

ISO/IEC 17025:2005-Accredited Testing Laboratory

February 12, 2019

Dr. Aoife Daly Dendro DK Fuglsang Alle 111 Broenshoej, 2700 Denmark

RE: Radiocarbon Dating Results

Dear Dr. Daly,

Enclosed are the radiocarbon dating results for two samples recently sent to us. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable. The Conventional Radiocarbon Ages have all been corrected for total fractionation effects and where applicable, calibration was performed using 2013 calibration databases (cited on the graph pages).

The web directory containing the table of results and PDF download also contains pictures, a cvs spreadsheet download option and a quality assurance report containing expected vs. measured values for 3-5 working standards analyzed simultaneously with your samples.

Reported results are accredited to ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 standards and all chemistry was performed here in our laboratory and counted in our own accelerators here. Since Beta is not a teaching laboratory, only graduates trained to strict protocols of the ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 program participated in the analyses.

As always Conventional Radiocarbon Ages and sigmas are rounded to the nearest 10 years per the conventions of the 1977 International Radiocarbon Conference. When counting statistics produce sigmas lower than +/- 30 years, a conservative +/- 30 BP is cited for the result. The reported d13C values were measured separately in an IRMS (isotope ratio mass spectrometer). They are NOT the AMS d13C which would include fractionation effects from natural, chemistry and AMS induced sources.

When interpreting the results, please consider any communications you may have had with us regarding the samples.

Our invoice will be emailed separately. Please forward it to the appropriate officer or send a credit card authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact us.

Sincerely,

Ronald E. Hatfield Director

REPORT OF RADIOCARBON DATING ANALYSES

Aoife Daly			Report Date:	February 12, 2019
Dendro DK			Material Received:	January 23, 2019
Laboratory Number	Sample (Code Number	Percent Modern Ca Calendar Calibrate	Radiocarbon Age (BP) or arbon (pMC) & Stable Isotopes ed Results: 95.4 % Probability Density Range Method (HPD)
Beta - 516637	SI	H2018.605.029A	440 +/- 30 BP	IRMS δ13C: -26.5 ο/οο
	(******)	116 - 1490 cal AD 302 - 1610 cal AD	(534 - 460 cal BP) (348 - 340 cal BP)	
	Analyzed Material:	: (wood) acid/alkali/acid Wood AMS-Standard delivery		
	Fraction Modern Carbon:	0.9467 +/- 0.0035 -53.30 +/- 3.54 o/oo		
	2	-61.17 +/- 3.54 o/oo(1950:2	,	
	· ·	BetaCal3.21: HPD method		

Results are ISO/IEC-17025:2005 accredited. No sub-contracting or student labor was used in the analyses. All work was done at Beta in 4 in-house NEC accelerator mass spectrometers and 4 Thermo IRMSs. The "Conventional Radiocarbon Age" was calculated using the Libby half-life (5568 years), is corrected for total isotopic fraction and was used for calendar calibration where applicable. The Age is rounded to the nearest 10 years and is reported as radiocarbon years before present (BP), "present" = AD 1950. Results greater than the modern reference are reported as percent modern carbon (pMC). The modern reference standard was 95% the 14C signature of NIST SRM-4990C (oxalic acid). Quoted errors are 1 sigma counting statistics. Calculated sigmas less than 30 BP on the Conventional Radiocarbon Age are conservatively rounded up to 30. d13C values are on the material itself (not the AMS d13C). d13C and d15N values are relative to VPDB-1. References for calendar calibrations are cited at the bottom of calibration graph pages.

REPORT OF RADIOCARBON DATING ANALYSES

Aoife Daly			Report Date:	February 12, 2019
Dendro DK			Material Received:	January 23, 2019
Laboratory Number	Sample C	Code Number	Percent Modern Ca Calendar Calibrate	Radiocarbon Age (BP) or arbon (pMC) & Stable Isotopes ad Results: 95.4 % Probability Density Range Method (HPD)
Beta - 516638	SF	l2018.605.040A	330 +/- 30 BP	IRMS δ13C: -24.3 ο/οο
	(95.4%) 14	477 - 1642 cal AD	(473 - 308 cal BP)	
	Analyzed Material:	(wood) acid/alkali/acid Wood AMS-Standard delivery 95.98 +/- 0.36 pMC		
	D14C:	-40.25 +/- 3.58 o/oo -48.23 +/- 3.58 o/oo(1950:		
	-	BetaCal3.21: HPD method		

