
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

272

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

Abstract: The popularization of both Software Language

Engineering (SLE) and Model Driven Engineering (MDE) as well

as the increasing complexity of systems induce new

implementation practices. Indeed, many teams of experts

collaborate to implement a same system. Every team uses her own

domain specific modeling language (DSML) to represent her

concerns. Consequently, by the end of the modelling phase, we get

many heterogeneous models elaborated using different DSMLs.

These models need to be composed to get a whole view of systems,

to be able to validate and simulate behaviors. However, many

recent researches choose to compose modelling languages rather

than models themselves, but until now there are no standard or

generic techniques for that. Although, MDE and SLE provide

tools and concepts for modeling, customizing and processing

business concepts as single activities, in contrast they provide little

support for coordinating between these activities. In this paper,

authors propose an interface-based approach to coordinate

DSMLS in order to compose and coordinate their respective

models. They began by giving generic guidelines of DSMLs

specification and composition aspects. Then, they introduce

IDFML a Meta language for defining both DSMLs interfaces and

coordination. Actually, the proposed Meta language gives a

metamodeling background to coordination which enables to

benefit from MDE tools and techniques. They finally demonstrate

the applicability of the approach using a Connected Indoor

Transport Service System to conclude by summarizing benefits of

the proposed Methodology

Keywords: Domain Specific Language, Abstract Syntax,

Concrete Syntax, Coordination, Interface

I. INTRODUCTION

Models are first artifacts of MDE and as models gain

progressively ground over objects, they became day after day

primary artifact for software development too. The story

began when OMG initiates Model Driven Architecture

(MDA) [10] to separate both business and technology

concerns. The MDE came then to give a concrete translation

to MDA principles. In fact, MDE provides a plethora of

concepts and tools to conceive models and manipulate them.

Consequently, the need of modelling growth could not

anymore be satisfied by UML the famous general-purpose

modelling language. Indeed, the vulgarization of software

language engineering was at the rendezvous by providing new

capabilities to create DSMLs.

A DSML is specifically tailored for a domain. It enables to

express concerns using domain vocabulary and notations.

Actually, using a DSML rather than UML or any other

Revised Manuscript Received on November 01, 2020.

* Correspondence Author

Naima Essadi*, Siweb, E3S, EMI, Mohammed V University in Rabat,

Rabat, Morocco. Email: naimaessadi@gmail.com

Adil Anwar, Siweb, E3S, EMI, Mohammed V University in Rabat,

Rabat, Morocco. Email: anwar@emi.ac.ma

general-purpose modelling language improves both

communication between stakeholders and products quality.

Moreover, the improvement of communication prevents

conception misunderstanding which impacts positively

implementation costs. Actually, domain expert understand

clearly models elaborated with their own vocabulary and

concepts and consequently, Models could also be done by

experts themselves. In fact, DSMLs reduced the gap between

problems and solutions scopes as both of them are now

expressed by the same language.

However, the use of a specific modelling language for

every business domain caused an accidental heterogeneity

due to various modelling languages used by teams

collaborating to implement a system. Actually, the complexity

of nowadays systems and software induces the implication of

many teams of experts as every team uses a different

modelling language. Subsequently, by the end of the

modelling phase, we get many heterogeneous models

representing different views of a same system.

We believe that the ability to compose heterogeneous

DSMLs is a key solution to compose and coordinate resulting

heterogeneous models. The composition of these models is

absolutely needed for many reasons: to have global view of

systems, to be able to perform analysis of scattered

information over models and also to ensure consistency,

maintenance and evolution of systems.

Many recent works investigated composing DSMLs issue

but most of them had as purpose the definition and reuse of

modeling languages. In contrast, this work is concerned by

DSMLs composition to be able to compose and coordinate

their conforming models.

Furthermore, the use of interface concept to compose DSMLs

have been discussed by many relevant works. However, there

are still many challenges to overcome.

In this paper, we try to answer following questions:

How can we define a DSML interface?

How can an interface be self-contained? Hide the complexity

and implementation or other specifications that aren‟t

relevant for outside?

How can we link interfaces of different DSMLs?

How can we use interfaces defined at language level to

compose and coordinate heterogeneous models?

