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 
Abstract: In the existing methods for solving Quadratic 

Programming Problems having linearly factorized objective 
function and linear constraints, all the linear factors of the 
objective function are supposed to be positive for all feasible 
solutions. Here, a modification of the existing methods is proposed 
and it has been proved that the modified method can be applied to 
find the optimal solution of the problem even if all the linear 
factors of the objective function are not necessarily positive for all 
feasible solutions. Moreover, the proposed method can be applied 
to find the optimal solution of the problem even if the basic 
solution at any stage is not feasible. If the initial basic solution is 
feasible, we use simplex method to find the optimal solution. If the 
basic solution at any stage is not feasible, we use dual simplex 
method to find the optimal solution. Numerical examples are 
given to illustrate the method and the results are compared with 
the results obtained by other methods. 

Keywords : Optimal Solution, Quadratic Programming 
Problem, Simplex Method 

I. INTRODUCTION 
Quadratic Programming (QP) is the process of solving a 
special type of mathematical optimization problem, which 
maximizes (or minimizes) a quadratic objective function 
subject to some linear constraints and non-negative 
restrictions. Because of its wide range of applications in real 
life, quadratic programming is of considerable research and 
interest. In finance, QP is used in portfolio analysis; in 
agriculture, it is used in crop analysis; in statistics, in 
regression analysis; in electrical engineering, in signal 
processing; in industry, in planning and scheduling etc. 
A quadratic programming problem can be written 
mathematically as follows : 
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The matrix Q is a real symmetric matrix and the function 
xQxT   defines a quadratic form. The matrix Q is assumed 

negative definite (or negative semi-definite) if the problem is 
of maximization as given in equation (1).  But if the problem 
is of minimization, the matrix Q is assumed positive definite 
(or positive semi-definite).This means z  is strictly concave 
(or concave) for maximization and strictly convex (or 
convex) for minimization. Since the constraints are linear, it 
guarantees a convex solution space. Many researchers have 
considered quadratic programming problems in which the 
objective function z  can be expressed as the product of 
linear factors and all the linear factors of the objective 
function are positive for all feasible solutions. In the present 
paper, a modification of the existing methods is proposed and 
it has been proved that the modified method can be applied to 
find the optimal solution of the problem even if all the linear 
factors of the objective function are not necessarily positive 
for all feasible solutions. 

II.  LITERATURE REVIEW 
A number of methods have been developed for finding 
solution of such problems. Wolfe [1] proposed a modified 
simplex method for solving such problems. 
Phillips, Ravindran and Solberg [2] developed a 
complementary pivot method to solve convex quadratic 
programming problems. Cabot and Francis [3] solved certain 
non-convex quadratic minimization problems by ranking 
extreme points. Konno [4] proposed two algorithms: one 
cutting plane and the other enumerative for maximization of a 
convex quadratic function under linear constraints. Frank and 
Wolfe [5] used finite iteration method for finding the optimal 
solution of quadratic programming problems.  
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Swarup [6] developed a simplex type method for solving a 
special type of quadratic programming problems, in which 
the objective function can be expressed as the product of 
linear factors. The solution methods for optimization of 
quadratic programming problem proposed by Sharma and 
Singh [7] and Ghadle and Pawar [8] differ from Swarup’s 
method [6] only in the criteria of selection of entering 
variable. Hasan [9] introduced a computational technique 
using computer algebra Mathematica to solve the quadratic 
programming problems. Asadujjaman and Hasan [10] used 
objective separable method for solving quasi-concave 
quadratic programming problems with bounded variables. 
Beale [11] proposed an algorithm for minimizing a convex 
quadratic function subject to linear inequalities. Shetty [12] 
proposed a method for maximization (or minimization) of a 
quadratic functions of a certain form under linear restrictions 
and he used Wolfe’s procedure [1] for quadratic 
programming with minor modifications. Fletcher [13] 
proposed a method for solving the general quadratic 
programming problem by generating a sequence of equality 
problems which differ only in the active constraints. Jensen 
and King [14] proposed a decomposition method for solving 
quadratic programming problems. Whinston [15] proposed 
an algorithm to solve the bounded variable quadratic 
programming problem which is a direct extension of an 
earlier algorithm of H. Wagner for a bounded variable linear 
programming problem. Cryer [16] solved the quadratic 
programming problems using systematic over relaxation. 
Bunch and Kaufman [17] proposed a computational method 
for the indefinite quadratic programming problem. Apart 
from these, there are a number of papers [18], [19], [20], [21], 
[22], [23] on quadratic programming problem.  
In this work, a modification of the existing methods for 
solving Quadratic Programming Problems having linearly 
factorized objective function and linear constraints is 
proposed and it has been proved that the modified method 
can be applied to find the optimal solution of the problem 
even if all the linear factors of the objective function are not 
necessarily positive for all feasible solutions. Moreover, the 
proposed method can be applied to find the optimal solution 
of the problem even if the basic solution at any stage is not 
feasible. The layout of the paper is as follows. In Section 3, 
the proposed method is presented. The algorithm for the 
proposed method is given in Section 4. Validity of the 
proposed method is proved in Section 5 by comparing the 
results obtained for the numerical examples by the proposed 
method and the existing methods. Finally, discussion for 
highlighting the importance of the proposed method is given 
in the last section. 

