
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

245

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81901110120

DOI: 10.35940/ijitee.A8190.1110120

 Abstract: Big data applications play an important role in real

time data processing. Apache Spark is a data processing

framework with in-memory data engine that quickly processes

large data sets. It can also distribute data processing tasks across

multiple computers, either on its own or in tandem with other

distributed computing tools. Spark’s in-memory processing

cannot share data between the applications and hence, the RAM

memory will be insufficient for storing petabytes of data. Alluxio

is a virtual distributed storage system that leverages memory for

data storage and provides faster access to data in different storage

systems. Alluxio helps to speed up data intensive Spark

applications, with various storage systems. In this work, the

performance of applications on Spark as well as Spark running

over Alluxio have been studied with respect to several storage

formats such as Parquet, ORC, CSV, and JSON; and four types of

queries from Star Schema Benchmark (SSB). A benchmark is

evolved to suggest the suitability of Spark Alluxio combination for

big data applications. It is found that Alluxio is suitable for

applications that use databases of size more than 2.6 GB storing

data in JSON and CSV formats. Spark is found suitable for

applications that use storage formats such as parquet and ORC

with database sizes less than 2.6GB.

Keywords: Alluxio, Spark, file formats, benchmark,

performance, VDFS.

I. INTRODUCTION

 Apache Spark is an in-memory cluster-computing

framework for large scale data processing [1]. It is useful for

interactively processing large datasets on a cluster. Spark

includes libraries such as Spark SQL, Spark streaming for

processing real-time data, MLlib that provides machine

learning functionalities and GraphX for providing charts and

graphs. Spark SQL provides APIs for data frames that are

used to read, write and query the data [2]. It extends the

MapReduce model with an abstraction called Resilient

Distributed Dataset (RDD) which improves the performance

of Spark by caching the data in executors and enables data to

be accessed directly from memory on frequent access. Spark

can process petabytes of data with low latency and is 100

times faster than Hadoop. It can process both batch and

streaming data. However, there are two shortcomings:

inadequate memory for large datasets since RDDs are

memory bound; loss of cached data in the case of job failures.

 Alluxio [3] is a virtual distributed file system which lies

between data driven applications like Spark, Presto,

Tensorflow, etc. and persistent storage systems like Amazon

S3 (Amazon Simple Storage Service), HDFS (Hadoop

Distributed File System), Google Cloud Storage, etc. It helps

Revised Manuscript Received on November 01, 2020.

* Correspondence Author

Kanchana Rajaram, Computer Science and Engineering, Sri

Sivasubramaniya Nadar College of Engineering, Chennai, India. Email:

rkanch@ssn.edu.in

Kavietha Haridass*, Computer Science and Engineering, Sri

Sivasubramaniya Nadar College of Engineering, Chennai, India. Email:

hkavietha@gmail.com

applications to access data regardless of their formats and

locations. Alluxio is used as a data access layer for Spark

applications. Alluxio framework over Spark decouples

storage and computation [4]. When used with Spark, Alluxio

persists the data even when the Spark shell is closed. It speeds

up I/O performance especially when data is stored remotely

from Spark. When the data is locally stored, Spark by itself

shows a good performance. Though Spark framework is

efficient for big data processing, it is required to identify the

need for using Alluxio with Spark. It is important to know

whether Alluxio on Spark would always provide better

performance. Towards this objective, we have proposed a

benchmark to recommend the suitability of Alluxio over

Spark with respect to different storage formats and types of

queries.

Our contributions in this work are listed below:

 Generating a benchmark dataset in various file
formats.

 Observing the performance of different types of
queries that use scan, join, aggregate functions, etc.

 Observing the performance of Spark applications
with and without Alluxio.

 The rest of the paper is organized as follows. The next

section elaborates the existing literature. Section III

introduces the proposed work. Section IV explains the various

experiments that were carried out and Section V discusses the

results and provides our recommendation. The last Section

concludes our work.