The reminder of this paper is organized as follows. We first

gave an overview of DSMLs specification as well as

languages workbenches in Section 2. In Section 3 we

introduce our approach. Then, section 4 illustrates the

applicability of the approach in the case of a Connected

Indoor Transport Service System. Finally, in Section 5 we

discuss related work to

conclude the paper in section 6.

IDFML: A Meta Language for Heterogeneous

DSMLs Coordination
Naima Essadi, Adil Anwar

mailto:anwar@emi.ac.ma

IDFML: A Meta Language for Heterogeneous DSMLs Coordination

273

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

II. DSML SPECIFICATION

A DSML is first of all a language which can be defined

using classical formalisms like context-free grammar

especially BNF. However, to benefit from MDE emergence,

DSMLs was first designed with UML profiles and finally

using meta-models. Doing so, we give to DSMLs another

dimension and momentum. DSMLs could then be

manipulated as MDE concepts and all MDE tools and

advances could be therefore applied to them.

A. White Box Specification

A DSML is usually defined by its white box specification

the five-tuple L = {A, C, S, Ms, Mc} [6,7].

The abstract Syntax “A” is the most important part of the

specification. It gives all DSML‟s concepts by describing

vocabulary and concepts of the language and how they may be

combined to create models [8]. Actually, the abstract syntax

defines concepts, their relationships and their

well-formedness rules. Moreover, it is unique for a DSML

and assures a pivotal role between various concrete syntaxes

and different forms to express semantics [1]. The Abstract

Syntax is often described using OMF Class Diagram [16].

The concrete syntax “C” of a language is its body, considering

the Abstract syntax as a soul [1]. Its role is to represent a

model to our human senses [1]. Actually, it provides notation

to represent and construct models [8]. A language can provide

various concrete syntaxes for a same abstract syntax.

However, two main shapes of concrete syntax exist: textual

and visual, the textual form gives variables, objects and

expressions, it is suitable to capture complex expressions and

details. Unfortunately, textual form remains difficult to

manage beyond a great number of lines. On the other side,

visual syntax gives graphical icons representing views; this

form allows expressing concepts in an intuitive and

understandable way but it is not suitable to represent complex

and detailed information.

A concrete syntax provides alphabet of basic symbols used

and also scanning and parsing rules stating about syntactical

constructs [1].

On the other hand, Semantics “S” gives a clear idea about

what a language represents and means [8]. It communicates a

subjective understanding of the linguistic utterances of a

language [1]. Semantics must be expressed clearly to avoid

misinterpretation. It should also provide rich ways of

interacting with the language [8].

Semantics definition is optional and may take many forms [8]:

Translational semantics, Operational semantics, Extensional

semantics and Denotational Semantics.

Additionally, The Syntactic Mapping “Ms” defines relation

between concrete and abstract syntaxes. It could be

represented as a M2M transformation having as input the

Concrete Syntax Model and as output the Abstract Syntax

Model.

The last tuple element “Mc” represents the semantics

Mapping that gives correspondences and relations between

semantics and Abstract syntax elements. It relates and map

element of abstract syntax to elements of semantic domain. It

can also be represented as a transformation M2M having the

Semantic Model as input and the Abstract Syntax Model as

output. This transformation relates Semantic Model Element

to Abstract Syntax Model Concepts. For Denotational

semantic Model, semantic Data of Semantic Domain are

related to Abstract Syntax Model concepts like data Types,

entities and associations... However, for an operational

Semantic Model, Processes and parameters are related to

operations and entities of the Abstract Syntax Model.

B. Black Box Specification

A language could also be specified by its black box

definition that hides its irrelevant details. This kind of

definition is means of abstraction and a good solution to do

that is interfaces.

A language Interface is a set of elements that are exposed to

outside and thus are available for other languages. It is

defined at language level and then holds for all models of the

language [1]. Moreover, an interface hides implementation

details to expose just needed information. Doing so, it first

decreases languages complexity, it protects from unexpected

evolution and it reduces dependency. Indeed, an interface is

an exposed contract that promotes reuse and substitution as

well as the interface contract is respected [9].

The Abstract Syntax could be considered as a simple

definition of DSML Interface, in this case, all concepts of the

language will be accessible for other languages [1]. Also, an

excerpt of Abstract Syntax could be considered as Interface,

this excerpt is used to reduce Abstract Syntax‟s complexity,

and then, provides a more concise and simple part of

languages.

