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Abstract—It is indisputable that physical activity (PA) is vital
for an individual’s health and well-being. However, globally, one
in four adults do not meet the recommended levels of PA, with
significant personal and socioeconomic implications. In recent
years, a significant amount of work has explored the potential
of pervasive computing and self-tracking for increasing PA.
Adaptive and personalized goal-setting has proven to be one
of the most efficient methods in this direction. To this end, we
propose a Machine Learning (ML) approach, WeMoD, which
can be used to predict a user’s future daily step count for
setting challenging yet achievable goals. For the development
of WeMoD, we utilize heterogeneous, multimodal human data
collected unobtrusively in the wild. Additionally, we use a novel
fusion of physiological, behavioral, and contextual features,
which according to the experimental results, has a positive
effect on the predictive ability of the models. Specifically, we
can predict a user’s step count with a MAE of 1930 steps and
further improve this performance through personalization with
a MAE of 1908 steps, paving the way for future work in this
field.

Index Terms—physical activity prediction, goal-setting, self-
tracking, machine learning.

I. INTRODUCTION

Physical Activity (PA) is any movement that sets our
bodies into motion. PA has substantial benefits for human
health and well-being, including a lower risk of all-cause
mortality, coronary heart disease, type 2 diabetes, certain
types of cancer, depression, and Alzheimer’s disease. It also
has several socioeconomic benefits, such as reduced usage
of fossil fuels, safer roads, less air pollution, and generally
higher quality of life [1]. Despite these considerable benefits,
one in four adults and three in four adolescents do not meet
the recommended guidelines for PA [2]. According to the
World Health Organization, globally, physical inactivity’s cost
is estimated at $54 billion in direct health care (57% of which
is covered by the public sector), and an additional $14 billion
from productivity loss [1].

A significant challenge towards fighting this inactivity
pandemic is encouraging individuals who are not sufficiently
active to include PA to a greater extent in their daily routine.
Simplifying the guidelines into something such as step count
recommendations is easy to understand and achieve and hence
is of utter importance for promoting public health [3]. To
this end, self-tracking devices have been proven successful in
increasing individual PA levels by providing a personalized
self-monitoring, and coaching experience [4, 5]. The most

common way in which wearable devices are used to increase
PA is by tracking the user’s daily step count and setting a
daily step goal to achieve [6]. The most crucial aspect of
setting successful step count goals is the algorithm used to
calculate such goals. The simplest and most common algo-
rithms follow a ”Fixed Goal Approach” in which the device
sets a predefined fixed goal each day for the user, such as the
recommended 10.000 steps or a goal that the user has selected
for themselves. However, the ”Adaptive, Personalized Goal
Approach”, in which the system personalizes and adapts the
user’s goal by taking into account various aspects of their
behavior and context, has proven to be more effective in
increasing adherence and PA levels [4, 5].

Previous works have attempted to tackle the task of adap-
tive goal-setting by employing statistical methods for time-
series prediction, experience-based estimates of PA goals for
different user groups, or ML models trained on historical
data (see Section II). However, the focus has currently
shifted towards ML approaches, which provide state-of-the-
art (SotA) performance in PA prediction [4, 7]. Nevertheless,
the field of PA prediction for adaptive goal-setting is still in
its infancy. SotA approaches suffer from various limitations,
such as subjective, lab-based experimental data, inability to
tackle heterogeneous, real-world data sources, limited feature
space, and lack of transparently evaluated, end-to-end, ML-
based solutions.

Motivated by the issues above, this work proposes the We-
MoD approach for PA prediction, consisting of a series of ML
models trained on real-life, heterogeneous, multimodal users’
data, collected in-the-wild. Specifically, our contributions are
as follows:

• C1 - In-the-wild Data Collection: To capture indi-
viduals’ actual daily routines outside of an ongoing
experiment, we utilize past data donated from exist-
ing wearable users to build a naturalistic, multi-device
dataset that enables us to build more robust models for
the real world.