II. LITERATURE

 Grandhi et al. [5] conducted performance analysis of

queries run on MySQL, queries on Apache Spark with CPU

system and queries run on a GPU system. Two datasets were

considered, with size 3.7 GB and 4.3 GB respectively. Cache

time and response time of queries were compared between

these three scenarios. The execution of queries on Spark was

faster than MySQL, and execution of queries on GPU was

faster than Spark and MySQL. Liet al. [6] introduced

Tachyon which was later known as Alluxio. They analyzed its

efficiency over in-memory HDFS and showed that Tachyon

outperforms HDFS 110X for write throughput and 2X for

read throughput. A Virtual Distributed File System (VDFS)

[7] was proposed between computation and storage layer. An

evaluation framework to evaluate the performance of Alluxio,

CephFS, GlusterFS, and HDFS was also evolved in this work.

The performance of accessing Ceph storage with and without

Alluxio using Spark was compared. In addition, experiments

were performed to avoid the ETL process with multi-data

center infrastructure by using

Alluxio as VDFS.

A Benchmark for Suitability of Alluxio over

Spark
Kanchana Rajaram, Kavietha Haridass

https://spark.apache.org/

A Benchmark for Suitability of Alluxio over Spark

246

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81901110120

DOI: 10.35940/ijitee.A8190.1110120

It was observed that HDFS outperforms CephFS and

GlusterFS. Further, it was verified that Alluxio is slower than

HDFS since Alluxio uses APIs to read the data stored in

HDFS. Lawrie et al. [8] evaluated the suitability of Alluxio

for Hadoop processing frameworks. Alluxio was compared

with Hadoop caching and Spark caching. Filter jobs were run

to compute the execution time. Performances were compared

with respect to Alluxio versus Hadoop caching as well as

Alluxio versus Spark caching. The authors suggested that

Alluxio is more suitable for implementing a Spark cluster that

utilizes in-memory storage. Ivanov and Pergolesi

evaluated the impact of columnar file formats on Hadoop

processing engines [9]. BigBench (TPCx-BB) benchmark

was used for experimentation with dataset size of 1000 GB in

ORC and Parquet file formats. Queries were executed using

HiveQL and SparkSQL and the execution times were

compared. Results showed that ORC performs better with

Hive and parquet performs better with Spark. Alonso

studied the performance of various HDFS file formats [10].

The queries were run using Hive and using Java MapReduce

script. Tests were done on two datasets ADS-B (Automatic

Dependent Surveillance - Broadcast) messages collected

from Opensky with dataset size 364.16 GB and GitHub log of

size 195.46 GB. Different file formats such as CSV,

SequenceFile, Avro, RCFile, ORC and Parquet were

compared. Moreover, the files were compressed using snappy

and gzip. It was concluded that it is better to use compression

while working with MapReduce; Avro provides poor

performance and ORC shows the best results while using with

Hive. It was also emphasized that no particular format is

perfect in all situations. It is observed that none of the

existing works have evaluated the suitability of Alluxio on

Spark

III. PROPOSED WORK

 The proposed decoupled architecture of Spark with Alluxio

is depicted in Fig. 1. It has three layers, namely, compute,

data cache and storage. Compute layer uses Apache Spark to

process the data. Data cache layer caches data in Alluxio file

system which acts as a VDFS that decouples storage and

computation. Storage layer uses Amazon S3 as an object

storage service to persist the data in-memory on Alluxio file

system. The Star Schema Benchmark (SSB) [11] is

designed to measure the performance of transactions in data

warehouse applications. SSB contains a fact table

LINEORDER and four dimension tables DWDATE,

CUSTOMER, SUPPLIER, and PART. The schema is shown

in Fig. 2. SSB DBGen tool is used to generate data pertaining

to SSB schema. The data can be grown to any size by

selecting the appropriate Scale Factor (SF). Data with SF 5,

10 and 15 have been generated for the experiments. The

generated data is stored as objects in Amazon S3 buckets and

can be accessed through their access points.