III. PROPOSED METHOD 
Consider the quadratic programming problem  
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where  .x,...,x,x,x 0321 n    
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Then the above problem can be written in the standard form 
as  
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Let B be any mm  sub-matrix of A  formed from m 
linearly independent columns of A  and 
let  T

mBBBB xxxx  
21 ... be an initial basic feasible 

solution of the above QP problem such that 
          i.e.,  , 1bBxbxB BB                                          (2)                                                      

Also, let BB xcc   z 01  and BBxdd   z 02 , where Bc  and Bd  are the vectors having their components associated 
with the basic variables in the numerator and the denominator 
of the objective function respectively. 
If the columns of matrix A be denoted by mn   ..., ,  , 21  
and columns of sub-matrix B  by ,   , ... ,  , 21 m then  mnA      .....       21  and  .     ....      21 mB    
Let the new basic feasible solution be given by 
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and other non-basic components are zero. 
Now we proceed to find the criterion to select the incoming 
vector Aj   such that the value of the objective function 
corresponding to the new basic feasible solution is improved. 
The value of the objective function for the original basic 
feasible solution is  
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Substituting the values of 'iBc  and 'iBd  from (7) and (8) in 
(6) and using (3), we get 
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no further improvement is possible and the optimal solution 
is reached. 
Also, it follows from (9) that 

      
  jjjj

rj
rB

jjjj
rj
rB dzczy

xdzzczzy
x 2121122121     zzz z  

                                                                                        (11) 
Since ,0

rj
rB

y
x  it follows from (11) that 21 z z  is 

maximum  if       jjjj
rj
rB

jjjj dzczy
xdzzczz  212112      is 

minimum. 
Therefore, we can conclude the following : 
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then the non-basic vector Aj   corresponding to  
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selected as the incoming vector. Using simplex method, the 
outgoing vector is selected and a new basic feasible solution 
is obtained. The process is continued till the criterion of 
optimality is satisfied. 
As soon as        0    212112  jjjj

rj
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for all the non-basic vectors, no further improvement is 
possible and the optimal solution is reached. 
Now, we consider the case of infeasible solution. 
If the basic solution obtained at any stage is infeasible, then 
we proceed as follows. 
We compute min  ,0 : ii BB xx  where iBx  denotes all 
basic infeasible solutions. 
Let us suppose that min  .0 : rii BBB xxx    
Then the basis vector corresponding to rBx will leave the 
basis. 
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To find the incoming vector, we compute 
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Let us suppose that  
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Then the non-basis vector k  will enter the basis. 
We continue the process till the criterion of optimality is 
satisfied. 