• C2 - Wearable Data Integration & Preprocessing:
To take advantage of data originating from different
devices, we design and implement a data integration
and preprocessing component that merges and analyzes
multi-manufacturer, multi-device data. This way, we
enable researchers and experts in this field to expand
their sample population and diversify their available



activity data sources.
• C3 - Extended Feature Space: We fuse physiolog-

ical, psychological, and contextual features, including
COVID-19-related data, to forecast a user’s upcoming
daily step count. We incrementally utilize and evaluate
various feature sets for evaluating their effect on the
model’s predictive ability.

• C4 - Open-source, ML-based Approach for PA Pre-
diction: We develop WeMoD1, an open-source, end-to-
end approach for the collection, integration, preprocess-
ing, and ML-based forecasting of PA from a set of rich
features. In this process, we experiment with various ML
algorithms and paradigms. Among others, we compare
the performance of traditional generalized ML models
with personalized models, directly linked to individuals,
as a herald of individualized goal-setting interventions.

We organize the remaining of this paper as follows: Section
II discusses prior work in ML-based PA prediction and goal-
setting. Section III outlines our data collection, preprocess-
ing, analysis, and evaluation methodology, while Section IV
presents our experimental results and highlights our findings.
Finally, Section V concludes this paper and introduces future
work directions.

II. RELATED WORK

In the following, we briefly overview two core research
topics that our work touches upon, namely goal-setting inter-
ventions and ML-based PA prediction.

A. PA Prediction & Goal-setting Interventions

Several works have studied the impact that appropriate
goal-setting has on increasing an individual’s PA levels,
measured in daily step count data. Zhou et al. [8] conducted
a Randomized Control Trial (RCT), where the intervention
group received personalized goals adapted to their previous
activity data, whereas the active control group received a fixed
goal of 10000 steps. Their results led to a statistically signifi-
cant difference favoring the intervention group. Similarly, van
Dantzig et al. [9] evaluated the impact of a context-aware,
personalized goal-setting approach through an RCT, and
Phatak et al. [10] presented an idiographic (person-specific)
approach establishing the efficiency of dynamic models of
PA in the context of goal-setting and positive reinforcement
interventions. These findings indicate that personalized goal-
setting, which considers the user’s context, is more effective
towards increasing PA levels, as expressed through the daily
step counts. However, these studies focus on RCTs rather
than the prediction models themselves and provide limited
information in this regard, as opposed to our work. Addition-
ally, in contrast to these works, we have created and utilized
a real-world, heterogeneous dataset that is not limited to a
specific experiment duration or lab setting and represents the
participants’ natural behavior. Overall, we adopt a broader
view of human sensing by incorporating a combination of

1https://github.com/BasdekD/adaptive-goal-setting

features, including physiological, psychological, and contex-
tual data, rather than sole past measurements, and by utilizing
ML for behavioral analysis from human sensing data.

B. ML-based PA Prediction & Goal-setting Approaches

Most closely to our work, prior literature has also focused
on building ML models for PA prediction and adaptive goal-
setting. Zhou et al. [8] developed an ML model utilizing
users’ historical data regarding daily step count and goal
achievement rate and generated challenging yet realistic goals
to maximize future PA. Dijkhuis et al. [11] developed an
ML model that predicts a user’s achievement of a daily step
count goal which uses activity and time-related features up
to the prediction moment. A similar approach is presented
by Li et al. [4], where the authors used ML to develop
a model that calculates hour by hour the probability of a
user achieving their daily step goal. The model considers
past activity patterns and the current activity target to deliver
the desired prediction. A limitation of the above works is
that they do not report the performance of the step count
prediction models, rendering it impossible to evaluate their
effectiveness. Also, they do not consider contextual and
psychological features that may enhance the accuracy of the
suggested goals, an approach that we explore in this work.
To cover this gap, Mohammadi et al. [7] developed a neural
network model that considered several contextual features
derived from questionnaires (personal, social, and environ-
mental features), as well as physiological data to predict the
average weekly step count of an individual. However, this
approach does not consider the different characteristics of
the days in a week (weekends vs. weekdays, holidays, day-
specific activity patterns). In contrast, our work explores in-
depth the importance of such feature sets (e.g., time-related,
COVID-19-related) for the performance of ML models and
calculates more demanding daily (instead of weekly) PA
predictions.

