 Canonical vine illustration

The canonical vine or C-vine is as a pair copula construction that decomposes a multivariate density
into a product of particular conditional distribution functions [2]. Each pair copula construction can be
represented as a nested set of tree structures {T1, . . . , Td−1}. In these trees, each edge corresponds to a
pair copula density. The nodes in T1 are the distribution functions of margins 1, . . . , d. The nodes in
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Figure S1: Example C-vine with 4 elements. (A) Illustration of conditional elements and their relations.
Each tree level adds one element to the conditioning set. (B) Corresponding nested trees T1, T2 and T3.
The nodes denote (conditional) cumulative distribution functions whereas the edges denote pair copulas
that are used to construct the nodes of the next tree.

T2, . . . , Td−1 are conditional distribution functions that stem from the edges of the previous tree: edges
in tree Ti become nodes in tree Ti+1. In the C-vine, each tree Ti has a particular node that is connected
to all other nodes in the tree.

The structure of a C-vine with 4 elements is illustrated in Fig. S1. The construction starts with
the margins 1, . . . , 4 (level one, Fig. S1A top row). Each of the following levels then builds consecutive
distributions of conditional elements: each level has an element that is connected to all other elements.
In the illustration (Fig. S1), this is element 1 in level one, element 2 in level two and so forth. These
elements are successively added to the conditioning sets of the following levels until all elements but one
belong to the conditioning set (level four, Fig. S1A bottom row).

The construction of this C-vine is represented more accurately as a set of nested trees {T1, . . . , T3}
(Fig. S1B). The nodes in tree T1 are the marginal CDFs 1, . . . , 4. In this tree, element 1 is the one that is
connected to all other elements by means of three copulas C12, C13 and C14 which yield conditional CDFs
F2|1, F3|1 and F4|1, respectively. These conditional CDFs then form the nodes of tree T2 and so forth.

Formally, the C-vine decomposition of a density fX takes the following form [2]:

fX(x1, . . . , xd) =
d∏

k=1

f(xk)
d−1∏
j=1

d−j∏
i=1

cj,i+j|1,...,j−1(F (xj |x1, . . . , xj−1), F (xi+j |x1, . . . , xj−1)), (S5)

where F (xi|xj1 , . . . , xjk) denotes the conditional cumulative distribution function of Xi given Xj1 , . . . ,
Xjk .

3



4 Bivariate copula families for pair copula constructions

Here we propose copula families for modeling diverse dependency structures. The list partly follows [2] but
our list contains notable differences to make the families more suitable for efficient likelihood calculation.
For modeling upper tail dependence, we propose the survival transformation of the lower tail dependence
Clayton copula instead of the Gumbel copula. The Gumbel copula would require numerical inversion of
its conditional cumulative distribution function. The survival Clayton copula, on the other hand, can be
treated fully analytically and thus does not require any numerical inversion. This choice has the additional
advantage of having more consistent dependency structures: the shape of the survival Clayton copula is
that of the mirrored original Clayton copula whereas the Gumbel copula has a different shape. We also
propose to use the partial survival transformation with respect to only one element of the Clayton copula
to obtain negative dependencies with tail dependence. With this procedure we have a versatile procedure
for obtaining heavy tail dependence in all four corners of the bivariate distribution.

In the following, for each of the copula families, we list the cumulative distribution function, the
density, the conditional cumulative distribution function and the inverse of the conditional cumulative
distribution function. These are all the functions that are required for applying inference, sampling and
likelihood calculations as proposed in the preceding sections. For each of the families, if θ = 0 then the
copula is the independence copula.

4.1 Bivariate Gaussian copula

The Gaussian copula is the dependence structure that is derived from the multivariate normal distribution.
It is symmetric and does not have heavy tails.
Cumulative distribution function:

C(ui, u2; θ) = Φθ

(
Φ−1(u1),Φ

−1(u2)
)

=

∫ u1

−∞

∫ u2

−∞
c(s, t; θ)dsdt, (S6)

where Φ is the cumulative distribution function of the standard normal distribution and Φθ is the cu-
mulative distribution function of the bivariate standard normal distribution function with correlation
parameter θ.
Density:

∂2C(u1, u2; θ)

∂u1∂u2
= c(u1, u2; θ) (S7)

=
1√

1− θ2
· exp

(
2θΦ−1(u1)Φ

−1(u2)− θ2((Φ−1(u1))2 + (Φ−1(u2))
2)