Two different types of Interfaces could be defined: Required

Interface and Provided Interface. A Required Interface of a

language defines references and information needed by the

language itself from other languages while a Provided

Interface offers elements to be referenced by other languages.

Moreover, the later one should contain references to

self-Abstract Syntax elements provided in an identification

scheme available for other languages [1]. The use of these

references gives to other DSMLs ability to coordinate with

the owner DSML, to reuse some part of it and to avoid

redefinition of existing concepts. Furthermore, this

coordination allows also concerns separation between

languages to permit to every part fulfillment of its ultimate

purpose.

In software engineering, a new era has followed the interface

concept introduction, we believe it will be the same for

DSMLs. Indeed, the definition of interface for DSMLs is

considered as the key of modularization. Interfaces are very

useful and could help to face various challenges that arise

from current modelling practices.

In software Engineering, Interface concept is mature and

commonly used. However, in Software Language

Engineering this concept is still ambiguous, ad-hoc and

consequently not widely used.

Many recent works proposed definitions for language

interfaces. So far, there is no clear or formalized specification

for that. Although there are many language workbenches that

allow the DSML‟s specification as white boxes, they do not

allow a black box specification for languages.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

274

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

C. Language Workbenches

Both the increasing need of modeling and SLE advance

cause a popularization of language definition which became

no more reserved for few experts. Nowadays, everyone can

create a new DSML to cover his concerns, and various

language workbenches are available to such a point that we

may hesitate about the tool to use. There are three kinds of

language workbenches: Textual, Graphical and Projectional.

Textual workbenches allow definition of textual languages

like Xtext [11], this kind of tools are grammar based and

enable modeling complex concepts. Graphical tools on their

side allow languages‟ visual definition of languages like the

industrial tool MetaEdit+ [13] of MetaCase or academic tools

like AToMPM [12] and GME [14]. These tools are more

friendly hence suitable for domain experts. However,

projectional tools [17] like JetBrains MPS [18] are more

flexible and allow different forms of representation and

modeling to be combined.

Although, these tools facilitate the creation of new languages,

they offer little or almost no support to compose them.

In This paper, we use Sirius Framework [15] of Obeo

Designer as language workbench. It is a graphical tool based

on Ecore metamodel [16]. It enables the definition of the

abstract syntax conforming to Ecore metamodel, the concrete

syntax as well as the language graphical editor.

III. FACING MODELS HETEROGENEITY

The new modeling practices and the SLE tools advance

make that at the end of modeling phase we get many

heterogeneous models elaborated using heterogeneous

DSMLs. These models need to be composed, integrated and

coordinated for many reasons: to analyze information

scattered over many models, to get a whole view of designed

system in order to validate its features, to ensure its

consistency and its evolution…

Many recent works investigated this issue and one of the

important solutions is to coordinate DSMLs rather than

models. Indeed, we believe that the coordination of DSMLs

instead of every piece of model is a good optimized manner to

resolve this issue. Actually, coordination done at language

level is consequently hold by model level [1].

In this section, we gave some terminological precision

before a detailed description of our approach.

A. Heterogeneous DSMLs Coordination

There are three levels of heterogeneity as previously

described in our earlier works. However, this paper

emphasizes language heterogeneity. Actually, by

heterogeneous DSMLs, we mean languages with different

metamodels but conform to the same Meta-metamodel, more

precisely languages based on Ecore metamodel.

This paper is also about coordination of languages. The

coordination is a form of composition where coordinated

parts remain independent and unaltered.

Language coordination is therefore a form of weak

composition that retains the independence of coordinated

languages artifacts while linking them to guarantee a common

objective.

B. Approach Description

Our approach proposes to coordinate heterogeneous

DSMLs as black boxes. This form of definition hides

implementation and concepts of languages to expose only

relevant elements. Although, a black box definition hides the

language complexity, it is self-contained and provide

interfaces to be used as joining points between languages.

Fig.1 gives a high overview about of the proposed

approach where DSMLs are exposing their interfaces that are

linked to each other using coordination relationships. In our

previous paper [19], we gave a list of some intended

relationships between languages. We propose a DSML to

describe a language interface. We call it IDFML (Interface

Description for Modeling Languages).