III. METHODOLOGY

This section presents our methodology regarding data
collection and preprocessing, feature engineering, and model
building and evaluation, an overview of which we present in
Figure 1.

A. Data Collection

A critical aspect for accurately predicting the daily step
count of a person is finding the appropriate dataset for training
and evaluating the ML model. As mentioned in Section I,
there are two major open issues regarding such datasets. First,
previous studies mainly focused on physiological measure-
ments, overlooking other factors that may affect PA, such
as behavioral traits or environmental factors. Second, there
is a lack of relevant in-the-wild data, which may lead to a
distorted reflection of an individual’s actual PA levels [8]. To
this end, we unobtrusively constructed an in-the-wild dataset
consisting of data from users with heterogeneous activity



D
A

T
A

S
E

T
 C

U
R

A
T

I
O

N

PREDIC TION MODEL

WINDOW SIZE SELECTION

5 DAYS

ACTIVITY & DATE

PERSONALITY & IDENTITY

INTEGRATION

CLEANING

FEATURE ENGINEERING

TRANSFORMATION

COVID-19

7 DAYS

14 DAYS

20 DAYS

FEATURE GROUP SELECTION

DATA PREPROCESSING

WeMoD DATASET

A
L

G
O

R
I
T

H
M

 S
E

L
E

C
T

I
O

N
 &

 O
P

T
I
M

I
Z

A
T

I
O

N RIDGE REGRESSION

DECISION TREE

RANDOM FOREST

GRADIENT BOOSTING

REGRESSOR

D
I
M

E
N

S
I
O

N
A

L
I
T

Y
 R

E
D

U
C

T
I
O

N
 

RECURSIVE FEATURE

ELIMINATION (RFE)

PRINCIPAL COMPONENT

ANALYSIS (PCA)

WeM oD Framework

Fig. 1. The WeMoD approach outline: In the dataset curation phase, we
perform necessary data preprocessing steps, and feature and window size
selection. In the algorithm selection and optimization phase, we experiment
with different ML algorithms, and we proceed with dimensionality reduction.

trackers. Furthermore, we collected multimodal data concern-
ing historic PA levels combined with the user’s psychology
and personality, time-relevant features, and features related
to COVID-19 movement-restrictive government policies, as
described in detail in Section III-B.

To collect the necessary data for our final dataset, we asked
twenty-one participants (10 females, 11 males), all over 18
years old (18-24 years: 5, 25-34 years: 8, 35-44: 7, 45-54:
1), owners of Xiaomi and Apple activity trackers and mobile
phones, to provide us with their data without any monetary
compensation. The study followed the guidelines of the
EU General Data Protection Regulation (GDPR) (2016/679)
[12]. We pseudonymized the collected data, using a one-
way cryptographic hash function [13] (SHA256) to make it
impossible to match a piece of information to the specific
participant that has submitted it. Finally, all participants
provided informed consent, and ethical approval was obtained
from the Aristotle University of Thessaloniki (AUTH) Ethics
Committee (254324/2020).

B. Feature Engineering

The WeMoD feature-rich dataset incorporates data col-
lected from three different data sources: (1) Activity trackers,
(2) Questionnaires, and a (3) COVID-19 dataset, totaling 53
features. Specifically:
Personality and identity features: We extracted 33 person-
ality and identity features from four questionnaires: demo-
graphics, the Big Five personality trait scale [14], and the
Processes and Stages of Change scales [15, 16]. With regards
to demographics, we built seven features concerning gender,
age, family status, educational level, and career status. From
the Big-Five questionnaire, we evaluated each participant’s
personality in terms of openness to experience, conscientious-
ness, extraversion, agreeableness, and neuroticism and built
five related features. Lastly, from the TTM questionnaires,
we assessed the user’s cognitive and affective experiential
(e.g., consciousness-raising, dramatic relief, environmental
reevaluation, self-evaluation, social liberation) and behavioral
processes (e.g., self-liberation, counter conditioning, helping
relationships, reinforcement management, stimulus control),