Results are ISO/IEC-17025:2005 accredited. No sub-contracting or student labor was used in the analyses. All work was done at Beta in 4 in-house NEC accelerator mass spectrometers and 4 Thermo IRMSs. The "Conventional Radiocarbon Age" was calculated using the Libby half-life (5568 years), is corrected for total isotopic fraction and was used for calendar calibration where applicable. The Age is rounded to the nearest 10 years and is reported as radiocarbon years before present (BP), "present" = AD 1950. Results greater than the modern reference are reported as percent modern carbon (pMC). The modern reference standard was 95% the 14C signature of NIST SRM-4990C (oxalic acid). Quoted errors are 1 sigma counting statistics. Calculated sigmas less than 30 BP on the Conventional Radiocarbon Age are conservatively rounded up to 30. d13C values are on the material itself (not the AMS d13C). d13C and d15N values are relative to VPDB-1. References for calendar calibrations are cited at the bottom of calibration graph pages.

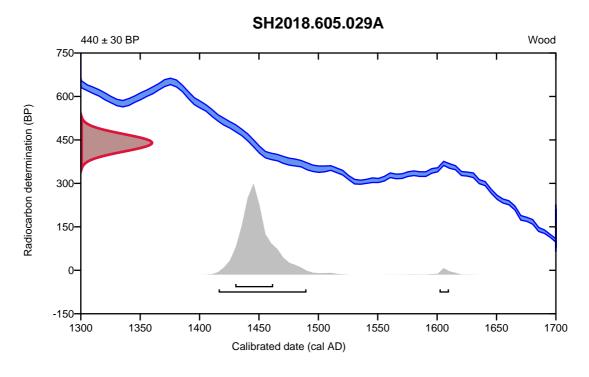
Calibration of Radiocarbon Age to Calendar Years

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -26.5 o/oo)

Laboratory number Beta-516637

Conventional radiocarbon age 440 ± 30 BP


95.4% probability

(94%)	1416 - 1490 cal AD	(534 - 460 cal BP)
(1.4%)	1602 - 1610 cal AD	(348 - 340 cal BP)

68.2% probability

1430 - 1462 cal AD (68.2%)

(520 - 488 cal BP)

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. **References to Database INTCAL13** Reimer, et.al., 2013, Radiocarbon55(4).

Beta Analytic Radiocarbon Dating Laboratory

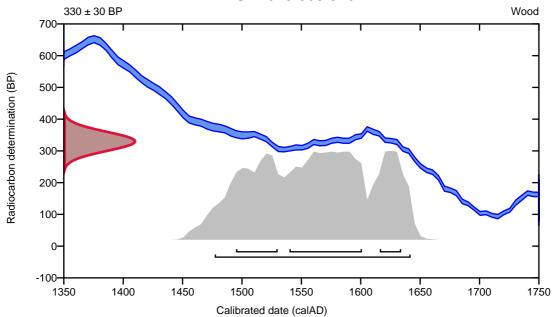
4985 S.W. 74th Court, Miami, Florida 33155 • Tel: (305)667-5167 • Fax: (305)663-0964 • Email: beta@radiocarbon.com

Page 4 of 5

Calibration of Radiocarbon Age to Calendar Years

(highest probability ranges: INTCAL13)

(Variables: d13C = -24.3 o/oo)


- Laboratory number Beta-516638
- Conventional radiocarbon age 330 ± 30 BP

95.4% probability

(95.4%) 1477 - 1642 cal AD (473 - 308 cal BP)

68.2% probability

(37.4%)	1540 - 1601 cal AD	(410 - 349 cal BP)
(19%)	1495 - 1530 cal AD	(455 - 420 cal BP)
(11.8%)	1616 - 1634 cal AD	(334 - 316 cal BP)

SH2018.605.040A

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. **References to Database INTCAL13**

Reimer, et.al., 2013, Radiocarbon55(4).

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miami, Florida 33155 • Tel: (305)667-5167 • Fax: (305)663-0964 • Email: beta@radiocarbon.com

Page 5 of 5

ISO/IEC 17025:2005-Accredited Testing Laboratory

Quality Assurance Report

This report provides the results of reference materials used to validate radiocarbon analyses prior to reporting. Known-value reference materials were analyzed quasi-simultaneously with the unknowns. Results are reported as expected values vs measured values. Reported values are calculated relative to NIST SRM-4990B and corrected for isotopic fractionation. Results are reported using the direct analytical measure percent modern carbon (pMC) with one relative standard deviation. Agreement between expected and measured values is taken as being within 2 sigma agreement (error x 2) to account for total laboratory error.

