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 

Abstract: Industrial waste disrupts the natural production of 

microalgae cultures. Cultivation of microalgae in a controlled 

environment highly results to biomass with lower contamination 

necessary as high-valued economic product. In response to the 

emerging challenges of sustainable energy production, the 

integration of computational intelligence and biosystems 

engineering is considered as an open research area. In this study, 

Chlorella vulgaris microalgae were cultivated in BG-11 growth 

medium on three customized surface-mount light bioreactors that 

are equipped with digital camera for growth monitoring in terms 

of accumulated biomass surface area and color reflectance 

intensity via IoT. Feature-based machine learning models 

predicted microalgae growth area in terms of water temperature, 

pH level and turbidity, and light intensity. Microalgae cultures 

were exposed to combinations of white artificial light source of 

2000 ± 1000 lux and water temperature of 27 ± 5°C using Peltier 

plate to discriminate biomass growth within a 30-day cultivation 

period. A total of nine environmental conditions were employed to 

clearly discriminate the impacts of environmental stressors to 

microalgae growth. Combined neighborhood component analysis 

and ReliefF was used to select high impact color features of C, Ye, 

M, H, and S with biomass area. Electromagnetism-like 

mechanism optimized-RBNN bested RNN and generalized 

processing regression with R2 of 0.985 and RMSE of 6.262. There 

is also considerable growth in biomass surface area for certain 

combinations of light intensity and water temperature (2125 ± 625 

lux and 28.75 ± 3.25°C), and turbidity and water pH 

concentrations (3.85 ± 0.15 NTU and 8.025 ± 0.775). However, the 

photobioreactor with 27°C and 2000 lux exposure is considered 

having the exact optimum controlled environment condition in 

cultivating Chlorella vulgaris based on the generated growth in 

biomass surface area of 38.314%. This developed intelligent 

system is scalable for seamless microalgae production of any 

strands for renewable energy resource. 
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I. INTRODUCTION 

The world is dependent on the use fuel to manufacture 

commodities, power large systems, and activate vehicle 

motion on the road [1]. Fossil fuel is the most consumed 

formed of fuel resulting to a great contribution in the 

vulnerability of the atmosphere to the threat of global climate 

change due to perilous greenhouse gas (GHG). As the 

concentration of carbon dioxide (CO2) emission intensifies 

due to the production of first generation of biofuel which is 

drawn from food crops [2], the use of algal biomass has 

numerous environmentally safe production processes to offer 

given a land area constraint. Both seawater and freshwater 

resources are now easily damaged by industrial sector due to 

improper disposing of chemicals [3-4], with the added 

malpractices of household communities that are not 

connected to a local sewage system [5]. Algal biomass is the 

third generation of biofuel that includes both microalgae and 

macroalgae resources. This promising approach of utilizing 

microorganisms to yield high-value products with economic 

impact is one of the attractive sustaining solutions in 

maintaining ecological balance and speeding up industrial 

revolution [6-7]. Biofactories, on the average, produces 

enough microalgae that is a key indicator for domestication 

[8]. The challenge of cultivating microalgae is provided with 

developing an optimal controlled biosystem to have faster 

production and cleaner biomass. Using artificial intelligence 

and life cycle analysis, the environmental impact of 

cultivating microalgae and transforming it to biofuels have 

been predicted [1,9]. A planning tool for microalgae 

agriculturist and bio-economist had been developed that 

outlines the environmental impact and its corresponding 

profit based on the strain of microalgae to be cultivated and 

harvesting approach [10]. Microalgae are unicellular 

microscopic photosynthetic microorganisms or phototrophs 

that are classified to cyanobacteria or chloroxybacteria and 

eukaryotic which is similar to green algae or chlorophyta [11]. 

It can be transformed in energy forms of biodiesel [12], 

bioethanol [13], biohydrogen [14] and biogas [15]. Biodiesel 

extracted from microalgae requires the purity of lipids and 

fatty acids in order to refine good oil.  
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The Philippines comprises the geographical epicenter of 

tropical algae diversity in the world as there are abundant 

microalgae both in marine and freshwater natural habitats 

such as Chlorella vulgaris (C. vulgaris), Spirulina platensis, 

Dunaliellasalina, Nannocloropsisculata, and Tetraselmis sp. 