and built 21 related features.
Activity and Date features: We obtained the daily number
of steps as the target variable, as well as past physical activity
features. It is worth mentioning that days with less than
500 steps were considered as no-wear days and discarded
from our dataset similarly to other works [10, 17]. Regarding
the date features, we extracted helpful meta-information for
predicting steps, such as holiday, weekend, day of the week,
month, and day of the month.
COVID-19 features: In response to the COVID-19 outbreak,
governments worldwide applied a wide range of measures
that may have impacted PA (e.g., curfews, movement re-
strictions). To this end, and since the period of recorded
data coincides with the global pandemic, we utilized a pub-
lic dataset [18], containing indicators from different policy
responses (e.g., economic, health, containment and closure,
miscellaneous). We focused on Greece’s records per our
sample and included 15 features regarding containment and
closure policies.

After completing the feature extraction process, each day
of a participant in our final dataset consists of 53 features
(excluding physical activity window-based features).

C. Data Preprocessing

Following the data collection and feature engineering pro-
cesses described above, a few necessary preprocessing steps
have been taken to ensure the robustness of the dataset we cre-
ated. First, we transformed the data through the manufacturer
integration component, merging data from heterogeneous data
sources. Then, we applied several techniques for data cleaning
(outlier detection, handling of missing days, and no-wear
days), and we evaluated the importance of the different fea-
ture groups through an extended experimentation process with
different subsets of features. This way, we concluded which
feature categories should be included in the WeMoD dataset.
To obtain the final format of the dataset, we had to decide on
the window size to be used as input for WeMoD to predict the
step count of the next day. Four different window sizes were
tested, and the performances of the corresponding prediction
models were compared. The different n values used were 5,
7, 14, and 20 days. These values cover an adequate number
of experimental window sizes for this research field while
also maintaining the feasibility of efficient training of ML
models.

After the initial data preprocessing phase, each day of
recorded activity in the dataset is described by 53 different
features plus additional window-based physical activity fea-
tures. It becomes evident that the task at hand is characterized
by high dimensionality, which may lead to increased training
time and even reduced accuracy of the obtained predictions
[19]. Hence, for the dimensions of the dataset to be reduced,
two distinct approaches were evaluated, namely feature se-
lection and dimensionality reduction through dataset projec-
tion into a lower dimension. Our approach towards feature
selection was to apply recursive feature elimination (RFE),
specifically RFECV, due to the automated and interpretable



manner by which the most important features are identified.
Regarding dimensionality reduction, we utilized Principal
Component Analysis (PCA). RFE reduces the dimensions of
the input data by eliminating the least essential features from
the dataset. On the other hand, PCA accomplishes the task
by applying transformations from the field of linear algebra
to the data, making the resulting dataset a projection of the
original one.

Overall, our data preprocessing methodology had a positive
impact on the performance of the ML prediction models,
indicating the high quality of the final dataset, as presented
in Section IV.

D. Model Building & Evaluation

Following the creation of the final version of the dataset,
the next step towards developing WeMoD is selecting the ML
algorithm that will be used for the prediction model.
Generalized ML Models. Since the target variable is a
continuous integer value, we formulate the task at hand as
a regression problem. Hence, the algorithms used in our
work are supervised ML regression algorithms, specifically
Ridge Regression (RI), Decision Tree (DT), Random Forest
(RF), and Gradient Boosting Regressor (GBR). These algo-
rithms are chosen to evaluate the performance of different
approaches representing linear, tree-based, ensemble, and
boosting methodologies used in ML for PA prediction. To
obtain the experimental results and compare the different
algorithms, we have first conducted hyperparameter tuning
and determined their optimal configuration.
Personalized ML Models. On top of the traditional, gener-
alized models, we also adopt a personalized ML paradigm.
Personalized ML refers to the creation of ML models that
exploit a single individual’s data instead of assuming that
“one-size-fits-all”, building upon previous promising work in
the domain of personalized health and well-being analytics
[20, 21]. In our work, we conduct a proof-of-concept ex-
periment to evaluate WeMoD’s performance on an unknown,
new user and lay the foundation for further research on this
topic. Specifically, we utilize two versions of the dataset with
identical features. The first one, the personalized dataset, is
created on data originating from a single sample participant.
Ten percent of this user’s data are held out as a test set
for evaluation purposes. The second dataset, used for the
generalized model, contains data from all the participants,
excluding the user above.