Fig. 1. DSML Coordination Approach Overview

 Our approach includes three main steps: DSMLs‟ black-box

specification, Coordination relationships definition and

Models coordination. The two first steps are performed at

language level whereas the last step concerns model level.

 DSMLs‟ black-box specification: this first step aims to use

IDFML language to define DSMLs as black-boxes that

expose interfaces as coordination points. The analysis of

language‟s abstract syntax as well as language‟s main

purpose help to identify both required and provided

interfaces.

 Coordination relationships definition: The purpose of this

step is to link interfaces using coordination relationships

according to IDFML Meta language, metamodel in Fig.2

gives a non-exhaustive list of possible relations. The result

of the first and second steps is an IDFML model conforms

to metamodel of Fig.2 The model represents involved

languages as black-boxes related using coordination

relationships.

 Models coordination: the last step of our approach aims to

coordinate heterogeneous models belonging to languages

involved in earlier steps. The result of this last step is a

coordination model conforms to the language model

elaborated at first and second steps.

IDFML: A Meta Language for Heterogeneous DSMLs Coordination

275

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

C. IDFML Meta-Language

The IDFML language allows the specification of a black

box definition for DSMLs. It aims to define their Interfaces as

well as composition relationships between them. The IDFML

language provides following concepts:

 MetaPackage: concept representing a DSML. It contains a

set of “Interface” elements.

 ProvidedInterface: concept representing a provided

interface as a coordination point of a DSML. It has also a

reference to the “MetaPackage” that it belongs to.

 RequiredInterface: concept representing a required

interface as a coordination point of a DSML. It has also a

reference to the “MetaPackage” that it belongs to.

 CompositionRelationShip: concept used to define a

relationship between interface and core elements. This

element is a super Meta Class of all possible composition

relations to be hold between languages. The abstract

syntax of Fig.2 lists some of them. However, a detailed

definition of this relations has been given in [19].

The abstract syntax of IDFML displayed in Figure 2 is

defined according to the coordination metamodel introduced

in our previous works. The MetaPackage Meta element

contains both “RequiredInterface” and “ProvideInterface”

elements that are linked to each other using

“CompositionRelationShip” Meta element. The composition

relationship could be either a coordination or an integration

relation.

IV. CASE STUDY

To demonstrate applicability of our approach, we applied it

to a Connected Indoor Transport Service System (CITS). We

use the IDFML language for modeling the composition at

language level in order to be able to compose and coordinate

heterogeneous models of the CTIS system.

Fig. 2. Excerpt of IDFML Abstract Syntax

A. Connected Indoor Transport Service System

CITS system is composed by many parts. In this paper we

are focusing just on two of them. The first part is the Indoor

transport service activity which aims to transport items by

robots from a source location to a target location according to

assigned missions. The second part concerns IoT aspect of

this system, actually robots are considered as connected

objects.

B. Finite State Machine DSML

The DSML used to describe Robots work in the CITS

System is Finite State Machine (FSM) DSML. Fig.3 gives the

abstract syntax of this language described using Ecore

meta-metamodel [16]., while Table. I describe a concrete

syntax for the language. The root element of the metamodel is

“FSM”. It is the container of all elements of the abstract

syntax. The “State” element represents the state of a robot

during its transport service. A state can be initial, final or

current. Moreover, as the robot‟s state changes according to

received events, it has an outgoing and an incoming transition.

Table- I: FSM DSML Concrete Syntax

Concept Concrete syntax

State

Current State

Transition

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

276

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

Fig. 3. Abstract Syntax of FSM DSML

Fig.4 represents a model conforms to FSM DSML. This

model has been elaborated using Sirius Framework which

enables us to create a graphical editor by defining the

“fsm.odesign” view. The defined view is then assigned to our

model to be editable in a user-friendly way. The Robot routine

Model contains five states that describe Robot states during

its transport service work. A Robot is in the sate “Ready” as

initial state. Then, the event “MissionReceived” causes the

change of Robot‟s state to “En Route for Provisioning”

(ERP). At this state a Robot is moving to the source location

to get the Item to transport. When the Robot arrive to the

provisioning location its state became “Provisioning”. After

provisioning, the Robot moves to the Target location to

deliver the item. When a robot reaches the delivery location,

its state changes from “En Route for Delivery” (ERD) to

“Delivering”. Finally, the state return to Ready when delivery

is finished.

