
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

152

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81321110120

DOI: 10.35940/ijitee.A8132.1110120

Abstract: The most serious threats to the current mobile

internet are Android Malware. In this paper, we proposed a static

analysis model that does not need to understand the source code of

the android applications. The main idea is as most of the malware

variants are created using automatic tools. Also, there are special

fingerprint features for each malware family. According to

decompiling the android APK, we mapped the Opcodes, sensitive

API packages, and high-level risky API functions into three

channels of an RGB image respectively. Then we used the deep

learning technique convolutional neural network to identify

Android application as benign or as malware. Finally, the

proposed model succeeds to detect the entire 200 android

applications (100 benign applications and 100 malware

applications) with an accuracy of over 99% as shown in

experimental results.

Keywords: Android Malware; Malware Detection; Visual

Analysis; Deep Learning; Image Processing.

I. INTRODUCTION

With the rapid development of mobile internet, mobile

devices, especially smartphones, are not only as important

tools for people to communicate with the outside world but

also as personal digital assistants or enterprise digital

assistants to organize or plan their users' work and also private

life. So, mobile security has become increasingly important in

mobile computing. The professional virus attacks over the

year have been significantly upgraded, such as the abuse of

system vulnerabilities, security reinforcement technology,

especially social engineering. Although the number of

malware is increasing every year, most of the variants are

modified or generated based on the original malicious [1]. In

most cases, hackers use automated or module reuse tools to

generate malware automatically. These variants often share

the same ancestor's work, resulting in a high score of

similarity among variants. So, how to recognize the

fingerprints among different variants is the main task we

should pay more attention to. About the mobile operating

systems, there are Android, iOS, Symbian OS, and Windows

phones. Considering the open-source and widespread

applications, in this paper, we mainly focus on the Android

system. We introduce a new method to classify the android

applications. For each android application sample, we

decompile the application and extract the Opcode feature and

map it into R channel of RGB image, API package feature

into G channel and risk API function feature into B channel,

we merge three channels into one combined feature image and

Revised Manuscript Received on November 01, 2020.

* Correspondence Author

Ahmed Hashem El Fiky *, Systems and Computer Engineering Dept.,

Faculty of Engineering, Al-Azhar University, Cairo, Egypt. Email:

0x4186@gmail.com

use the deep learning algorithm for classification android

applications. The rest of the paper is organized as follows: we

give a brief introduction to the related work in Section 2. Our

main contributions and image processing technique are

described in Section 3 and 4. In Section 5, The experimental

results are shown. Section 6 shows conclusion and future

work.

II. RELATED WORK

The methods of malware detection can be usually divided

into two categories: static analysis and dynamic analysis.

In static analysis, the codes of the sample are examined

comprehensively by decompiling or disassembling the

malware binary files without executing it, which can prevent

OS from malicious damages. The advantages of static

analysis are low cost and require less time of analysis. But the

disadvantages of static analysis are limited signatures

database and can’t detect zero-day malware. Hence, in the

most, static analysis is a trivial task since hackers use code

obfuscation, such as encryption, binary packers to evade

detection. Dynamic analysis can analyze the behavior of the

malware during executing it in a debugger. Currently,

sandbox-based dynamic analysis is one of the most popular

solutions. A sandbox executes a sample of malware in an

Isolated environment that can record and monitor system calls

and behaviors dynamically. The core limitations of dynamic

analysis are more time and power consumption.

A. Static Analysis Approach

The static analysis method is an approach to determine the

functionalities and maliciousness of a malware sample by

analyzing and disassembling its source code, without

executing the malware. In [2] proposed DroidMat, the authors

provide Android malware detection through

Androidmanifest.xml file and API call tracing. They extract

the information (e.g., requested permissions, Intent messages

passing, etc.) from each application’s manifest file, and

regards components (Activity, Service, Receiver) as entry

points for tracing API calls related to permissions. They apply

K-means and KNN algorithms to classify the Android

application as benign or malware. They collected 1,738

Android applications (1,500 Android benign apps and 238

malware apps) to test DroidMat. Finally, they achieved

accuracy rate 97.87% for detecting Android Malware. In [3]

presented Permission Usage to detect Malware in Android

(PUMA) as a new approach for detecting Android Malware

APKs using machine learning by analyzing the extracted

permissions from the application itself.