In the process of evaluating the performance of the dif-
ferent models and paradigms, the dataset to be used each
time is separated into a train/validation (90%) and a test set
(10%). Firstly, the performance of each model is evaluated
through a time-series-oriented CV process on the training
data. Next, each model is assessed on the test set to evaluate
its performance on completely unknown data and ensure
the robustness of the evaluation results by excluding the
possibility of overfitting. The corresponding results of the
algorithm selection and the generalized versus personalized
experiments are presented in Section IV.

IV. RESULTS & DISCUSSION

This section presents our experimentation results and a
commentary on our findings regarding data preprocessing
techniques’ effectiveness in the field of PA prediction and
the differences in performance between generalized and per-
sonalized ML.

A. Effects of Data Preprocessing on PA Prediction

As discussed in III-C, several different approaches regard-
ing feature-group selection, outlier handling, and window size
selection were tested in order to obtain the optimal version
of the dataset. In this section, we present our results re-
garding the experimentation with various data preprocessing
techniques for PA prediction from multimodal, heterogeneous
data.
Window Size: The window size used in creating the dataset
did not have much impact on the PA prediction models’
performance. Thus, we chose to use five days (n = 5) of
activity as input since this led to the least complex models
and the largest pool of available data for training, totaling
approximately 10000 days of user data.
Feature Selection: Concerning feature selection, we or-
ganized the various features into four categories, Activity
(A), Date (D), Personality (P), COVID-19 (C19), and tested
the chosen regression algorithms’ performance in datasets
containing different subsets of features. The results (see Table
I) indicated that all feature groups had a positive contribution
to the predictive ability of the ML models reaching a MAE of
2138 steps. Thus, no feature group should be excluded from
the dataset. In other words, the novel feature fusion used
in the WeMoD dataset leads to the best performance of
the prediction models. Additionally, we notice that GBR
has consistently yielded the best results (the lower the
MAE, the better) in the task of PA prediction and hence
we utilize it for the remaining experiments.

Algorithm A & D A, D & P A, D, P & C19
RI 2363 2281 2274
DT 2412 2301 2290
RF 2277 2185 2149
GBR 2277 2174 2138

TABLE I
MAE FOR DATASETS WITH DIFFERENT FEATURE-GROUPS (TRAIN SET)

Outlier Handling: Outlier handling is vital especially when
in-the-wild data are considered. In our approach, days with
exceptionally high step counts are removed from the dataset.
The number of days to be removed is defined as a threshold
value indicating the percentage of the total number of record-
ings in the dataset that should be considered outliers. After
experimentation, we concluded that the optimal threshold for
which the model’s performance is improved while overfitting
is avoided is 2% with a MAE of 1940 steps in the training set.
Table II presents the MAE achieved for different threshold
values, and proves that outlier detection and removal can
significantly improve the PA prediction models in terms
of MAE.