Fig. 4. Robot Routine FSM Model

C. ThingSee Purpose DSML

We use the DSML ThingSee Purpose (ThingSee) DSML of

MetaCase to describe IoT concerns in the CITS System.

Fig.5 gives a metamodel excerpt of ThingSee DSML

defined using Ecore meta-metamodel.

The ThingSee abstract syntax has “Purpose” as root

element which contains all concepts of the syntax for instance

“State”, “Transition” and “Action”. Every “State” has an

incoming and an outgoing “Transition”. On the other hand, a

“Transition” is related to a sensor. The excerpt includes

“LocationSensor”, “BatterySensor” and “GeofenceSensor”.

The ThingSee DSML contains other sensors that we didn‟t

include for simplification purpose and also because they are

not relevant for our case study.

We also use the Sirius Framework to define the concrete

syntax as given by table II.

Besides, models of Fig.6 and Fig.7 are conformed to

ThingSee DSML. The first one describes battery check

activity while the second one is about localization.

Fig. 5. Abstract Syntax of ThingSee DSML

IDFML: A Meta Language for Heterogeneous DSMLs Coordination

277

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

Table- II: ThingSee DSML Concrete Syntax

Fig. 6. Battery Check ThingSee Model

 The battery check activity aims to watch battery level. If the

threshold of observed element battery is under 30% then the

Battery Sensor generates an event “LowBattery” and the state

of the concerned element changes from “FullBattery” to

“LowBattery”. By the same way, the state returns to

“FullBattery” when the battery threshold became 100%.

D. FSM and ThingSee DSMLs Coordination

 We use the IDFML meta language to coordinate between

FSM and ThingSee DSMLs.

 The sequence Diagrams of Fig.8 describes CITS system

behavioral. Actualy, in Fig.8 (a), the location sensor is

activated when a robot is in “ERP” and “ERD” states. The

sensor triggers the “arrivedEvent” when destination is

reached. On his turn, the loading sensor is activated when

robot is on “Provisioning” and in “Delivering” states, this

sensor triggers respectively “ProvisioningFinished” and

“DeliveryFinished” events. Besides, Fig.8 (b) describes

Battery Sensor activity which is activated according to robot

battery threshold. When a robot receives a “LowBattery”

event it must wait for the “FullBattery” event to continue its

routine.

The behavior of CITS system helps us to depict relevant

interfaces to be defined for each language.

For the FSM DSML, we depict a provided interface and a

required interface named respectively: “Fsm State

ProvidedInterface” and “Fsm Event RequiredInterface”.

However, we define two interfaces for the ThingSee

DSML. The required one is “Thing See State

RequiredInterface” and the provided one is

“ThingSeeEventProvidedInterface”.

To coordinate the two languages, we create a model

conforming to IDFML metamodel displayed by Fig.9. This

model has as MetaPackage instances FSM and ThingSee

DSMLS. Every MetaPackage contains interfaces that are

joined using coordination relationships.

Fig. 7. Location Check ThingSee Model

E. CITS Sytem Models Coordination

 The coordination achieved at language level holds to models

too. Models we need to coordinate are ones of Fig.4, Fig.6

and Fig.7. The Fig.4 model is a inodel of MetaPackage FSM,

where models of Fig.6 and Fig.7 are models of MetaPackage

ThingSee.

Fig.11 illustrates a model of the IDFMLModel as well as the

editor elaborated using Sirius Framework. Heterogeneous

models of both DSMLs FSM and ThingSee are coordinated

using the coordination relationships

“ProviderConsumerRelation” and “CausalityRelations”.

Concept Concrete syntax

State

Action

BatterySensor

LocationSensor

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

278

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

Fig. 8. CITS System Sequence Diagrams

Fig. 9. IDFML Model for CITS System

 Table III summarizes approach‟s concepts and CITS‟s

instances according to OMG Meta levels [9]. The M3 level

contains concepts defined by the IDFML Meta language‟s

abstract syntax of Fig.2. The M2 level‟s elements belong to

the IDFML Model of Fig.9, Whereas, the M1 level‟s elements

are displayed by Fig.10 and are specific to the CITS system. It

is important to notice that each level defines the one below

and is conformed to the one above.