Visual Detection for Android Malware using

Deep Learning
Ahmed Hashem El Fiky

Visual Detection for Android Malware using Deep Learning

153

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81321110120

DOI: 10.35940/ijitee.A8132.1110120

They collected 4,301 Android Malware samples and 1,811

benign apps. They used several machine learning techniques

for malware detection, including Naïve Bayes, Simple

Logistic, Bayes Net, SMO, J48, IBK, Random Forest, and

Random Tree. At the end, they performed an analysis of the

extracted permissions from Android apps and achieved

accuracy 92% for detection.

In [4] proposed the combination of permissions and API

calls and they used several machine learning methods for

Android malware detection. In their approach, the permission

is extracted from each App’s profile information and APIs are

extracted from the packed App file by using packages and

classes to represent API calls. They gathered 2,510 Android

applications (1,250 benign and 1,260 malware). Their

proposed model achieved a precision of up to 94.9%.

B. Dynamic Analysis Approach

In dynamic analysis, the detection phases and training

happen during the execution of the app. Aside from the ability

to detect unknown malware, this feature also allows zero-day

attacks to be detected.

In [5], the authors main goal is to protect mobile device

users and cellular infrastructure companies from malicious

applications. So, they proposed a new behavior-based

anomaly detection system for detecting meaningful deviations

in a mobile application's network behavior. The detection is

performed based on the application’s network traffic patterns

only. For each application, a model represented its specific

traffic pattern is learned locally. They used semi-supervised

machine learning methods for learning the normal behavioral

patterns and for detection deviations from the application's

expected behavior.

In [6], the authors proposed a combination of network

traffic analysis with machine learning methods to identify

malicious network behavior in highly imbalanced traffic and

eventually to detect malicious apps. They collected dataset

from the Drebin Project. Where they captured traffic from

over 5,560 mobile malware samples. So, they build a tool to

convert mobile traffic packets into traffic flows. Finally, the

accuracy rate of machine learning classifiers can reach up to

99.9%. However, the performance of the classifiers declines

when the imbalanced problem gets worse.

In [7], the authors proposed a lightweight framework for

Android malware detection. Their proposed method is a

combination between network traffic analysis and a machine

learning algorithm (C4.5) that is capable of identifying

Android malware with high accuracy. Where, Network traffic

generated by the mobile app is mirrored from the wireless

access point to the server for data analysis. During the

evaluation process, they tested their model with 8,312 benign

apps and 5,560 malware apps. So, their results show that the

proposed model performs betters than state-of-the-art

approaches. Finally, when combining two detection

mechanisms, it achieves a detection rate of 97.89%.

So, there have been some relative works on Android

malware using static or dynamic methods. But different from

the existing work, our contributions are as follows:

1) Proposing a new model recognizes Android malware

without understanding its source code and execution

behavior.

2) Using visualization techniques to detect the Android App

as benign or malware.

3) Integrate the Opcodes sequence features, API Package

Name features, and high risky API calls features to three

different RGB channels.

4) Using Convolution Neural Network to train the Android

apps to feature images and get excellent detection results.

III. VISUAL REPRESENTATION OF ANDROID

APPLICATION

The authors proposed in [8], A method for visualizing and

classifying malware using image processing techniques,

which transform windows platform malware binaries to

gray-scale images. In 2015, [9] won the championship of

Kaggle, a famous Microsoft Malware Classification

Challenge. Interestingly, the championship team with three

people did not engage in security, and the methods used are

very different from our common methods. They use

gray-images, n-gram, and PE-header features, and use

machine learning to classify the malware. Without

understanding the malware's source code, it shows great

potential that image-based methods for detection malware.

Based on this idea, we propose a method which mapping

Android applications to RGB images. Where, we extract three

features: Opcode, sensitive API packages, and high level

risky API functions. Next, integrate them into one RGB color

image. Finally, we will use image processing technique to

classify Android malware.

A. Proposed Model Architecture

As shown in Figure 1 the working flow of our model.

Firstly, we decompile the application and extract the

Opcodes; Secondly, mapping the different Opcodes to pixels

in the R channel of the RGB image, and then coloring some

sensitive API packages in the G channel. Highlighting the

risky API functions in the B channel. Thirdly, merging the

three R, G, B channels to generate the feature image. Finally

using deep learning convolution neural network to classify the

android applications images as benign or malware.

Figure 1: Android Malware Detection Model

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

154

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81321110120

DOI: 10.35940/ijitee.A8132.1110120

B. Android APK Decompilation

An Android APK is usually written in java and compiled to

Dalvik bytecode which is contained in a .dex file. This file can

be just-in-time compiled by the Dalvik virtual machine or

compiled once into a system-dependent binary by ART

(Android Runtime) platform. The APK file contains the

Dalvik executable .dex file. Androidmanifest.xml is used to

describes the content of the package, including the

permissions information. Also, it contains the digital

certificates for authentication and the resources the app uses,

for instance, image files, sounds, etc.