Report Date:	February 12, 2019
Submitter:	Dr. Aoife Daly

QA MEASUREMENTS

Reference 1	
Expected Value:	0.51 +/-0.04
Measured Value:	0.49 +/- 0.03 pMC
Agreement:	Accepted
Reference 2	
Expected Value:	129.41 +/- 0.06 pMC
Measured Value:	129.45 +/- 0.35 pMC
Agreement:	Accepted
- /	
Reference 3	
Expected Value:	96.69 +/- 0.50 pMC
Measured Value:	97.34 +/- 0.28 pMC
Agreement:	Accepted

COMMENT: All measurements passed acceptance tests.

Validation:

1:

Date: February 12, 2019

ISO/IEC 17025:2005-Accredited Testing Laboratory

March 18, 2019

Dr. Aoife Daly Dendro DK Fuglsang Alle 111 Broenshoej, 2700 Denmark

RE: Radiocarbon Dating Results

Dear Dr. Daly,

Enclosed are the radiocarbon dating results for two samples recently sent to us. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable. The Conventional Radiocarbon Ages have all been corrected for total fractionation effects and where applicable, calibration was performed using 2013 calibration databases (cited on the graph pages).

The web directory containing the table of results and PDF download also contains pictures, a cvs spreadsheet download option and a quality assurance report containing expected vs. measured values for 3-5 working standards analyzed simultaneously with your samples.

Reported results are accredited to ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 standards and all chemistry was performed here in our laboratory and counted in our own accelerators here. Since Beta is not a teaching laboratory, only graduates trained to strict protocols of the ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 program participated in the analyses.

As always Conventional Radiocarbon Ages and sigmas are rounded to the nearest 10 years per the conventions of the 1977 International Radiocarbon Conference. When counting statistics produce sigmas lower than +/- 30 years, a conservative +/- 30 BP is cited for the result. The reported d13C values were measured separately in an IRMS (isotope ratio mass spectrometer). They are NOT the AMS d13C which would include fractionation effects from natural, chemistry and AMS induced sources.

When interpreting the results, please consider any communications you may have had with us regarding the samples.

Our invoice will be emailed separately. Please forward it to the appropriate officer or send a credit card authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact us.

Sincerely,

Chris Patrich Digital signature on file

Chris Patrick Director

REPORT OF RADIOCARBON DATING ANALYSES

Aoife Daly			Report Date:	March 18, 2019
Dendro DK			Material Received:	March 08, 2019
Laboratory Number	Sample C	Code Number	Percent Modern Ca Calendar Calibrate	Radiocarbon Age (BP) or arbon (pMC) & Stable Isotopes ed Results: 95.4 % Probability bensity Range Method (HPD)
Beta - 520554		2018.605.040B	500 +/- 30 BP	IRMS δ13C: -23.5 ο/οο
	()	98 - 1449 cal AD 34 - 1336 cal AD	(552 - 501 cal BP) (616 - 614 cal BP)	
	Analyzed Material:	(wood) acid/alkali/acid Wood AMS-Standard delivery		
	Fraction Modern Carbon:			
		-60.35 +/- 3.51 o/oo -68.16 +/- 3.51 o/oo(1950:2 (without d13C correction):		
	-	BetaCal3.21: HPD method		

Results are ISO/IEC-17025:2005 accredited. No sub-contracting or student labor was used in the analyses. All work was done at Beta in 4 in-house NEC accelerator mass spectrometers and 4 Thermo IRMSs. The "Conventional Radiocarbon Age" was calculated using the Libby half-life (5568 years), is corrected for total isotopic fraction and was used for calendar calibration where applicable. The Age is rounded to the nearest 10 years and is reported as radiocarbon years before present (BP), "present" = AD 1950. Results greater than the modern reference are reported as percent modern carbon (pMC). The modern reference standard was 95% the 14C signature of NIST SRM-4990C (oxalic acid). Quoted errors are 1 sigma counting statistics. Calculated sigmas less than 30 BP on the Conventional Radiocarbon Age are conservatively rounded up to 30. d13C values are on the material itself (not the AMS d13C). d13C and d15N values are relative to VPDB-1. References for calendar calibrations are cited at the bottom of calibration graph pages.