Fig. 1. Decoupled Architecture of Spark and Alluxio

Fig. 2. Star Schema Benchmark schema

 The storage efficiency is improved by storing the generated

SSB dataset in different file formats such as Parquet, ORC,

CSV, and JSON [12]. Parquet and ORC (Optimized Row

Columnar) file formats are column oriented and compress the

data to minimize the storage space. A file in CSV

(Comma-Separated Values) format is simple to parse and

supports faster query processing. A file in JSON (JavaScript

Object Notation) stores metadata and is the standard for

communicating on the web. JSON does not support block

compression. Query parses only the metadata when using

parquet format whereas the entire content of the file is parsed

when using CSV and JSON formats, thus deteriorating the

performance. Some of the properties of these file formats are

tabulated in Table I.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

247

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81901110120

DOI: 10.35940/ijitee.A8190.1110120

Table-I: Properties of File Formats

Properties Parque

t

ORC CSV JSON

Format Column

ar

Columna

r

Row

based

Structured

Data

Structure

Comple

x

nested

data

structur

e

Stripe

structure

Comma

separate

d values

Key-value

pairs

Compressabl

e

Yes Yes Yes Yes

Splittable Yes Yes Splittabl

e when

uncompr

essed

Splittable

when

uncompres

sed

Readable machin

e-reada

ble

machine

-readabl

e

human-r

eadable

human-rea

dable

Schema

Evolution

Yes Yes No No

 With SSB dataset, a set of four categories of queries with

restrictions upto four dimensions are discussed in [13]. Each

category consists of three to four queries with varying

selectivity. For our evaluation purpose, the following four

queries have been considered, one from each category.

Query 1: SELECT sum(lo_extendedprice*lo_discount) as

revenue

FROM lineorder, dwdate

WHERE lo_orderdate = d_datekey

AND d_weeknuminyear = 6

AND d_year = 1994

AND lo_discount between 5 and 7

AND lo_quantity between 26 and 35

Query 1 lists the revenues by applying a range of discounts in

a given product order, for a quantity interval shipped in a

given year. It involves two restrictions on the dimension table

DWDATE and three restrictions on the fact table

LINEORDER.

Query 2: SELECT sum(lo_revenue), d_year, p_brand1

FROM lineorder, dwdate, part, supplier

WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

AND p_brand1= 'MFGR#2239'

AND s_region = 'EUROPE'

GROUP BY d_year, p_brand1

ORDER BY d_year, p_brand1;

Query 2 lists revenues for certain product classes and

suppliers in a certain region, grouped by restrictive product

classes and all years of orders. It involves one restriction on

two dimension tables PART and SUPPLIER and three

restrictions on fact table LINEORDER with group by

restrictions on two dimension tables.

Query 3: SELECT c_city, s_city, d_year, sum(lo_revenue)

AS revenue

FROM customer, lineorder, supplier, dwdate

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_orderdate = d_datekey

AND (c_city='UNITED KI1'

OR c_city='UNITED KI5')

AND (s_city='UNITED KI1'

OR s_city='UNITED KI5')

AND d_yearmonth = 'Dec1997'

GROUP BY c_city, s_city, d_year

ORDER BY d_year asc, revenue desc;

Query 3 retrieves total revenue for lineorder transactions

within a region restricting to two cities in a certain time

period, grouped by customer nation, supplier nation and year.

It involves one restriction on three dimension tables

CUSTOMER, SUPPLIER and DWDATE and three

restrictions on fact table LINEORDER with group by

restrictions on three dimensional tables.

Query 4: SELECT d_year, s_nation, p_category,

sum(lo_revenue - lo_supplycost) as profit

FROM dwdate, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_partkey = p_partkey

AND lo_orderdate = d_datekey

AND c_region = 'AMERICA'

AND s_region = 'AMERICA'

AND (d_year = 1997 or d_year = 1998)

AND (p_mfgr = 'MFGR#1'

OR p_mfgr = 'MFGR#2')

GROUP BY d_year, s_nation, p_category

ORDER BY d_year, s_nation, p_category

Query 4 retrieves aggregate profit grouped by year and nation.