These strains of microalgae have been characterized to 

normally depend on environmental parameters such as 

dissolved oxygen (dO2) and pH concentration [16-17]. 

Temperature effect was also analyzed based on the 

photosynthetic growth and biochemical reactions of 

Nannochloropsis oceanica and it was proven that decrease of 

temperature to 18°C results to suboptimal production of lipids 

necessary for extracting biofuel [18]. 

Aside for being labor intensive, mass culturing of 

microalgae in outdoor environment is often results to algal 

crashes. The introduction of indoor mass culture of 

microalgae using controlled photobioreactors is the currently 

ideal tactic to generate clean biofuels. In this manner, the 

quality of biomass is maintained, monitored, and altered by 

adjusting the pre-harvest factors such as light intensity, 

temperature, carbon dioxide, pH and water nutrients [19]. A 

photobioreactor (PBR) is a closed-system bioreactor that 

houses photoautotrophs and exposes it to light source to 

generate its own biomass. Outdoor photobioreactors are 

comparably larger than the one being used in indoor type that 

is mostly used in mass production of microalgae in the 

industry scale. Indoor photobioreactors, on the other hand, are 

mostly used to produce laboratory-grade biomass. There is 

quite a number of fabricated photobioreactors that are made 

using transparent horizontal and vertical tubes and cylindrical 

vessels, raceway pond, flat plate [20], biocoil, and bubble 

column [21]. These geometrical shapes of photobioreactors 

have a fallback in analyzing the surface area of microalgae as 

growth indicator and high developmental cost due to 

customization of curves to allow proper pressure inside the 

chamber. The challenge of high cost in lighting system and 

directional illumination is still present. A centered-light 

photobioreactor was developed [22] imposing that pattern of 

illumination and its intensity are highly considerable factors 

to increase the biomass yield of microalgae. Light 

management involving triggering on and off of light source 

[23] and variation of illumination spectrum [24] had been 

materialized to verify its impact to biomass growth.  

Biomass color is directly correlated with the light source 

spectrum. There is immediate increase in green chromaticity 

by cultivating Dunaliella tertiolecta (D. tertiolecta) using red 

and blue lights after 10 days compared to using white light 

[25]. Conventionally, microscopic segmentation is the 

approach for microalgae growth detection [26]. However, the 

integration of computer vision with computational 

intelligence offers vast applications of speeding up 

monitoring, detection, classification, and prediction of 

microalgae growth signatures [27-28]. Microalgae growth has 

been monitored by using spectral analysis that defines the 

different light absorbance of microalgae biomass surface 

[29], and image processing which uses hue saturation value 

(HSV) and cyan-magenta-yellow (CMYe) color spaces [30]. 

Despite of the abovementioned scientific studies in 

cultivating microalgae for biofuel production, automation 

using artificial intelligence has not been comprehensively 

explored yet. The challenge of distinguishing the harvest 

maturity and growth signatures of microalgae using bare eyes 

of the agriculturist is a subjective approach and prone to 

misclassification. Hence, the integration of computer vision 

and computational intelligence is an open research in the field 

of algal technology. In this study, Chlorella vulgaris is in-vitro 

cultivated with combinations of varying artificial 

photosynthetic light intensity and water temperature to 

discriminate the best environmental configuration for higher 

yield. The growth signatures considered are based on the 

acquired images which are color and phytomorphological 

features. Surface-mount light photobioreactors equipped with 

RGB digital camera were developed with IoT-based wireless 

sensor network for seamless data collection. pH concentration 

and turbidity level are also monitored in relation to 

microalgae growth. Optimized feature-based machine 

learning models were developed to predict microalgae 

growth. 

II.  MATERIALS AND METHODS 

The developmental architecture for Chlorella vulgaris 

growth signature prediction based on environmental harvest 

factors using feature-based machine learning models is shown 

in Fig. 1. In order to mimic the natural environmental 

stressors, photobioreactors were developed in consideration 

with light and temperature variations only. Sensors were 

deployed to quantify environmental stressors. MATLAB 

R2020a is the only computational intelligence software used 

in this study. Minitab 19 was used in statistics and Python 

programming language was used for intelligent electronic 

system development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Developmental architecture for chlorella vulgaris 

growth signature prediction based on environmental 

harvest factors using feature-based machine learning 

models 
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A. Phenotype Description and Artificial Environment 