IV. ALGORITHM FOR THE PROPOSED METHOD 
Step1. Find an initial basic solution of the given quadratic 
programming problem. 
Step 2. Check whether the initial basic solution obtained in 
step 1 is feasible or infeasible. 
If the initial basic solution is feasible, then go to step 3, 
otherwise step 4. 
Step 3. Calculate             212112 jjjj

rj
rB

jjjjj dzczy
xdzzczz   

for all the non-basic vectors. 
If 0 j for all the non-basic vectors, then no further 
improvement is possible and the optimal solution is reached. 
If 0 j  for some non-basic vectors, then find min .j  In 
this case, the non-basic vector Aj   corresponding to 
min j is selected as the incoming vector. Using simplex 
method, the outgoing vector is selected and a new basic 
feasible solution is obtained. The process is continued till the 
criterion of optimality is satisfied. 
Step 4. Compute min  ,0 : ii BB xx  where iBx  denotes 
all basic infeasible solutions. 

If min   ,0 : rii BBB xxx   then the basis vector 
corresponding to rBx will leave the basis. 
To find the incoming vector, we compute  

max .0 : 



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rj
rj
j yy  

If  max ,0 : 
rk
krj

rj
j

yyy




  then the non-basis vector 

k  will enter the basis. 
The process is continued till the criterion of optimality is 
satisfied. 

V. NUMERICAL EXAMPLES 
Example 1.  
Max )22( )1 4 2( 321321  xxxxxxz  
subject to  

.0 , ,   ,34  ,32  ,4 3 321322121  xxxxxxxxx S
Solution: After adding slack variables, the above problem 
can be written in the standard form as follows:  
Max )22( )1 4 2( 321321  xxxxxx  
subject to  

    4 3 421  xxx  
32 521  xxx  
34 632     xxx    

.0 , ,, , , 654321 xxxxxx  
After computing     , , 121 jj czzz  and ,  2 jj dz   the initial 
basic feasible solution is given in Table I (a). 

. 

Table I(a) : Initial Table for Example 1 
                          Basis Bc  Bd  BX  1y  2y  3y  4y  5y  6y  

ji
iB

y
x

 
 

4y  0 0 4 1  0 1 0 0 3
4  

5y  0 0 3 2 1 0 0 1 0 3 

6y  0 0 3 0 1 4 0 0 1 3 

1z =1 
2z =2 

z = 2 

jj cz 1  -2 -4 -1 0 0 0  

jj dz 2  -1 1 -2 0 0 0 

j  -8 -(43/3) -(11/2) 0 0 0 

                                                                                                                            

3
3 
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Since 0 j for all the non-basic vectors, we have not 
reached the optimal solution. Therefore, we continue the 
process till the optimal solution is reached. 

 
 
 

Table I(b): Intermediate Table for Example 1 

Basis Bc  Bd  BX  1y  2y  3y  4y  5y  6y  
ji
iB

y
x

 
 

2y  4 1 4/3 1/3 1 0 1/3 0 0 - 

5y  0 0 5/3 5/3 0 0 -(1/3) 1 0 - 

6y  0 0 5/3 -(1/3) 0  -(1/3) 0 1 12
5  

1z =19/3 
2z =10/3 

z = 190/9 

jj cz 1  -(2/3) 0 -1 4/3 0 0  

jj dz 2  -(2/3) 0 -2 1/3 0 0 

j  -(62/9) 0 -(101/6) 43/9 0 0 

                                                                                                                                  
 

Table I(c): Intermediate Table for Example 1 

Basis Bc  Bd  BX  1y  2y  3y  4y  5y  6y  
ji
iB

y
x

  

2y  4 1 4/3 1/3 1 0 1/3 0 0 4 

5y  0 0 5/3 
 

0 0 -(1/3) 1 0 1 

3y  1 2 5/12 -(1/12) 0 1 -(1/12) 0 1/4 - 

1z =27/4 
2z =25/6 

z =225/8 

jj cz 1  -(3/4) 0 0 5/4 0 1/4 

jj dz 2  -(5/6) 0 0 1/6 0 1/2 

j  -(75/8) 0 0 11/2 0 101/24 

                                                                         
 

Table I(d): Final Table for Example 1 
Basis Bc  Bd  BX  1y  2y  3y  4y  5y  6y  

2y  4 1 1 0 1 0 2/5 -(1/5) 0 

1y  2 1 1 1 0 0 -(1/5) 3/5 0 

3y  1 2 1/2 0 0 1 -(1/10) 1/20 1/4 

1z = 15/2 
2z = 5 

z = 75/2 

jj cz 1  0 0 0 11/10 9/20 1/4 

jj dz 2  0 0 0 0 1/2 1/2 

j  0 0 0 11/2 45/8 19/4 
 
 