It has restrictions on four dimension tables DWDATE,

CUSTOMER, SUPPLIER and PART and four restrictions on

fact table LINEORDER with group by restrictions on the four

dimension tables. The above queries were run by a Spark

application by accessing data remotely from Amazon S3

storage. The performance of Spark with its own in-memory

storage as well as Spark on Alluxio, are analyzed by executing

these four benchmark queries on a database of different sizes

by storing them in four different file formats. Queries were

run with Spark, accessing data from Amazon S3 and caching

the data in its in-memory. The same queries were run by

accessing data from Amazon S3 and storing data in Alluxio

in-memory. Initially, the query processing time was higher, as

the application needs to mount the Amazon S3 storage to file

system. On subsequent queries, the data was accessed directly

from memory and performed its computation. The details of

the experiments are discussed in the next section.

IV. EXPERIMENTATION

 A testbed consisting of a multi node cluster is setup with 4

nodes, 1 master and 3 worker nodes. Master node has intel i9,

12 core processor using 64 GB of RAM. Worker node has

intel i7, 4 core processor using 16 GB of RAM. With these

nodes Hadoop is installed as master slave architecture and

Spark runs on the Hadoop cluster with underlying HDFS.

A Benchmark for Suitability of Alluxio over Spark

248

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81901110120

DOI: 10.35940/ijitee.A8190.1110120

Experiment is done on Ubuntu platform in which Spark 2.4.3

is deployed and Alluxio 2.1.9 compatible to Spark version is

used. The SSB dataset size was scaled up by 5, 10 and 15

and for each scale up, the data was stored in four different file

formats such as parquet, ORC, CSV and JSON. Four

benchmark queries were run on Spark cluster. The

experiments have been carried out with and without having

Alluxio as virtual storage, to understand the performance of

Spark and Spark on Alluxio. The first two experiments are

based on varying file formats and varying the database size.

Alluxio UI is useful to measure the data mounted on Alluxio

and its distribution across nodes while the performance of the

application is measured through Spark UI. The resulting sizes

of the database by scaling up the SSB dataset and the

corresponding file format and file size are tabulated in Table

III. The file size of a database varies with different formats

due to its compression nature as mentioned in Table I.

Table-III: Database size and File sizes corresponding to

different File Formats

Scale factor Database

size (GB)

File format File size

(GB)

SF5 2.6 Parquet 1.1

CSV 2.6

JSON 10.8

ORC 1.1

SF10 6.8 Parquet 2.1

CSV 6.8

JSON 21.5

ORC 2.2

SF15 9.4 Parquet 3.2

CSV 9.4

JSON 32.3

ORC 3.3

Experiment 1: Performance of four benchmark queries are

measured on fixed size database stored in four different file

formats such as Parquet, ORC, CSV, and JSON. The

experiments are conducted for datasets generated with scale

factors of 5, 10 and 15 and results are depicted as graphs in

Fig. 3, 4, and 5.

Fig. 3. Performance comparison for database of SF 5

Fig. 4. Performance comparison for database of SF 10

Fig. 5. Performance comparison for database of SF 15

 In this experiment, it is observed that the data stored in

parquet and ORC formats provides better performance with

Spark as well as Spark on Alluxio.

Experiment 2: Performance of four benchmark queries are

analyzed for different database loads of SF 5, 10, and 15 with

the file stored in parquet format.

Similar tests have been conducted for the other three file

formats such as ORC, CSV, and JSON. The execution time

taken by the queries are depicted as graphs as shown in Fig. 6,

7, 8, and 9.

Fig. 6. Performance comparison for Parquet format

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

249

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81901110120

DOI: 10.35940/ijitee.A8190.1110120

It is observed that without using Alluxio the query execution

time increases from 375 seconds to 25650 seconds as the

database size increases. When Alluxio is used, the increase in

query execution time is not more than 75 seconds.

V. RESULTS AND DISCUSSION

As a result of experiments, the average query processing time

for database SFs 5, 10 and 15 when the data is stored in

different file formats, are tabulated in Table IV.