V. RESULT AND DISCUSSION

 Several works have investigated black-box specification for

metamodels and DSMLs. This type of specification allows

modularization of languages and models. Authors in [2]

proposed a toolset that enables to enhance metamodels with

import and export interfaces. This proposition assures

separation of concerns and information hiding. Thus,

imported interfaces are considered as distinct elements and

the defined components as self-contained units. In addition,

„Composite models‟ is a modularization technique introduced

in [4] and its main idea is the export and import interfaces

declaration that define model elements provided to and

obtained from distributed models. In this technique an

imported interface is assigned to an exported interface while

an exported interface can serve several imported interfaces.

Under this approach, defined interfaces hide the complexity

of metamodels elements. Furthermore, authors in [3] use the

same composite models „technique as a formally

modularization mechanism to address distributed models.

Components are self-contained as all references links

elements within the same component. They are at the same

time interrelated using interfaces. Actually, this technique

enables to hide information and allows local consistency

checks. In [5] authors propose an approach based on interface

and interface-base composition operators. This approach

allows creating reusable self-contained black box meta-model

component that could be composed flexibly and

systematically. The export and import interfaces defined by

previous works are similar to required and provided interfaces

we propose. Indeed, like described approaches, we propose a

black-box definition of languages that hides irrelevant

elements for coordination. However, our approach defines a

Meta language to specify that in a noninvasive way. The

metamodeling aspect gives our approach the benefit to use

MDE tools and concepts like transformations that allows

automatization and artifacts generation. In addition, our

approach informs about coordination relationships semantics

as under composition relationship we put many other specific

relations. Furthermore, our approach might be used for both

structural and behavioral languages composition without

modifying their abstract syntax.

IDFML: A Meta Language for Heterogeneous DSMLs Coordination

279

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

Table- III: Concepts and Instances’ Summary

Fig. 10. CITS System Models Models Coordination Using IDFML Editor

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an interface-based approach to

coordinate between heterogeneous DSMLs. In fact, we

propose the IDFML, a Meta language allowing a black-box

specification for modeling languages. The black-box

specification we propose hides languages complexity and

exposes relevant parts that might be used as coordination

points. Subsequently, the coordination done at language level

enables coordination at model level. Furthermore, we

demonstrated the usefulness of the approach by applying it to

the Connected Indoor Transport Service System where known

DSMLs are involved: the FSM and ThingSee DSMLs for

instance. Actually, the IDFML language allows the definition

of a coordination model to achieve coordination between

heterogeneous models of both languages. Actually, our

proposition gives a metamodeling background of both

language interface and coordination which offers the benefit

to use MDE techniques and concepts. However, our approach

needs to be improved to provide automatic interfaces creation

at model level as well as automatic generation of

coordination‟s model conforming to the coordination model

defined at language level.

REFERENCES

1. A. Klepee. Software language engineering, Addison-Wesley

Professional, 2008.

D. Strüber, S. Jurack, T. Schäfer, S. Schulz. and G. Taentzer.

“Managing Model and Meta-Model Components with Export and

Import Interfaces.” In BigMDE@ STAF, pp. 31-36. 2016.

2. S. Jurack, G. Taentzer. “Towards composite model transformations

using distributed graph transformation concepts,” International

Conference on Model Driven Engineering Languages and Systems,

Springer, Berlin, Heidelberg 2009 Oct 4 (pp. 226-240).

3. D. Strüber, G. Taentzer, S. Jurack, S. and T. Schäfer. “Towards a

distributed modeling process based on composite models

“International Conference on Fundamental Approaches to Software

Engineering, Springer, Berlin, Heidelberg. 2013, March (pp. 6-20).

4. S. Živković, D. Karagiannis. “Towards metamodelling-in-the-large:

Interface-Based composition for modular metamodel development.””

Enterprise, Business-Process and Information Systems Modeling.

Springer, Cham, 2015

5. K. Chen, J. Sztipanovits and S. Neema. Toward a Semantic Anchoring

Infrastructure for Domain-Specific Modeling Languages”

EMSOFT‟05 September 19–22, 2005, Jersey City, New Jersey, USA,

2005.