Conditions 

Chlorella vulgaris is the strain of green microalgae that 

was cultivated in 30-day life cycle in a phytotron located in 

Las Piñas City, Philippines with coordinates of 14.4484° N 

and 120.9867° E. The microalgae culture was obtained from 

the Aquaculture Department (AQD) of the Southeast Asian 

Fisheries Development Center (SEAFDEC) in Binangonan, 

Rizal, Philippines. Photobioreactors were developed to 

contain Chlorella vulgaris culture with varying environmental 

conditions in terms of light intensity ranging from 1000 to 

3000 lux and enclosed chamber water temperature of 22 to 

32°C. Shown in Table 1 is the list of photobioreactor 

environmental test conditions with a total of 9 batches of 

microalgae cultivations. Each photobioreactor is configured 

based on the listed environmental conditions every 30 days. 

Only water temperature and light intensity were considered as 

controlled environmental stressors that will induce changes 

on growth rate of the microalgae culture contained on the 

vessel. The captured microalgae surface image has aspect 

ratio of 640 x 480 with horizontal and vertical resolutions of 

96 dpi and bit depth of 24. There is a total of 864 images 

collected over a month of cultivation for all the 

photobioreactors. 

Table- I: Environmental Test Conditions for Each 

Photobioreactor 

Test 

Chamber 

Water Temperature (°C) Light 

Intensity 

(lux) 
Cond. 1 Cond. 2 Cond. 3 

PBR 1 22 27 32 1000 

PBR 2 27 32 22 2000 

PBR 3 32 22 27 3000 

B. Photobioreactor Development 

Three photobioreactors were constructed to house 

Chlorella vulgaris. By definition, a photobioreactor utilizes 

light source to allow photosynthesis in the generation of 

biomass of phototropic microorganisms such as microalgae.  

In this study, photobioreactors are constructed using white 

plastic sheets, with dimensions of 57 cm x 42 cm x 37 cm 

(Fig. 2). This vessel can handle 80 liters of liquid. Artificial 

photosynthetic lighting was employed using T8 white light 

spectrum LED that is placed at the chamber cover. It was 

carefully considered that the whole water surface area is 

benefited with this light source. As light intensity is directly 

proportional to its power, a metal oxide semiconductor field 

effect transistor (MOSFET) driver circuit enhanced by pulse 

width modulation (PWM) was constructed to calibrate the 

light source from 3 to 7 watts. To control the water 

temperature of the bioreactor, a tandem configuration of two 

Peltier device which is composed of bismuth telluride 

(Bi2Te3) and tellurium (Te), was placed on the sidewall of the 

photobioreactor. It exhibits thermoelectric principle by 

generating heat with the aid of external power source. This 

configuration increases the efficiency of Peltier plate to 

provide lower temperature despite of high ambient 

temperature. Each Peltier plate is rated 150 watts. Relay 

circuit is constructed for the controls of Peltier activation. 

Aerator was also placed to promote carbon dioxide 

dissolution on to the aqueous system.  

One mote per photobioreactor is configured to monitor the 

environmental conditions. It is constructed by integrating 

TSL2561 light sensor, DS18B20 weather-proof temperature 

sensor, SE0198 turbidity sensor and Gravity pH sensor with 

Arduino Mega as the processing core in enabling the array of 

sensors (Fig. 3). The Arduino Mega microcontroller is then 

connected with Raspberry Pi 3 Model B+ for wireless 

transmission of acquired sensor data. 

 

 

Fig 2. Design of (a) photobioreactor test platform and (b) 

the component placement of a single mote 

 

Fig 3. System block diagram of a single mote placed on a 

photobioreactor to control light intensity and 

temperature configuration and monitor environmental 

stressors 

To render data integrity on the acquisition module, each 

sensor was subjected to calibration. pH sensor underwent 

three-point calibration where each sensor probe is properly 

submerged to containers with pH 7, 4, and 10 calibration 

solution, resembling neutral, acidic, and basic concentrations, 

separately for two minutes.  
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The sensor probe is rinsed with distilled water (dH2O) and 

dried with paper towel before contacting with another test 

solution. DS18B20 temperature sensor is corrected using 

two-point calibration technique by subjecting the sensor 

metallic probes to boiling and freezing point conditions [31]. 