Fig. 7. Performance comparison for ORC format

Fig. 8. Performance comparison for CSV format

Fig. 9. Performance comparison for JSON format

Table-IV: Spark versus Spark with Alluxio

File format Spark Spark on

Alluxio

Recommendation

Parquet 13.0 mins 1.0 sec Spark

ORC 12.0 mins 1.5 secs Spark

CSV 1.7 hrs 14.5 secs Alluxio when

dataset is >2.6 GB

JSON 4.5 hrs 2.0 mins Alluxio

When the file is stored in Parquet format, it highly

compresses the data to 70 percentage. With Spark cluster,

query execution time for parquet reached a maximum of 27

minutes for 9.8 GB data. When Alluxio is used for storage,

the query executed in 2 seconds for the same 9.8 GB of data

with 99% improvement in performance. ORC format also

compresses the data and shows on-par performance to parquet

format. Though parquet and ORC provides similar

performances, their functional differences need to be

considered. Vectorized query execution [14] is a feature that

greatly reduces CPU usage for query operations such as scan,

filter, aggregates and joins. Spark has a vectorized parquet

reader but does not provide one for ORC. Though Alluxio

provides faster query execution time as compared to Spark’s

in-memory storage, Spark is recommended for time

insensitive queries, since, CPU usage is found minimal with

files stored in parquet format.

 The data is not compressed for files stored in CSV format.

With CSV file format, query performance decreases as

database size increases. With Alluxio, the performance is

improved by around 90 percentage. Without Alluxio, query

processing takes 1 to 2 hours. For 2.6 GB of data, the query

execution time using Alluxio is 300 times lesser. Similarly,

with database sizes of 6.8 GB and 9.4 GB, query execution

times using Alluxio is 400 times and 500 times lesser

respectively. Therefore, Alluxio proves to be a better choice

for databases of size more than 2.6 GB. For database size

more than 2.6 GB, Spark may not be efficient because of its

limited in-memory. JSON format increases the actual file size

by 68 percent since the data is stored along with metadata.

Since data becomes heavy, the data transfer rate increases as

the database size scales up. Without Alluxio, it takes hours

for query processing whereas Alluxio improves the

performance by 99 percentage. It is observed that when Spark

takes 8 hours to process a query for 9.8 GB data, Alluxio

fetches the result around 3 minutes. Efficient usage of Alluxio

can be observed when processing JSON format files, since

even with 2.6 GB data, execution time is higher by 9000

seconds than the data stored in other formats. Alluxio

processes the query in 67 seconds as shown in Fig. 3. Hence,

Alluxio is preferred to query the files stored in JSON format.

VI. CONCLUSION

 High performance and optimized storage are the

requirements of any big data application. With many big data

technologies available, it is important to know their suitability

for an efficient big data framework. Spark is always efficient

when the storage is local.

A Benchmark for Suitability of Alluxio over Spark

250

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81901110120

DOI: 10.35940/ijitee.A8190.1110120

When data is remote, the need for Spark with Alluxio has

been analyzed. Spark is efficient for file formats parquet and

ORC for all database sizes 2.6, 6.8 and 9.4 GB. Deployment

of Alluxio is an overhead since, the faster query execution

time is compensated with higher mounting time of Alluxio file

system. For data stored in CSV format, execution time is 45

minutes for 2.6 GB. Hence, Alluxio is preferred for database

size more than 2.6 GB and Spark itself gives better

performance for lesser database sizes. Average query

execution time of data stored in JSON format is 4.5 hours on

Spark and just 2 minutes with Alluxio. Though Alluxio is

useful for data storage making computation more powerful, it

is observed to be an overhead in some scenarios. With large

dataset where the queries are I/O heavy, Alluxio helps to

improve the performance of the query. Alluxio provides

better performance in high computational applications by

effectively utilizing the computational potential. Hence, it is

concluded that Alluxio is suitable for big data applications

that use databases of size more than 2.6 GB storing data in

JSON and CSV formats. Spark is preferred for applications

that use storage formats such as parquet and ORC with

database sizes less than 2.6GB.

ACKNOWLEDGEMENT

This work is supported by the Biotechnology Industry

Research Assistance Council (BIRAC), Department of Bio

Technology, Government of India under the scheme

of Grand Challenges India - Immunization Data Innovating

for Action as a part of the project titled "Nagarik Rog

Pratirakshak: Unified Smart Immunization Coverage

Monitoring and Analysis (NRP-UniSICMA)". We thank

Prof. S. Selvakumar, Director and Principal Investigator, IIIT

Una (HP) for the consistent support of the work.