2(1− θ2)

)

Conditional cumulative distribution function:

C1|2(u1|u2; θ) =
∂C(u1, u2; θ)

∂u2
= Φ

(
Φ−1(u1)− θΦ−1(u2)√

1− θ2

)
(S8)

Inverse of conditional cumulative distribution function with respect to u1:

C−11|2 (u1|u2; θ) = Φ
(

Φ−1(u1)
√

1− θ2 + θΦ−1(u2)
)

(S9)
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4.2 Bivariate Student copula

The Student copula is a symmetric copula like the Gaussian copula but with heavy tails. It is derived
from Student’s t distribution.
Cumulative distribution function:

C(u1, u2;θ) = Tθ

(
T−1θ2

(u1), T
−1
θ2

(u2)
)

=

∫ u1

−∞

∫ u2

−∞
c(s, t; θ)dsdt, (S10)

where Tθ2 is the cumulative distribution function of the standard Student’s t distribution and Tθ is
the cumulative distribution function of the bivariate standard Student’s t distribution function with
correlation parameter θ1 and degrees of freedom θ2.
Density:

∂2C(u1, u2;θ)

∂u1∂u2
= c(u1, u2;θ) (S11)

=
Γ((θ2 + 2)/2)

Γ(θ2/2)πθ2
√

1− θ21tθ2(T−1θ2
(u1))tθ2(T−1θ2

(u2))

·

(
1 +

(T−1θ2
(u1))

2 − 2θ1T
−1
θ2

(u1)T
−1
θ2

(u2) + (T−1θ2
(u2))

2

θ2(1− θ21)

)−(θ2+2)/2

,

where tθ2 is the probability density function of the standard Student’s t distribution.
Conditional cumulative distribution function:

C1|2(u1|u2;θ) =
∂C(u1, u2;θ)

∂u2
= Tθ2+1

(√
θ2 + 1

θ2 + (T−1θ2
(u2))2

T−1θ2
(u1)− θ1T−1θ2

(u2)√
1− θ21

)
(S12)

Inverse of conditional cumulative distribution function with respect to u1:

C−11|2 (u1|u2;θ) = Tθ2

√(1− θ21)(θ2 + (T−1θ2
(u2))2)

θ2 + 1
T−1θ2+1(u1) + θ1T

−1
θ2

(u2)

 (S13)

4.3 Bivariate Clayton copula and survival Clayton copulas

We propose to use the Clayton copula for both lower and upper tail dependencies. The cumulative
distribution function, the density, the conditional cumulative distribution function and its inverse can
all be treated analytically and thus are applicable for efficient likelihood calculation. We apply survival
transformations to switch from the original lower tail dependence to upper tail dependence and to negative
dependence. In this section, we always set θ ∈ (0,∞)1.

1We could also extend the range of the Clayton parameter θ to include values in [−1, 0). This would yield negative
Clayton dependence but with a shape different from that for positive dependence. Instead, we use survival Clayton copulas
to model negative dependence in a form that has the same shape as for positive dependence.
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4.3.1 Original Clayton copula

This copula has lower tail dependence.
Cumulative distribution function:

CClayton(u1, u2; θ) =
(

max
{
u−θ1 + u−θ2 − 1, 0

})−1/θ
(S14)

Density:
∂2C(u1, u2; θ)

∂u1∂u2
= (1 + θ)(u1u2)

−1−θ
(
u−θ1 + u−θ2 − 1

)−1/θ−2
(S15)

Conditional cumulative distribution function:

C1|2(u1|u2; θ) =
∂C(u1, u2; θ)

∂u2
=
(

max
{
u
−(1+θ)
2 (u−θ1 + u−θ2 − 1)−(1+1/θ), 0

})
(S16)

Inverse of conditional cumulative distribution function with respect to u1:

C−11|2 (u1|u2; θ) = (1− u−θ2 + (u1u
1+θ
2 )−θ/(θ+1))−1/θ (S17)

4.3.2 Survival Clayton copula

This copula has upper tail dependence.
Cumulative distribution function:

C(u1, u2; θ) = u1 + u2 − 1 + CClayton(1− u1, 1− u2; θ) (S18)

= u1 + u2 − 1 +
(

max
{

(1− u1)−θ + (1− u2)−θ − 1, 0
})−1/θ

Density:

∂2C(u1, u2; θ)