 

4
3 

5/3
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Now the criterion of optimality is satisfied, therefore the 
optimal solution of the given QP problem is reached, which is 
given by 2/1  , 1  , 1 31 2  xxx  and .2/75max z  

Therefore, we drop 4y  and enter 1y  to obtain the following 
dual simplex table:

Example 2.  Max )5( )232( 221  xxxz   
subject to 0 ,         ,2 4       ,1  212121  xxxxxx  
Solution: After adding slack variables, the above problem 
can be written in the standard form as follows: 

Max )5( )232( 221  xxx  
subject to  

1   321  xxx  
2 4 421  xxx  

.04, , , 321 xxxx  
The initial basic solution is ,2 ,1 43  xx  which is 
infeasible.  
After computing   , , 121 jj czzz  and  ,  2 jj dz  we get 
the following initial dual simplex table: 

Table II(a) : Initial Table for Example 2 
Basis Bc

 
Bd

 BX  1y  2y  3y
 

4y
 

3y  0 0 1 1 1 1 0 

4y  0 0 - 2  - 1 0 1 

1z = 2 
52 z  

10z  

jj cz 1  -2 -3 0 0 

jj dz 2  0 -1 0 0 

j  10 10 0 0 

                                                                                 
Since jj     0   and ,2 ,1 43 21   yy BB xx an 
optimal but infeasible solution has been attained. In order to 
obtain a feasible optimal solution, we select a basis vector to 
leave the basis and a non-basis vector to enter the basis. 
To find the outgoing vector, we compute 
min } ,{ 21 BB xx min } ,{ 43 yy min 22}2 ,1{ Bx   
i.e., the basis vector corresponding to 42 yBx   is the 
outgoing vector. 
To find the incoming vector, we compute  

max 



  0 : 2

2
j

j
j yy = max 



 

22
2

21
1  , yy   

= max 





 2
10 ,4

10 = 4
10
  

21
1

y
  

i.e., the non basic vector corresponding to 1y  is the incoming 
vector. 

 

Table II(b) : Final Table for Example 2 
Basis Bc

 
Bd
 BX  1y  2y  3y

 4y  

3y  0 0 1/2 0 3/4 1 1/4 

1y  2 0 1/2 1 1/4 0 -(1/4) 

1z = 3 
52 z  

15z  

jj cz 1  0 - (5/2) 0 - (1/2) 

jj dz 2  0 -1 0 0 

j  0 47/6 0 5/2 

Now the criterion of optimality is satisfied, therefore the 
optimal solution of the given QP problem is reached, which is 
given by    0,2

1
21  xx  and .15max z  

 Example 3.  Max )63( )1232( 2121  xxxxz   
subject to      

  ,603 2       ,102  2121  xxxx  
.0 ,       ,034      15,5 2121  xxxx  

Solution: After adding slack variables, the above problem 
can be written in the standard form as follows: 
Max )63( )1232( 2121  xxxxz  
subject to  

102 321  xxx  
603 2  421  xxx  

      551  xx  
      1561  xx  472  xx  

                03 82  xx  
 .0  , , ,,  , , , 87654321 xxxxxxxx  

After computing   , , 121 jj czzz  and ,2 jj dz  the initial 
basic solution is given in Table 3(a). 
It can be seen from Table 3(a) that the solution obtained is not 
feasible and the condition of optimality is not satisfied. 
Therefore, we introduce the following additional constraint: 

   0)(M    M21  xx  This    M321  xxx       312  M xxx                                                (1)                             
 

- 4 
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The next step is to eliminate .2x   
Table III(a) : Initial Table for Example 3 