REFERENCES

1. A. da Silva Veith, M. D. de Assuncao , “Apache Spark”, Springer

International Publishing, Cham, 2018 pp.1-5.

2. Z. Han, Y. Zhang, “Spark: A big data processing platform based on

memory computing” Seventh International Symposium on Parallel

Architectures, Algorithms and Programming, 2015, pp. 172-176.

3. Alluxio, Inc. (2018) “Alluxio Overview”, White paper, Available:

https://www.alluxio.io/resources/whitepapers/alluxio-overview/.

4. P. Xuan, “Accelerating Big Data Analytics on Traditional

High-Performance Computing Systems Using Two-Level Storage”, All

Dissertations, 2318, Clemson University, 2016.

5. B. Grandhi, S. Chickerur, M. S. Patil, “Performance Analysis of

MySQL, Apache Spark on CPU and GPU”, 3rd IEEE International

Conference on Recent Trends in Electronics, Information &

Communication Technology, Bangalore, 2018, pp. 1494-1499.

6. H. Li, A. Ghodsi, M. Zaharia, S. Shenker and I. Stoica, “Tachyon:

Reliable, memory speed storage for cluster computing frameworks”, In

Proceedings of the ACM Symposium on Cloud Computing, 2014, pp.

1-15.

7. H. Li, “Alluxio: A virtual distributed file system”, Doctoral dissertation,

UC Berkeley, 2018.

8. C. Lawrie, P. Kothuri, “Evaluation of the Suitability of Alluxio for

Hadoop Processing Frameworks”, CERN summer student program,

2016.

9. T. Ivanov, M. Pergolesi, “The impact of columnar file formats on

SQL-on-hadoop engine performance: A study on ORC and Parquet”,

Concurrency and Computation: Practice and Experience, volume 32(5),

2020, pp. 1-31.

10. A. Alonso Isla, “HDFS File Formats: Study and Performance

Comparison”, Master’s thesis, Universidad de Valladolid, 2018.

11. P.E. O’Neil, E. J. O’Neil, X. Chen, “The star schema benchmark

(SSB)”, 2007

12. A. Trivedi, P. Stuedi, J. Pfefferle, A. Schuepbach, B. Metzler, “Albis:

High-performance file format for big data systems”, USENIX Annual

Technical Conference, 2018, pp. 615-630.

13. Sanchez J, “A Review of Star Schema Benchmark”, arXiv preprint, East

Carolina University, 2016, Available: http://arxiv.org/abs/1606.00295.

14. Eric N. Hanson, “Vectorized Query Execution”, Jul 29, 2017, Available:

https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+E

xecution.

AUTHORS PROFILE

Kanchana Rajaram is an Associate Professor at the

Department of Computer Science and Engineering, Sri

Sivasubramaniya Nadar College of Engineering,

Chennai. She obtained PhD in Computer Science and

Engineering from Anna University, Chennai. She has

30 years of teaching experience and her research interests

are Web Services, Big Data Analytics and Distributed Computing. She has

to her credit of publishing 31 research papers in journals and conferences.

Currently she is the Principal Investigator of the sponsored collaborative

project worth Rs. 106 lakh funded by Biotechnology Industry Research

Assistance Council (BIRAC), Department of Bio Technology, Government

of India. She is a member of IEEE, ACM, and ISTE.

Kavietha Haridass has been working as a Junior

Research Fellow under the BIRAC (Biotechnology

Industry Research Assistance Council) funded research

project titled “Nagarik Rog Pratirakshak: Unified Smart

Immunization Coverage Monitoring and Analysis (NRP

UniSICMA)”. She has a post graduate degree in

Computer Science and Engineering from Sri Sivasubramaniya Nadar

College of Engineering affiliated to Anna University, Chennai. She obtained

her undergraduate degree from Jeppiaar SRR Engineering College affiliated

to Anna University, Chennai. Her research interests include Big data

analytics, Big data technologies, Data Visualization, Web technologies and

Storage management. Earlier, she has a teaching experience of 8 months.