TSL2561 luminosity sensor is also corrected using two-point 

calibration technique by subjecting to laboratory light source 

with known luminosity and black box. Turbidity sensor is 

subjected to zero nephelometric test with agitations and 

signal-averaging. All sensor calibrations were done with room 

temperature ranging from 24 to 26 °C. The collected 

calibration data was used to generate the regression equations 

for each sensor and were embedded in Arduino Mega 

microcontroller. Overall, the developed photobioreactor is 

movable due to built-in wheels beneath the vessel itself and 

compact placements of electronic components. Single 

photobioreactor is considered an independent system, thus, 

can be placed to other place with no dependency with other 

photobioreactors because it has its own intelligent system to 

control in range the water temperature and light intensity 

needed for photosynthetic production. 

C. Wireless Sensor Network Development 

A self-configured data-centric wireless sensor network 

(WSN) composed of three client motes deployed in physical 

environment monitoring, one sink node, WiFi router and 

cloud connectivity and user machine is developed in this 

study (Fig. 4).  It is used to monitor and record physical 

observations of environmental pre-harvest factors of 

Chlorella vulgaris microalgae. Motes were connected in star 

topology to the sink node. IP Logitech cameras were directly 

connected to the USB adapter of Raspberry Pi 

microcontroller and to the cloud via Internet capability. To 

ensure data storage, data duplication is manifested on the 

system by storing sensor data both in the Google cloud and 

individual Raspberry Pi local memory card. Time scheduling 

of hourly acquisition is employed. The collected images and 

data sensors were purged from the cloud storage using file 

transfer protocol (FTP) and secured control protocol (SCP) 

down to the local user machine in comma separated variable 

(.csv) file format. The data file is configured to record series 

of data array composed of 5 data elements with the following 

consecutive placement: {data acquisition timestamp, water 

temperature, light intensity, pH concentration, turbidity 

level}. No transmission delays were experienced due to close 

proximity of motes with sink node and WiFi router. 

 

 

 

 

 

 

 

 

 

 

Fig 3. Wireless sensor network architecture with sink 

node for IoT 

D. Growth Medium Preparation and Microalgae 

Cultivation 

Water impurities due to industrial and household wastes 

adversely impacts the generation of biofuel from microalgae 

with good quality. With this very reason, there is a need to 

formulate artificial saltwater with no impurities. The 

preparation of BG-11 growth medium was done in a 

laboratory with analytical-grade chemicals. Shown in Table 2 

is the composition of BG-11 growth medium and Table 3 

presents the BG-11 stocks composition. BG-11 stock 3 is 

primarily composed of ferric ammonium citrate ((NH4)5· 

[Fe(C6H4O7)2]) and partially of ethylenediaminetetraacetic 

acid disodium salt (EDTA 2Na). This medium results to no 

impurities yielding better quality of microalgae. In this study, 

30 liters of distilled water and 6 liters of BG-11 growth 

medium were mixed and set as the primary solvent for each 

photobioreactor vessel.  

BG-11 growth stocks 1, 2, 3 and 4 were first prepared 

before making the growth medium. These stocks were mixed 

with deionized water using laboratory glass bottles based on 

the measurement listed on Tables 2 and 3, and then mixed 

with other BG-11 growth medium components using glass rod 

that resulted to pure artificial saltwater. 

Table- II: BG-11 Growth Medium Compositions 

Component Amount (L-1 of total solution volume) 

NaNO3 1.5 g 

K2HPO4 0.04 g 

MgSO4·7H2O 0.075 g 

Citric Acid 0.006 g 

Stock 1 1 mL 

Stock 2 1 mL 

Stock 3 1 mL 

Stock 4 1 mL 

Table- III: BG-11 Stocks Composition 

BG-11 Stock Component Amount (L-1 of total solution volume) 

1 NaNO3 2 g 

2 CaCl2·2H2O 3.6 g 

3 

Ferric ammonium 

citrate 
0.6 g 

EDTA 2Na 0.1 g 

4 Part A 
H3BO3 0.572 g 

MnCl2·4H2O 0.362 g 

4 Part B ZnSO4·7H2O 0.0444 g 

4 Part C Na2MoO4·2H2O 0.078 g 

4 Part D CuSO4·5H2O 0.0158 g 

E. Feature Extraction and Selection 

Spectro-morphological microalgae growth signatures were 

extracted to differentiate daily growth with the impact of 

photosynthetic light intensity and water temperature level 

inside the photobioreactor. Color features were extracted 

from the following visible color spectrums: red, green, and 

blue (RGB), hue, saturation, and value (HSV), cyan, magenta 

and yellow (CMY), lumina, blue-difference, and 

red-difference (YCbCr), and lightness, green-to-red, 

blue-to-yellow (CIELab).  
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Using 10,000 superpixels, which is based on simple linear 