Basis Bc  Bd  BX  1y  2y  3y  4y  5y  6y  7y  8y  
3y  0 0 10 -1 -2 1 0 0 0 0 0 

4y  0 0 60 2 3 0 1 0 0 0 0 
5y  0 0 -5 -1 0 0 0 1 0 0 0 
6y  0 0 15 1 0 0 0 0 1 0 0 
7y  0 0 - 4 0 -1 0 0 0 0 1 0 
8y  0 0 30 0 1 0 0 0 0 0 1 

1z =12 
2z =6 

z = 72 

jj cz 1  -2 -3 0 0 0 0 0 0 

jj dz 2  -1 -3 0 0 0 0 0 0 
j  -54 -234 0 0 0 0 0 0 

 
Now, we eliminate .2x Therefore, the problem reduces to  
Max )6) M(3( )12) M(32( 311311  xxxxxxz  
subject to      

10) M( 2 311  xxx  60) M( 3 2 311  xxx  
155 1  x  

03) M(4 31  xx  
.03, , 21 xxx  

After adding slack variables, the above problem can be 
written in the standard form as follows: 
Max )6) M(3( )12) M(32( 311311  xxxxxxz  
subject to      

10) M( 2 4311  xxxx  60) M( 3 2 5311  xxxx  
5 61  xx  15 71  xx  4) M( 831  xxx  

30) M( 931  xxx  
,0, ,,, ,,, , 987654321 xxxxxxxxx  

i.e., 
Max )326M3( )312M3( 3131 xxxxz            (2)                                                                 
subject to      

10M2 2 431  xxx                                  (3)                                                                                                                                      
60M3 3 531  xxx                              (4)                                                                                                                                      

5 61  xx                                                     (5)                                                                            
15 71  xx                                                        (6)                                                                             

4M831  xxx                                          (7)                                                                                       

30M 931  xxx                                     (8)                                                                                       
.0, ,,, ,,, , 987654321 xxxxxxxxx  

 
Now, we compute jj czzz 121  , , and jj dz 2   and follow 
the proposed method to obtain Table III (b).        h         
It can be seen from Table III (b) that the solution obtained is 
optimal but infeasible. In order to obtain a feasible optimal 
solution, we select a basis vector to leave the basis and a 
non-basis vector to enter the basis. 
To find the outgoing vector, we compute 
          min 0 : ii BB xx  
           = min } ,{ 632 , BBB xxx  
           = min }, ,{ 965 yyy  
           = min }30M ,5 ,60M3{    
          60M3   
          5y  
          2Bx  
i.e., the basis vector corresponding to 52 yBx   is the 
outgoing vector. 
To find the incoming vector, we compute  
max





  0 : 2

2
j

j
j yy = max 








 3
99M9 ,1

M9 = 3
99M9


   

i.e., the non basic vector corresponding to 3y is the incoming 
vector. 
Therefore, we drop 5y  and enter 3y  to obtain Table III 
(c).The solution obtained at this stage is optimal but 
infeasible. Therefore, we continue the process to obtain a 
feasible optimal solution. 
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Table III(b) : Intermediate Table for Example 3 

Basis Bc  Bd  BX  1y  3y  4y  5y  6y  7y  8y  9y  
4y  0 0 2M-10 1 2 1 0 0 0 0 0 

5y  0 0 -3M + 60 -1  0 1 0 0 0 0 

6y  0 0 -5 -1 0 0 0 1 0 0 0 
7y  0 0 15 1 0 0 0 0 1 0 0 
8y  0 0 M- 4 1 1 0 0 0 0 1 0 
9y  0 0 -M + 30 -1 -1 0 0 0 0 0 1 

1z = 3M +12 
2z = 3M + 6 

72M 54M 9 2 z  

jj cz 1  1 3 0 0 0 0 0 0 

jj dz 2  2 3 0 0 0 0 0 0 
j  9M 9M+99 0 0 0 0 0 0 

                                                                                                                                               
 

Table III(c) : Intermediate Table for Example 3 
Basis Bc

 
Bd
 BX  1y  3y  4y  5y  6y  7y  8y  9y  

4y  0 0 30 1/3 0 1 2/3 0 0 0 0 

3y  -3 -3 M - 20 1/3 1 0 -(1/3) 0 0 0 0 

6y  0 0 -5 
 

0 0 0 1 0 0 0 

7y  0 0 15 1 0 0 0 0 1 0 0 
8y  0 0 16 2/3 0 0 1/3 0 0 1 0 
9y  0 0 10 -(2/3) 0 0 -(1/3) 0 0 0 1 