Threshold Train MAE Test MAE
1% 2021 2246
2% 1940 2224
5% 1788 2276
10% 1617 2301

TABLE II
PERFORMANCE FOR DIFFERENT OUTLIER THRESHOLD VALUES

Dimensionality Reduction: For window size of n = 5,
the total number of features is 317, and the RFE reduced
these features to 247. We evaluated our GBR model on the
reduced version of a training and a test set containing 247
features and achieved a MAE of 1930 steps in the training
set and 1951 steps in the test set. In Figure 2, we present
the MAE as obtained through CV for different numbers of
features chosen by RFE, where we can see that even less
than 100 features can yield satisfactory performance. PCA
yielded slightly worse performance with a MAE of 1975
and an optimal number of 57 components. Recalling the
previous best performance of the prediction model (Table II),
we conclude that feature elimination significantly reduces
model complexity without compromising on PA prediction
performance.

Fig. 2. CV MAE for various numbers of features chosen by RFE

B. Generalized vs. Personalized ML in PA Prediction

Through this experiment, we assess the performance of
the generalized WeMoD model on a new unknown user and
compare this performance to a personalized ML approach.
The two models were trained on their respective datasets, as
described in III-D and evaluated for their predictions on an
unknown test set of 160 days of user data. The personalized
model yields a better MAE of 1908 steps, compared
to 2282 of the generalized model. Having said that, the
generalized WeMoD can still identify patterns in the user’s
step count, even though it has no previous knowledge of any
information related to this specific participant of the research.
Most likely, with a greater number of users whose data will
be utilized for the generalized model’s training, the efficiency
of its predictions, even for completely unknown individuals,
would be further improved. Figure 3 presents a plot with the
predictions of the two models amongst the actual step count
values for 20 days of the unknown test set, which verifies our
claims.

Fig. 3. WeMoD and Personalized predictions VS actual steps of 20 days.

V. CONCLUSIONS & FUTURE WORK

This work has demonstrated the feasibility of an end-
to-end approach for step count prediction. The purpose of
our research has been two-fold. Firstly, working with an in-
the-wild, heterogeneous dataset that included a combination
of activity-related, personal, and contextual features, and
secondly, developing a model that utilizes the above dataset
to forecast a user’s future daily step count. A model like this
could be incorporated in the core of more complex goal-
setting approaches and PA intervention to positively alter
a user’s behavior regarding PA. Specifically, to fulfill C1,
we utilized in-the-wild data originating from user activity
unrelated to their participation in the ongoing research, which
ensured an accurate reflection of an individual’s PA levels. By
implementing C2, we designed and applied a data integration
and preprocessing component to pool and analyze activity
data originating from various ubiquitous devices. For C3, we
considered a novel combination of physiological, psycholog-
ical, and contextual features. By assessing the impact that
each of these feature categories had on the predictive ability
of the ML models, we prove that such features can contribute
positively to PA prediction. Finally, for C4, we developed and
open-sourced a series of ML prediction models capable of
efficiently forecasting a user’s future step count, given a set
of features for a sequence of previous days. Our best model
achieved a MAE of 1908 steps.

Based on the above, we believe that the objectives of this
research have been achieved; without this, of course, meaning
that there is no room for further improvement through future
work. An important issue that we would like to address
in the future is the relatively small sample size. A larger
population sample would provide more days of recorded
activity to train more robust and generalizable ML mod-
els. Another future direction is incorporating more feature
categories (e.g., user location, weather conditions, or other
behavioral traits) in the PA prediction task and assessing their
impact on the predictive ability of the respective ML models.



In reality, the available feature space that may be directly or
indirectly related to a user’s daily step count is vast. Thus,
any future research that attempts to identify the impact of
different features on PA prediction models’ performance can
be considered a contribution to this field. Additionally, while
a throughout experimentation on the topic of personalized vs.
generalized approaches is out of the scope of this research,
our results provide exciting insight and indicate that there
is more than enough space for further work regarding the
pros and cons of each approach in the health and well-being
domain. Finally, we propose incorporating our model in an
intervention application to increase an individual’s PA levels.
The WeMoD prediction model was designed having this goal
in mind and with the hope of contributing to the cause of
promoting a healthier lifestyle for people. We hope that by
open-sourcing our code, other researchers will be encouraged
to experiment with the WeMoD approach and adapt it to their
needs for a wide variety of problems within the mHealth
domain.
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