iterative clustering (SLIC) algorithm and K-means clustering 

[4, 32], it was superimposed on to the raw microalgae surface 

images to segment non-vegetative pixels from vegetative 

which is microalgae and region of interest (ROI) in this 

application. The phytomorphological area of microalgae was 

computed using region properties of the annotated image.  

There is a total of 16 image-based features considered as 

growth signatures for microalgae being cultivated where 15 of 

these are color elements. Using human bare eyes often results 

to subjective classification on the maturity of microalgae even 

with presence of artificial photosynthetic light, thus computer 

vision-aided color extraction is necessary. Hybrid 

neighborhood component analysis (NCA) and ReliefF 

algorithms were used for feature selection of abiotic 

environmental stressors of water temperature, pH, turbidity, 

and light intensity, and spectral signatures based on its 

variation impact to the extracted microalgae surface area (Fig. 

5). NCA is configured with limited-memory 

Broyden-Fletcher-Goldfarb-Shanno algorithm as its solver, 

Hessian history size of 15 and line search method of weak 

Wolfe. By following the results of hybrid NCA-ReliefF, water 

temperature and pH concentration inside the photobioreactor 

have the greatest relevance to microalgae surface area among 

other abiotic environmental stressors. Conversely, color 

components of yellow, magenta, hue, cyan, and saturation 

resolves on providing highest correlation with microalgae 

surface area. 

 

 
Fig 5. Feature selection of (a) abiotic environmental 

stressors and (b) biomass spectral signatures based on its 

relevance to microalgae surface area using neighborhood 

component analysis and ReliefF 

F. Development of Feature-Based Machine Learning 

Models for Prediction of Microalgae Growth 

The extracted features from the previous step were utilized 

in developing feature-based machine learning models for 

prediction of microalgae growth in terms of its surface area as 

captured by the camera. In this study, radial basis neural 

network (RBNN), recurrent neural network (RNN) and 

generalized processing regression (GPR) were configured to 

generate prediction of surface area based on environmental 

stressors and color signatures, separately.  RBNN was 

optimized by using electromagnetism-like mechanism (EM) 

which is a physics-inspired metaheuristic algorithm 

materializing the principle of attraction and repulsion of 

charged particles in electromagnetic field [28]. In this study, it 

starts with initializing the 100 charged particles as uniformly 

distributed along the two-dimensional hypercube of 

electromagnetic field. Then, the electromagnetic activity of a 

sampled charged particle is tested, and its corresponding 

objective function value (y) is calculated with x as the spread 

factor value in constructing the RBNN architecture (1). The 

explored electromagnetic hypercube dimension ranges from 1 

to 10 (Fig. 6a) and the maximum feasible step length ranges 

from 0 to 1 (Fig. 6b). New charged particle is labeled as best 

particle when the current charged particle exhibits lower 

objective function value. The EM optimization of RBNN 

terminates after 500 iterations with optimum convergence. It 

is exhibited with unchanging current best charged particle 

resembling the spread factor value of 14. It is noticeable that 

spread factor value dominantly follows the nature of the 

objective function value on a certain scale increase (Fig. 6c). 

RNN was optimized by constructing its architecture with 

250-150-50 artificial neurons configuration on the hidden 

layer. On the other hand, GPR was optimized using Bayesian 

algorithm as solver, squared exponential for kernel function, 

constant basis function with beta of 24.8520 and sigma of 

26.0293, exact predict method and fit method, and random 

active set method. RBNN, RNN and GPR models were 

evaluation using the metrics of RMSE, R2, MAE and 

inference time. 

y = 0.0054 x
4
 + 0.0254 x

2
 – 0.047 x + 0.4327      (1) 