1z = 72 
2z = 66 z = 4752 

jj cz 1  0 0 0 1 0 0 0 0 

jj dz 2  1 0 0 1 0 0 0 0 
j  72 0 0 93 0 0 0 0 

                                                                                                                                                           
To find the outgoing vector, we compute 

min  3650 : BBB xyxx ii   
i.e., the basis vector corresponding to 63 yBx   is the 
outgoing vector. 
To find the incoming vector, we compute  

max 



  0 : 3

3
j

j
j yy = 

31
1

y
 = 1

72
   

i.e., the non basic vector corresponding to 1y  is the incoming 
vector. Therefore, we drop 6y  and enter 1y  to obtain Table 
III (d). 

Now the solution obtained is optimal and feasible, therefore, 
we stop the process. 
The optimal value of the objective function is 4392 and the 
optimal solution is  

3
65M3  ,5 31

 xx  
i.e., .3

50
3

65M35MM  ,5 3121  xxxx

 
 
 
 
 

- 3 

- 1 
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Table III(d): Final Table for Example 3 
Basis Bc

 
Bd
 BX  1y  3y  4y  5y  6y  7y  8y  9y  

4y  0 0 85/3 0 0 1 2/3 1/3 0 0 0 

3y  -3 -3 3
65M3   0 1 0 -(1/3) 1/3 0 0 0 

1y  -1 -2 5 1 0 0 0 -1 0 0 0 

7y  0 0 10 0 0 0 0 1 1 0 0 

8y  0 0 38/3 0 0 0 1/3 2/3 0 1 0 

9y  0 0 40/3 0 0 0 -(1/3) -(2/3) 0 0 1 
1z = 72 
2z = 61 

z = 4392 

jj cz 1  0 0 0 1 0 0 0 0 

jj dz 2  0 0 0 1 1 0 0 0 

j  0 0 0 95 72 0 0 0 
 
 

VI. COMPARISON OF THE NUMERICAL RESULTS 
The following table shows the comparison between the 
proposed method and other optimization methods : 

Table IV: Comparison of the Numerical Results 
Example Reference Optimal 

solution 
Optimal 

value 

Ex.1 

Proposed (1, 1, 0.5) 37.5 
Ref.[9] (1, 1, 0.5) 37.5 
Ref.[10] (1, 1, 0.5) 37.5 
Ref.[22] (1.5, 0, 0.75) 23.75 

Ex.2 
Proposed (0.5, 0) -15 
Ref.[23] (0.5, 0) -15 

Ex.3 
Proposed (5, 16.66) 4392 
Ref.[8] (5, 16.66) 4392 

It can be seen that the results obtained by the proposed 
method are the same as those obtained by other methods for 
almost all the examples, which proves the validity of the 
proposed method. For Example 1, the optimal solution 
obtained by Jayalakshmi[22] is different from that obtained by 
the proposed method and I claim that the optimal solution 
obtained by the proposed method is the correct one. 
For solving Example 2, Jain and Mangal[23] have used that ba   and .dbcadc   But , this is not always 
true,  although the optimal solution obtained by them is the 
same. 
Asadujjaman and Hasan[8] have constructed seven simplex 
tables for solution of Example 3, but only four tables have 
been constructed to solve the same problem by the proposed 
method.  
Moreover, no single optimization method exists, which can 
solve different type of QP problems like examples 1, 2 and 3 
given above. For each particular type of QP problem, a 
particular method has been developed. But the proposed 
method serves this purpose. Comparison of the 

computational steps by the proposed method with existing 
methods shows that the proposed method helps to save our 
time.  

VII. CONCLUSION 
The optimization method proposed in this article provides an 
easy method to find the optimal solution for all quadratic 
programming problems that have linearly factorized 
objective function and linear constraints. This method is 
applicable to all problems regardless of the existence of a 
feasible solution. Additionally, we save time during 
computation because the proposed method has fewer steps 
than the existing methods. 
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