REPORT OF RADIOCARBON DATING ANALYSES

Aoife Daly			Report Date:	March 18, 2019
Dendro DK			Material Received:	March 08, 2019
Laboratory Number	Sample C	Code Number	Percent Modern Ca Calendar Calibrate	Radiocarbon Age (BP) or rbon (pMC) & Stable Isotopes ed Results: 95.4 % Probability ensity Range Method (HPD)
Beta - 520555		2018.605.029B	560 +/- 30 BP	IRMS δ13C: -24.8 ο/οο
	(• • • • • • • • • • • • • • • • • • •	07 - 1362 cal AD 85 - 1429 cal AD	(643 - 588 cal BP) (565 - 521 cal BP)	
	Analyzed Material:	(wood) acid/alkali/acid Wood AMS-Standard delivery		
	Fraction Modern Carbon: D14C [:]	0.9327 +/- 0.0035 -67.34 +/- 3.48 o/oo		
	Δ 14C: Measured Radiocarbon Age:	-75.09 +/- 3.48 o/oo(1950:2 (without d13C correction):	560 +/- 30 BP	
	Calibration:	BetaCal3.21: HPD method	: INTCAL13	

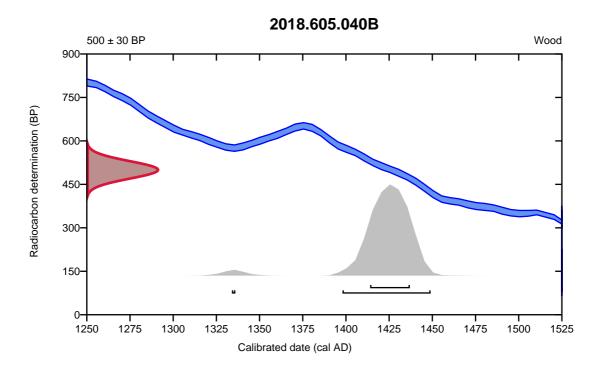
Results are ISO/IEC-17025:2005 accredited. No sub-contracting or student labor was used in the analyses. All work was done at Beta in 4 in-house NEC accelerator mass spectrometers and 4 Thermo IRMSs. The "Conventional Radiocarbon Age" was calculated using the Libby half-life (5568 years), is corrected for total isotopic fraction and was used for calendar calibration where applicable. The Age is rounded to the nearest 10 years and is reported as radiocarbon years before present (BP), "present" = AD 1950. Results greater than the modern reference are reported as percent modern carbon (pMC). The modern reference standard was 95% the 14C signature of NIST SRM-4990C (oxalic acid). Quoted errors are 1 sigma counting statistics. Calculated sigmas less than 30 BP on the Conventional Radiocarbon Age are conservatively rounded up to 30. d13C values are on the material itself (not the AMS d13C). d13C and d15N values are relative to VPDB-1. References for calendar calibrations are cited at the bottom of calibration graph pages.

Calibration of Radiocarbon Age to Calendar Years

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -23.5 o/oo)

Laboratory number Beta-520554


Conventional radiocarbon age 500 ± 30 BP

95.4% probability

(94.9%)	1398 - 1449 cal AD	(552 - 501 cal BP)
(0.5%)	1334 - 1336 cal AD	(616 - 614 cal BP)

68.2% probability

(68.2%)	1414 - 1437 cal AD	(536 - 513 cal BP)
---------	--------------------	--------------------

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. **References to Database INTCAL13** Reimer, et.al., 2013, Radiocarbon55(4).

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miami, Florida 33155 • Tel: (305)667-5167 • Fax: (305)663-0964 • Email: beta@radiocarbon.com

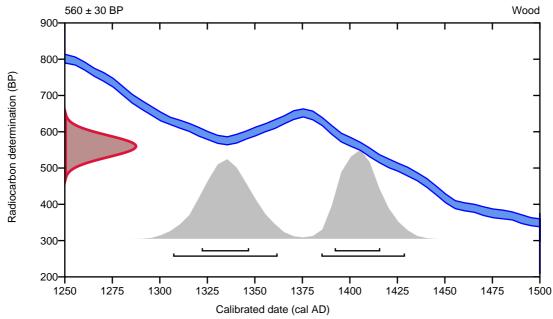
Page 4 of 5

Calibration of Radiocarbon Age to Calendar Years

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -24.8 o/oo)

Laboratory number Beta-520555


Conventional radiocarbon age 560 ± 30 BP

95.4% probability

(49.9%)	1307 - 1362 cal AD	(643 - 588 cal BP)
(45.5%)	1385 - 1429 cal AD	(565 - 521 cal BP)

68.2% probability

(34.3%)	1392 - 1416 cal AD	(558 - 534 cal BP)
(33.9%)	1322 - 1347 cal AD	(628 - 603 cal BP)

2018.605.029B

Database used INTCAL13

INTOAL

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. **References to Database INTCAL13**

Reimer, et.al., 2013, Radiocarbon55(4).