III. RESULTS AND DISCUSSIONS 

A. Vision-Based Microalgae Photobioreactor 

Implementation of advanced technologies in biosystem 

setup for cultivating microalgae has fascinated both 

agriculturists, engineers, and scientists 

[1,3,6,9,10,18,21,22,24,25,29]. It involves the adjustment of 

light source, variations on nutrient injection rates, and 

innovations on the grow bed or bioreactor itself. The 

developed Chlorella vulgaris microalgae photobioreactor is 

equipped with artificial white light source and Peltier plates 

that adjust the light intensity and water temperature level in 

exploring what is the optimum combination of these 

environmental stressors will generate the significant biomass 

with consideration of cultivar life cycle (Fig. 7a).  
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It is noticeable that the developed automated 

photobioreactor is effective for moving its physical placement 

in  

 

 

 
Fig 6. Particle charge response with varying 

electromagnetic hypercube dimension and maximum 

feasible step length, and its interaction with the spread 

factor of radial basis neural network 

a large phytotron as it has wheels beneath it. Moreover, the 

structure is compact and scalable for larger production of 

biomass. It employs adaptive bioreactor environment 

condition management by just choosing what type of 

microalgae will be cultivated. It means that the system 

automatically configures the suitable range for biomass 

production. With enough pre-harvest factors based on the 

requirements of photosynthesis, which are light energy, 

carbon dioxide, and water, the microalgae bioreactor 

generates comparable biomass. The greener colonies of 

eukaryotic species are the growing Chlorella vulgaris as 

expected because the bioreactor is subjected to minimum 

amount of light energy and temperature as part of the 

photosynthetic requirement (Fig. 7b). The overlaying of 

10,000 superpixels over the raw captured image enables 

segmentation of biomass from non-algae pixels (Fig. 7c). Five 

color clusters were used to provide efficient segmentation 

which are white, red, green, blue, and black. Hence, the 

developed three photobioreactor acts independently one each 

other because of the embedded automations on separate 

systems which is comparable to locally dependent growth 

chambers using internally illuminated tubes [3] and eight 

series vertical columns [25]. The proposed surface-mount 

light photobioreactor was able to cultivate microalgae as the 

light is evenly spread over the water surface resulting to equal 

photosynthetic reaction among microalgae cultures 

throughout the cultivation period. 

 

 
Fig 7. (a) Actual photobioreactor prototype, (b) 

microalgae biomass cultivation and (c) biomass 

segmentation using superpixels 

B. Feature-based Growth Signature Prediction of 

Chlorella Vulgaris 

Based on hybrid neighborhood component analysis and 

ReliefF-selected spectral and abiotic environmental 

stressors, (2) and (3) are the corresponding regression 

models. Abiomass(c) denotes the biomass area that can be 

generated using the spectral signatures of microalgae with 

R
2
 of 0.9788 where θ, ε, γ, ψ and μ are the spectral 

component values of hue, saturation, cyan, yellow, and 

magenta, respectively. On the other hand, Abiomass(e) 

denotes the biomass area that can be generated using the 

selected abiotic environmental stressors of temperature (τ) 

and pH concentration (ρ) with R
2
 of 0.93. 

Abiomass(c) = 53.1 – 22.9 θ + 9.17 ε + 0.39 γ – 0.696 ψ + 

0.229 μ    (2) 
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Abiomass(e) = 16.34 + 0.210 τ + 0.378 ρ         (3) 
Nine different combinations of controlled environmental 

stressors were separately configured on the customized 

photobioreactors. Matured microalgae biomass is visually 

recognizable with darker green color resembling the 

accumulation of photosynthetic pigment and thickening of 

algal strands (Fig. 7b). Captured microalgae surface images 

were quantitatively assessed by predicting its surface area 

based on environmental pre-harvest factors and spectral 

signatures using optimized general processing regression, 

recurrent neural network, and radial basis neural network. 