We used Apktool [10] to decompile an APK file. The

decompiled code can be later modified and repacked again

with the same tool. This process is represented in the diagram

in Figure 2. Apktool outputs are Androidmanifest.xml file and

class files of the application are also decompiled in a different

format called smali [11] code (assembler/disassembler for the

dex format used by Dalvik).

Figure 2: Diagram representation of Apktool decompile

and compile option on any APK file

C. Opcode Feature Extraction

Feature extraction is the core for Android Malware

Detection. We try to use an RGB image to describe Android

Malware features in this paper. Besides that, once we got the

featured images, we can use some image processing

techniques, i.e., deep learning, to classify the Android images

as benign or malware. First of all, we should map the Opcode

into the R channel of the RGB image. Android OS has a total

of 255 Opcodes coding from the 0x00 to 0xFF according to

different functions [12]. Here, we adopt a method similar to

[8], mapping the Opcode to pixels by converting its hex value

(encoded in Android OS) to decimal value. An example is

given in Figure 3.

Figure 3: An example of mapping the Opcodes to pixel

values in the R channel of an image

D. API Colouring

 API (Application Programming Interface) is a set of

protocols, functions, and tools for building software

applications. API calls are applied in Android application

development to implement functionalities conveniently. For

example, if we want to get the phone number, we should call

android.telephony.TelephonyManager getLine1Number.

 In Android OS, the API calls are usually given in

parameters of a function call instruction as shown in Figure 4.

Figure 4: An API call example of Android Structure

To extract the API call features, we divide them into 58

classes by their packages. Among them, 18 classes are related

to high-level security that is mapped to the G channel. In

contrast, the other classes 40 are related to high-level risky

methods that are mapped to the B channel of the RGB image

as in [13].

E. RGB Image Creation

In the previous section, we extract Opcodes, API packages,

risky API functions, and map them to different pixel values.

After that, we should integrate all the three features into an

integrated RGB image as combined features. Figure 5 shows

an example of the RGB image Creation. While Algorithm 1

shows how to map Opcode to RGB image.

Figure 5: An example of RGB image Creation

IV. IMAGE PROCESSING TECHNIQUE

We adopt a Convolutional Neural Network (CNN) to

classify the previous Android images as benign or malware in

this paper. The CNN structure illustrated in Figure 6. Our

architecture of CNN consists of two sets of convolutions, and

pooling layers, followed by a fully-connected neural network

classifier.

Visual Detection for Android Malware using Deep Learning

155

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81321110120

DOI: 10.35940/ijitee.A8132.1110120

The convolution layer will learn 32 convolution filters,

where each filter is of size 3x3. If each input feature image is

shown as , learnable weight value , then the output

feature image is:

Where “*” is a convolution operator, and b is a learnable bias

parameter.

The purpose of the convolution layer is to extract different

features from the input layer. The first layer can only extract

convolution low-level features such as lines, angles, edges,

etc., more layers of the network can extract more complex

features from low-level features in an iteration.

The output feature image adopts as activation function R =

h(y) for non-linear mapping. In this paper, we use the ReLU

activation function because it gives us much better

classification accuracy. The ReLU is defined as:

 f(y) = max (0, y)

The activation function can enhance the non-linear

characteristic of the decision function and the whole neural

network but does not change the Convolution layer itself.

The ReLU activation function followed by 2x2

max-pooling in both x and y directions with a stride of 2 to

reduce training parameters. It divides the input image into

several rectangular regions and outputs the maximum value of

each subregion. The max-pooling layer will constantly reduce

the size of the data space, so the number of parameters and the

amount of computation will drop. Also, it can control the

overfitting during training to a certain extent. Typically, the

CNN convolutional layer is periodically inserted into the

pooling layer. After the second subsampling layer (S2), we

flatten the output feature image to vector and link it to two

fully connected layers whose dimensions are 128, 1 (binary

classification) respectively. The first fully connected layer

adopts ReLU as activation function and the last one (Loss

Layer) uses Sigmoid, which is defined as:

Figure 6: Structured of our used CNN network

V. EXPERIMENTS AND ANALYSIS

The experimental dataset is downloaded from the

CICAndMal2017 dataset [14]. The dataset contains 5,491

Android applications (5,065 benign and 426 malware). We

choose 200 Android applications (100 benign and malware)

the malware category is from Ransomware. The experimental

programs are written in Python, and the hardware

environment is Intel Core i7 and 16 GB Ram. In the proposed

Model, log loss is used as an evaluation measure. Log loss is

the cross-entropy between correct labels and predicted labels.