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miami, Florida 33155 • Tel: (305)667-5167 • Fax: (305)663-0964 • Email: beta@radiocarbon.com

Page 5 of 5

ISO/IEC 17025:2005-Accredited Testing Laboratory

Quality Assurance Report

This report provides the results of reference materials used to validate radiocarbon analyses prior to reporting. Known-value reference materials were analyzed quasi-simultaneously with the unknowns. Results are reported as expected values vs measured values. Reported values are calculated relative to NIST SRM-4990B and corrected for isotopic fractionation. Results are reported using the direct analytical measure percent modern carbon (pMC) with one relative standard deviation. Agreement between expected and measured values is taken as being within 2 sigma agreement (error x 2) to account for total laboratory error.

Report Date:March 18, 2019Submitter:Dr. Aoife Daly

QA MEASUREMENTS

Reference 1	
Expected Value:	41.14 +/- 0.10 pMC
Measured Value:	41.28 +/- 0.15 pMC
Agreement:	Accepted
Reference 2	
Expected Value:	0.51 +/-0.04
Measured Value:	0.51 +/- 0.03 pMC
Agreement:	Accepted
Reference 3	
Expected Value:	129.41 +/- 0.06 pMC
Measured Value:	129.51 +/- 0.37 pMC
Agreement:	Accepted

COMMENT:

All measurements passed acceptance tests.

Validation:

Chios Patrick Digital signature on file

Date: March 18, 2019

ISO/IEC 17025:2005-Accredited Testing Laboratory

April 10, 2019

Dr. Aoife Daly Dendro DK Fuglsang Alle 111 Broenshoej, 2700 Denmark

RE: Radiocarbon Dating Results

Dear Dr. Daly,

Enclosed is the radiocarbon dating result for one sample recently sent to us. As usual, specifics of the analysis are listed on the report with the result and calibration data is provided where applicable. The Conventional Radiocarbon Age has been corrected for total fractionation effects and where applicable, calibration was performed using 2013 calibration databases (cited on the graph pages).

The web directory containing the table of results and PDF download also contains pictures, a cvs spreadsheet download option and a quality assurance report containing expected vs. measured values for 3-5 working standards analyzed simultaneously with your samples.

The reported result is accredited to ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 standards and all pretreatments and chemistry were performed here in our laboratories and counted in our own accelerators here in Miami. Since Beta is not a teaching laboratory, only graduates trained to strict protocols of the ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 program participated in the analysis.

As always Conventional Radiocarbon Ages and sigmas are rounded to the nearest 10 years per the conventions of the 1977 International Radiocarbon Conference. When counting statistics produce sigmas lower than +/- 30 years, a conservative +/- 30 BP is cited for the result. The reported d13C was measured separately in an IRMS (isotope ratio mass spectrometer). It is NOT the AMS d13C which would include fractionation effects from natural, chemistry and AMS induced sources.

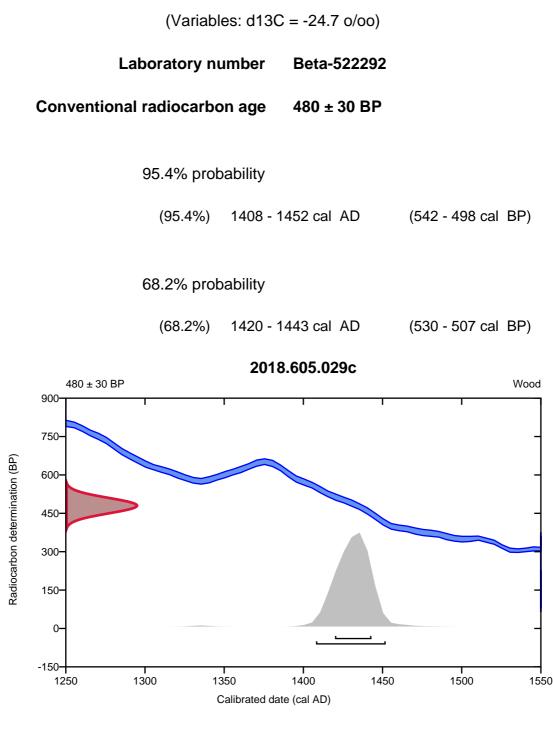
When interpreting the result, please consider any communications you may have had with us regarding the sample. As always, your inquiries are most welcome. If you have any questions or would like further details of the analysis, please do not hesitate to contact us.