Machine learnings modes were suffixed with numerical 

subscripts of 4 and 2 denoting the number of environmental 

stressors used as predictors in estimating biomass surface area 

such as GPR4 for general processing regression using the 

unreduced features of water temperature, pH, turbidity and 

light intensity (Fig. 8). Whereas RNN2 resembles recurrent 

neural network using the hybrid NCA and ReliefF-selected 

high impact features of water temperature and pH 

concentration. Equally, GPR15 resembles GPR using the 15 

original pre-selected spectral features of five color spaces, 

and RBNN5 is for RBNN using yellow, magenta, hue, cyan, 

and saturation components as predictors. For predicting 

microalgae biomass surface area with environmental stressors 

as predictors, EM-RBNN2 bested out GPR and RNN variants 

with RMSE of 6.262, R
2
 of 0.985 and MAE of 2.847 (Table 

4). However, it is noticeable that RNN2 and RNN4 performed 

the shortest inference time of 4 seconds despite of its network 

looping in triple staged hidden layer. It is 87.8% faster than 

the most sensitive RBNN2. For predicting microalgae 

biomass surface area with spectral signatures as predictors, 

EM-RBNN5 performed the most accurate, sensitive, and 

responsive model with RMSE of 10.489, R
2
 of 0.944 and 

MAE of 5.160 (Table 4). RNN variants still turned out to have 

the fastest inference time of 81.42% than RBNN5. It is evident 

that predictions using models requiring higher number of 

input features resulted to longer inference time. Among the 

included machine learning models, RBNN variants exhibited 

the most consistent performance from training, validation and 

testing phases depicting perfect sampling and no overfitting 

or underfitting is involved. Overall, RBNN2 using water 

temperature and pH that is improved by EM resolved to have 

optimum performance in evaluating microalgae biomass 

surface area. 

 
Fig 8. (a) Regression lines in predicting chlorella vulgaris surface area using (a) abiotic environmental stressors and (b) 

spectral signature of biomass 

Table- IV: Name of the Table that justify the values 

Model 
No. of 

Features 

Training Validation Testing 

RMS

E 
R2 MAE 

RMS

E 
R2 MAE 

RMS

E 
R2 MAE 

Inference 

Time (s) 

Using Abiotic Environmental Stressors as Predictors 

GPR 
4 12.916 0.03

1 

11.36

9 

39.021 0.04

4 

30.04

6 

35.482 0.12

6 

25.40

4 

24.251 

GPR 
2 6.284 0.20

7 

4.494 6.549 0.97

1 

4.690 10.695 0.93

6 

6.690 12.744 

RNN 
4 11.616 0.07

2 

9.131 33.732 0.02

4 

26.41

6 

29.011 0.35

9 

22.28

4 

4.000 

RNN 
2 12.389 0.10

4 

10.67

5 

29.309 0.23

1 

21.54

8 

39.070 0.16

4 

29.54

6 

4.000 

RBNN 
4 0.893 0.97

5 

0.707 10.086 0.90

2 

3.541 13.535 0.90

4 

6.933 36.116 

RBNN 
2 0.893 0.98

2 

0.707 10.086 0.93

3 

3.541 6.262 0.98

5 

2.847 32.784 

Using Biomass Spectral Signatures as Predictors 

GPR 
15 10.835 0.00

8 

9.112 42.930 0.19

5 

34.01

3 

28.578 0.29

9 

23.39

7 

48.148 
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GPR 
5 12.699 0.17

7 

11.16

0 

32.445 0.20

9 

24.38

1 

33.220 0.10

3 

25.65

9 

36.740 

RNN 
15 14.284 0.15

1 

12.17

6 

32.476 0.10

3 

24.66

6 

30.385 0.06

8 

25.28

4 

5.000 

RNN 
5 23.125 0.05

9 

22.15

3 

29.554 0.12

6 

21.14

3 

30.973 0.21

8 

25.82

1 

4.000 

RBNN 
15 26.259 0.92

4 

0.898 18.365 0.90

9 

0.987 14.083 0.88

5 

7.454 51.215 

RBNN 
5 0.875 0.95

5 

0.742 20.040 0.88

7 

0.988 10.489 0.94

4 

5.160 24.220 

 

Unlike a destructive testing of extracting biomass tissues 

from time to time in order to monitor its growth by weighting  

it [3, 25], this study is definite in predicting microalgae 

growth based on the intensity of color reflectance in various 

color spaces and abiotic environmental stresses as a 

nondestructive approach (Table 4). 

C. Chlorella vulgaris cultivation and limnological 

interaction 

The photobioreactor 1 (PBR1) with light intensity of 1,000 

lux and water temperature of 22°C successfully cultivated a 

26.422 cm
2
 Chlorella vulgaris biomass surface area after a 30 

days of cultivation period with 6.597 cm
2
 growth from the 

first week baseline growth of 19.825 cm
2
 (Fig. 9). Exposing 

Chlorella vulgaris and BG-11 growth medium to light 

intensity of 1,000 lux and increasing temperature up to 32°C 

substantially decreased the generated biomass surface by 

51.707%. Photobioreactor 2 configured with condition 1 

(PBR2-COND1) has total increase of 7.193 cm
2
 of biomass 

surface after the cultivation period while PB2-COND2 is 

characterized with an increase of 6.883 cm
2
. PBR2-COND1 

and PBR2-COND2 conditions primarily differ with the 

generated biomass surface area during first week with 20.166 

cm
2
 for PBR2-COND1 and 17.936 cm

2
 for PBR2-COND2. 