∂u1∂u2
= (1 + θ)((1− u1)(1− u2))−1−θ

(
(1− u1)−θ + (1− u2)−θ − 1

)−1/θ−2
(S19)

Conditional cumulative distribution function:

C1|2(u1|u2; θ) =
∂C(u1, u2; θ)

∂u2
= 1−

(
max

{
(1− u2)−(1+θ)((1− u1)−θ + (1− u2)−θ − 1)−(1+1/θ), 0

})
(S20)

Inverse of conditional cumulative distribution function with respect to u1:

C−11|2 (u1|u2; θ) = 1− (1− (1− u2)−θ + ((1− u1)(1− u2)1+θ)−θ/(θ+1))−1/θ (S21)
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4.3.3 Survival Clayton copula with respect to first argument

This copula has negative dependence with tail at u1 high, u2 low.
Cumulative distribution function:

C(u1, u2; θ) = u2 − CClayton(1− u1, u2; θ) (S22)

= u2 −
(

max
{

(1− u1)−θ + u−θ2 − 1, 0
})−1/θ

Density:
∂2C(u1, u2; θ)

∂u1∂u2
= (1 + θ)((1− u1)u2)−1−θ

(
(1− u1)−θ + u−θ2 − 1

)−1/θ−2
(S23)

Conditional cumulative distribution function:

C1|2(u1|u2; θ) =
∂C(u1, u2; θ)

∂u2
= 1−

(
max

{
u
−(1+θ)
2 ((1− u1)−θ + u−θ2 − 1)−(1+1/θ), 0

})
(S24)

Inverse of conditional cumulative distribution function with respect to u1:

C−11|2 (u1|u2; θ) = 1− (1− u−θ2 + ((1− u1)u1+θ2 )−θ/(θ+1))−1/θ (S25)

4.3.4 Survival Clayton copula with respect to second argument

This copula has negative dependence with tail at u1 low, u2 high.
Cumulative distribution function:

C(u1, u2; θ) = u1 − CClayton(u1, 1− u2; θ) (S26)

= u1 −
(

max
{
u−θ1 + (1− u2)−θ − 1, 0

})−1/θ
Density:

∂2C(u1, u2; θ)

∂u1∂u2
= (1 + θ)(u1(1− u2))−1−θ

(
u−θ1 + (1− u2)−θ − 1

)−1/θ−2
(S27)

Conditional cumulative distribution function:

C1|2(u1|u2; θ) =
∂C(u1, u2; θ)

∂u2
=
(

max
{

(1− u2)−(1+θ)(u−θ1 + (1− u2)−θ − 1)−(1+1/θ), 0
})

(S28)

Inverse of conditional cumulative distribution function with respect to u1:

C−11|2 (u1|u2; θ) = (1− (1− u2)−θ + (u1(1− u2)1+θ)−θ/(θ+1))−1/θ (S29)
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5 Potential dependence of mixed vine-based models on external vari-
ables

The mixed vine-based models that we propose are fully parametric models. Therefore, a subset or all
parameters of the margins and of the copulas can be made dependent on external variables. For instance,
suppose that the model is 10-D and we decide to make margins 1-5 (representing spike counts of neurons
in the visual pathway) depend on the orientation of a bar. If we know the tuning curves of the neurons,
we can directly plug them into the rate parameter of the margins. If not, we can still fit the parameters of
margins 1-5 depending on the orientation. Depending on whether the element with the higher sampling
rate carries substantial information, one can either downsample the signal with the higher sampling rate
or upsample the signal with the lower sampling rate. The latter can be accomplished by interpolating
between samples or by assuming constant missing signals. In the present form, the model does not make
any assumptions or use of different sampling rates. Due to its purly statistical nature, it will still pick up
any information there is in the different signals.

6 VERTEX network parameters

We used the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX) [7] to simulate
biologically realistic network activity. The parameters of this network were taken from VERTEX tutorial
2 [1] except for the mean random currents in the second stimulus condition. Here we list all parameters
that we used.

We simulated a cube of tissue with dimensions X=2500 µm, Y=400 µm and Z=200 µm containing
1 layer and 10 strips with an extracellular medium conductivity of 0.3 S/m. In all cases, the spiking
dynamics followed an adaptive exponential model [3].