6. K. Chen, J. Sztipanovits and S. Neema. “Toward formalizing

Domain-specific Modeling Languages.” Vanderbilt University

Institute for Software Integrated Systems, presented at the Object

Management Group (OMG) OMG's First Annual Model-Integrated

Computing Workshop, 2004.

7. T. Clark, P. Sammut and J. Willans. Applied metamodeling: a

foundation for language driven development. Middlesex University

Research Repository, 2008

8. T. Degueule, B. Combemale, and JM. Jézéquel. “On language

interfaces.” In Present and ulterior software engineering, pp. 65-75.

Springer, Cham, 2017.

9. OMG: Model driven architecture MDA Guide rev.2.0, 2014-06-01.

10. L. Bettini. Implementing domain-specific languages with Xtext and

Xtend. Packt Publishing Ltd. 2016.

11. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen , S. Van Mierlo,

H. Ergin. AToMPM: “A Web-based Modeling Environment.”

Demos/Posters/StudentResearch@ MoDELS. 2013 Sep 29;

2013:21-5.

12. JP. Tolvanen, R. Pohjonen, S. Kelly. “Advanced tooling for

domain-specific modeling: MetaEdit+.” In Sprinkle, J., Gray, J., Rossi,

M., Tolvanen, JP (eds.) The 7th OOPSLA Workshop on

Domain-Specific Modeling, Finland 2007 Oct.

Meta Level Concept/Instance

M3 MetaPackage ProvidedInterface RequiredInterface CoordinationRelationship

M2 FSM DSML StateFsmPInterface EventFsmRInterface ProviderConsumerRelation

CausalityRelation ThingSee DSML EventThingSeePInterface StateThingSeeRInterface

M1 Robot Routine Model StateForSensor EventRequiredInterface ProviderConsumerRelation

CausalityRelation
BatteryCheck Model

LocationCheck Model

ProvisioningCheck Model

DeliveryCheck Model

LowBatteryEvent

FullBatteryEvent

ArrivedEvent

ProvisioningFinishedEvent

DeliveryFinichedEvent

ER_RequiredState

DLV_RequiredState

Prov_RequiredState

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

280

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81961110120

DOI: 10.35940/ijitee.A8196.1110120

13. Z. Molnár, D. Balasubramanian, Á. Lédeczi. “An introduction to the

generic modeling environment.” In Proceedings of the TOOLS Europe

2007 Workshop on Model-Driven Development Tool Implementers

Forum 2007 Jun.

14. V. Viyović, M. Maksimović, B. Perisić. Sirius: “A rapid development

of DSM graphical editor.” In IEEE 18th International Conference on

Intelligent Engineering Systems INES 2014 2014 Jul 3 (pp. 233-238).

IEEE.

15. D. Steinberg, F. Budinsky, E. Merks, M. Paternostro. EMF: eclipse

modeling framework. Pearson Education; 2008 Dec 16.

16. M. Fowler. Language workbenches: The killer-app for domain specific

languages, 2005.

17. E. Schindler, K. Schindler, F. Tomassetti, AM. Sutii. “Language

workbench challenge” 2016: the JetBrains meta programming system.

In LWC@ SLE 2016 Language Workbench Challenge, Splash2016, 39

October-4 November 2016, Amsterdam, The Netherlands 2016 Nov 2.

18. N.Essadi, A.Anwar, and Y.Laghouaouta, “Operators role-based

approach to coordinate between heterogeneous DSLs”. In Wireless

Technologies, Embedded and Intelligent Systems (WITS), 2017

International Conference on(pp. 1-7). IEEE, April 2017.

AUTHORS PROFILE

 Naima Essadi is a PhD student in SIWEB Lab

belonging to Department of Computer Science and

Engineering, Mohammadia school of engineers

University Mohammed V in Rabat, Morocco. She

received a Master degree in Computer Science and

Telecommunication in 2007 from Faculty of Science

University Mohammed V in Rabat. She worked for many

years as software development Engineer at Alcatel-Lucent and at Moroccan

Ministry of Justice. Her area of interest includes software Engineering,

Model Driven Engineering as well as Domain Specific Modeling Languages.

Dr. Adil Anwar is an associate Professor in

Computer Science at Mohammadia School of engineers,

University Mohammed V in Rabat, Morocco. His area of

interest includes software engineering, Model Driven

engineering, Requirement engineering as well as Domain

Specific Modeling Languages.