Photobioreactor 3 configured with condition 1 

(PBR3-COND1) having water temperature of 22°C and 3,000 

lux generated an increase of 4.281 cm
2
 over a period of one 

month where PBR3-COND3 having water temperature of 

32°C and 3,000 lux is short of 0.04 cm
2
. 

 
Fig 9. Growth curve of chlorella vulgaris biomass surface 

area in three environmentally controlled 

photobioreactors 

In terms of limnological parameters interaction, there is an 

increase of 14.075% in pH and 61.58% for the turbidity as 

water temperature is increased from 22°C to 32°C with 

constant 1,000 lux (Fig. 10). However, pH concentration is 

lightly weakened by 5.39% and turbidity is increased by 

14.777% for the controlled environment emitting 2,000 lux. 

Like the PBR1, photobioreactor 3 that is equipped with 3,000 

lux artificial lighting contained a noticeable increase of 

31.579% for pH concentration and 2.473% in turbidity. With 

this, turbidity is highly reliable with light intensity and the 

growth of biomass on water surface as there is 59.107% 

deviation per 2,000 lux increase. Conversely, pH is highly 

affected by light intensity with 17.504% rise per 2,000 lux 

increase. There is also considerable growth in biomass 

surface area for certain combinations of light intensity and 

water temperature such as 1,500 to 2,750 lux and 25.5 to 

32°C, and turbidity and water pH concentrations of 3.7 to 4 

NTU and 7.25 to 8.8, respectively (Fig. 10). However, 

PBR2-COND2 with 27°C and 2,000 lux is considered as the 

exact optimum controlled environment condition in 

cultivating Chlorella vulgaris based on the generated growth 

in biomass surface area of 38.314%.  

 

 
Fig 10. Impacts of limnological parameters inside the 

controlled photobioreactors to chlorella vulgaris biomass 

surface area  
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IV. CONCLUSIONS 

This study demonstrated the development of a 

surface-mount light photobioreactor equipped with Peltier 

plates, computer vision and wireless sensor network for the 

cultivation of Chlorella vulgaris, and the implementation of 

computational intelligence for its growth prediction. Three 

photobioreactors were constructed that works independently 

with each other based on the configured automation in the 

adjustment of abiotic environmental stressors in terms of 

water temperature and light intensity that helps the 

photosynthetic process of microalgae tissue to grow inside 

this controlled environment chamber. Consumer-grade digital 

RGB camera visually monitors and captures images of the 

microalgae being cultivated and the images were used to 

extract biophysical signatures of microalgae. Array of pH, 

temperature, turbidity, and light sensors was placed inside the 

photobioreactors and connected to the IoT for seamless 

transmission of important environmental data. Artificial 

seawater was mixed using laboratory-grade chemicals to 

create pure nutrient medium for microalgae cultures. Cyan, 

yellow, magenta, hue, saturation, and biomass area are the 

highly selected spectro-morphological signatures for growth 

rate prediction of microalgae using hybrid neighborhood 

component analysis and ReliefF algorithms. Generalized 

processing regression, recurrent neural network and radial 

basis neural network optimized using electromagnetism-like 

mechanism were used in predicting the actual microalgae 

surface based on the pre-selected signatures. Accordingly, 

these are the following outcomes were obtained: EM-RBNN 

performed the best prediction accuracy and sensitivity with 

lower RMSE score, the best photobioreactor environment 

condition in cultivating Chlorella vulgaris exhibits 27°C 

water temperature and 2000 lux exposure, turbidity has direct 

relation with light intensity and accumulation of biomass 

tissue on water, and pH is highly affected by light 

concentration. Overall, there is significant benefit in 

cultivating microalgae in a closed environment biosystem as 

proper photosynthetic requirements will be met in all season. 

For future studies, it is recommended to employ 

techno-economic analysis to comprehensively assess the 

impact of materializing this biosystem in larger scale. 
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