Our invoice has been sent separately. Thank you for your prior efforts in arranging payment. As always, if you have any questions or would like to discuss the results, don't hesitate to contact us.

Sincerely,

Chis Patrick Digital signature on file

Chris Patrick Director


REPORT OF RADIOCARBON DATING ANALYSES

Aoife Daly			Report Date:	April 10, 2019
Dendro DK			Material Received:	April 02, 2019
Laboratory Number	Sample C	Code Number	Percent Modern Ca Calendar Calibrate	Radiocarbon Age (BP) or arbon (pMC) & Stable Isotopes ed Results: 95.4 % Probability Density Range Method (HPD)
Beta - 522292		2018.605.029c	480 +/- 30 BP	IRMS 513C: -24.7 o/oo
	(95.4%) 14	08 - 1452 cal AD	(542 - 498 cal BP)	
	Submitter Material:	-		
		(wood) acid/alkali/acid		
	Analyzed Material: Analysis Service	AMS-Standard delivery		
	Percent Modern Carbon:	•		
	Fraction Modern Carbon:	0.9420 +/- 0.0035		
	D14C:	-58.00 +/- 3.52 o/oo		
	Δ14C:	-65.83 +/- 3.52 o/oo(1950	:2,019.00)	
	Measured Radiocarbon Age:	(without d13C correction):	: 480 +/- 30 BP	
	Calibration:	BetaCal3.21: HPD method	d: INTCAL13	

Results are ISO/IEC-17025:2005 accredited. No sub-contracting or student labor was used in the analyses. All work was done at Beta in 4 in-house NEC accelerator mass spectrometers and 4 Thermo IRMSs. The "Conventional Radiocarbon Age" was calculated using the Libby half-life (5568 years), is corrected for total isotopic fraction and was used for calendar calibration where applicable. The Age is rounded to the nearest 10 years and is reported as radiocarbon years before present (BP), "present" = AD 1950. Results greater than the modern reference are reported as percent modern carbon (pMC). The modern reference standard was 95% the 14C signature of NIST SRM-4990C (oxalic acid). Quoted errors are 1 sigma counting statistics. Calculated sigmas less than 30 BP on the Conventional Radiocarbon Age are conservatively rounded up to 30. d13C values are on the material itself (not the AMS d13C). d13C and d15N values are relative to VPDB-1. References for calendar calibrations are cited at the bottom of calibration graph pages.

Calibration of Radiocarbon Age to Calendar Years

(High Probability Density Range Method (HPD): INTCAL13)

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. **References to Database INTCAL13** Reimer, et.al., 2013, Radiocarbon55(4).

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miami, Florida 33155 • Tel: (305)667-5167 • Fax: (305)663-0964 • Email: beta@radiocarbon.com

Page 3 of 3

ISO/IEC 17025:2005-Accredited Testing Laboratory

Quality Assurance Report

This report provides the results of reference materials used to validate radiocarbon analyses prior to reporting. Known-value reference materials were analyzed quasi-simultaneously with the unknowns. Results are reported as expected values vs measured values. Reported values are calculated relative to NIST SRM-4990B and corrected for isotopic fractionation. Results are reported using the direct analytical measure percent modern carbon (pMC) with one relative standard deviation. Agreement between expected and measured values is taken as being within 2 sigma agreement (error x 2) to account for total laboratory error.

Report Date:	April 10, 2019
Submitter:	Dr. Aoife Daly

QA MEASUREMENTS

Reference 1	
Expected Value:	0.42 +/- 0.04
Measured Value:	0.42 +/- 0.03 pMC
Agreement:	Accepted
Reference 2	
Expected Value:	129.41 +/- 0.06 pMC
Measured Value:	129.45 +/- 0.35 pMC
Agreement:	Accepted
Reference 3	
Expected Value:	96.69 +/- 0.50 pMC
Measured Value:	97.32 +/- 0.28 pMC
Agreement:	Accepted

COMMENT:

All measurements passed acceptance tests.

Validation:

Chios Patrick Digital signature on file

Date: April 10, 2019