6.1 Pyramidal cells

85% of the total cell population represented pyramidal cells. The spike generation threshold was set to
−50 mV with spike steepness parameter 2 mV, scale factor of the spike after-hyperpolarization (AHP)
current 2.6 nS, AHP current time constant 65 ms and instantaneous change in the AHP current after a
spike set to 220 pA. The membrane potential that the soma compartment was reset to after firing a spike
was set to −60 mV. We used −45 mV as the membrane potential at which a spike was detected. Each
neuron contained 8 compartments with compartmental parent tree structure [0, 1, 2, 2, 4, 1, 6, 6], lengths
13, 48, 124, 145, 137, 40, 143, 143 µm, diameters 29.8, 3.75, 1.91, 2.81, 2.69, 2.62, 1.69, 1.69 µm, X-
(start,end) coordinates in microns (0,0), (0,0), (0,124), (0,0), (0,0), (0,0), (0,-139), (0,139), Y-(start,end)
coordinates in microns (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0) and Z-(start,end) coordinates in
microns (-13,0), (0,48), (48,48), (48,193), (193,33), (-13,-5), (-53,-13), (-53,-13). All dendrites were aligned
along the Z-axis.

Passive properties. We set the specific membrane capacitance to 2.96 µF/mm2, the specific membrane
resistance to 20000/2.96 Ω/mm2, the axial resistance to 150 Ωcm and the membrane leak conductance
reversal potential to −70 mV.

Input. We simulated input by means of random currents following an Ornstein-Uhlenbeck process with
time constant 2 ms and standard deviation 90 pA. We had two stimulus conditions. In condition 1, we

8



set the mean value of the process to 330 pA and in condition 2 we set the mean value to 300 pA.

6.2 Basket interneurons

15% of the total cell population represented basket interneurons. The spike generation threshold was set to
−50 mV with spike steepness parameter 2 mV, scale factor of the AHP current 0.4 nS, AHP current time
constant 10 ms and instantaneous change in the AHP current after a spike set to 40 pA. The membrane
potential that the soma compartment was reset to after firing a spike was set to −65 mV. Again, we used
−45 mV as the membrane potential at which a spike was detected. Each neuron contained 7 compartments
with compartmental parent tree structure [0, 1, 2, 2, 1, 5, 5], lengths 10, 56, 151, 151, 56, 151, 151 µm,
diameters 24, 1.93, 1.95, 1.95, 1.93, 1.95, 1.95 µm, X-(start,end) coordinates in microns (0,0), (0,0),
(0,107), (0,-107), (0,0), (0,-107), (0,107), Y-(start,end) coordinates in microns (0,0), (0,0), (0,0), (0,0),
(0,0), (0,0), (0,0) and Z-(start,end) coordinates in microns (-10,0), (0,56), (56,163), (56,163), (-10,-66),
(-66,-173), (-66,-173).

Passive properties. We set the specific membrane capacitance to 2.93 µF/mm2, the specific membrane
resistance to 15000/2.93 Ω/mm2, the axial resistance to 150 Ωcm and the membrane leak conductance
reversal potential to −70 mV.

Input. We simulated input by means of random currents following an Ornstein-Uhlenbeck process with
time constant 0.8 ms and standard deviation 50 pA. For the interneurons, we set the mean value of the
process to 190 pA in stimulus condition 1 and to 40 pA in condition 2.

6.3 Connectivity parameters

We used single exponential current based synapses for all connections.
From pyramidal neurons to pyramidal neurons each presynaptic neuron made 1700 connections to

postsynaptic neurons with weight 1 pA and an exponential decay time constant set to 2 ms. From pyra-
midal neurons to basket interneurons each presynaptic neuron made 300 connections to postsynaptic
neurons with weight 28 pA and an exponential decay time constant set to 1 ms. The axonal arbor for
these connections followed a 2D-Gaussian connection probability profile with standard deviation 250 µm,
cutoff 500 µm and sliced synapses.

From basket interneurons to basket interneurons each presynaptic neuron made 1000 connections to
postsynaptic neurons with weight −5 pA and an exponential decay time constant set to 6 ms. From
basket interneurons to pyramidal neurons each presynaptic neuron made 200 connections to postsynaptic
neurons with weight −4 pA and an exponential decay time constant set to 3 ms. The axonal arbor for
these connections followed a 2D-Gaussian connection probability profile with standard deviation 200 µm,
cutoff 500 µm and sliced synapses.

In all cases, axonal conduction speed was set to 0.3 m/s and the synapse release delay was set to
0.5 ms.
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