The exact formula for the log loss evaluation has been shown

in the following:

Here, N is the number of samples and M is the number of

classes. y represents the true label of the class and is the

probability of the given sample. A log that is mentioned in the

above formula is Natural Logarithm.

Accuracy is another evaluation measure used for evaluating

the performance of the proposed model mathematically

accuracy can be defined as below:

In the above equation, TP and TN are the number of

positive and negative samples, respectively which are

correctly classified by the classifiers. Whilst, FP and FN are

the number of positive and negative samples, respectively,

which are misclassified by the classifiers.

Table I shows the performance of the proposed model in

terms of Log loss and accuracy against 10 independent runs.

Table I: Performance of the proposed model

Figure 7 illustrates the relation between the number of trials

(Epoch) and loss related to the training process and the

validation process. In begin, train loss and validation loss

stood at 0.23 and 0.55 respectively. Then, validation loss

increased gradually from epoch 1 to epoch 2 and reached 0.6.

In contrast, train loss decreased dramatically in the period of

epoch and reached 0.1. Also, validation loss reached to the

top 1.8 at epoch 3. While train loss decreased to 0.07 at the

same epoch. Afterward, validation loss decreased gradually

from epoch 3 to epoch 4 and reached 1.1. At the same time,

train loss decreased dramatically to 0.05. Finally, validation

loss fluctuated from epoch 4 to epoch 10. Whereas, train loss

decreased and stable at 0.02 at the same time.

Figure 7: The relation between epoch and loss

Figure 8 shows the relation between epoch and

accuracy-related to train process and validation process.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-1, November 2020

156

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.A81321110120

DOI: 10.35940/ijitee.A8132.1110120

 At first, train accuracy and validation accuracy stood at

0.89 and 0.95 respectively. While train accuracy increased

dramatically and reached 0.96 from epoch 1 to epoch 2. In

contrast, validation accuracy decreased gradually and reached

0.90 at the same time. Then, validation accuracy dropped

sharply and reached 0.70. while train accuracy increased and

reached to 0.97. After that, validation accuracy fluctuated

from epoch 4 to epoch 10 and reached 0.95 at the end.

Whereas, train accuracy increased dramatically and reached

0.99 at the same time.

Figure 8: The relation between epoch and accuracy

VI. CONCLUSION

In this paper, we propose an Android malware detection

algorithm that combines the Android application visualization

method and deep learning techniques. First of all, we extract

the Opcode features, API calls packages, and high-level risky

API function features. Then we adopt a convolution neural

network to train the images and classify the Android

applications. The experimental results show that the

classification accuracy can be 99%. About the future work,

we can integrate the proposed static method with dynamic

analysis to extend the robustness and adaptability of the

detection system.

REFERENCES

1. M. Fossi, D. Turner, E. Johnson, T. Mack, T. Adams, J. Blackbird, S.

Entwisle, B. Graveland, D. Mckinney, and J. Mulcahy, “2010

symantec internet security threat report,” Volume, no. 5, pp. 277-278,

2011.

2. D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,

“Droid-Mat: Android Malware Detection through Manifest and API

CallsTracing,” AsiaJCIS, pp.62–69, 2012.

3. B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P.G. Bringas, and

G. A ́ lvarez , “PUMA: Permission Usage to Detect Malware in

Android,” Advances in Intelligent Systems and Computing, vol.189,

pp.289–298, Jan. 2013.

4. N. Peiravian and X. Zhu, “Machine Learning for Android Malware

Detection Using Permission and API Calls,” 2013 IEEE 25th

International Conference on Tools with Artificial Intelligence,

pp.300–305, 2013.
5. A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B.

Shapira, and Y. Elovici, “Mobile Malware Detection through Analysis

of Deviations in Application Network Behavior,” Comput. Se- cur.,

vol.43, pp.1–18, 2014.

6. Z. Chen, Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, and B. Yang,

“Machine learning based mobile malware detection using highly

imbalanced network traffic,” Inform. Sciences., vol.433-434,

pp.346–364, 2018.

7. S.Wang,Z.Chen,Q.Yan,B.Yang,L.Peng,Z.Jia,“A mobile malware

detection method using behavior features in network traffic,” J. Netw.

Comput. Appl., vol.133, pp.15–25, 2019.

8. L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath,” Malware

images: Visualization and automatic classication,“ in Proceedings of

the 8th International Symposium on Visualization for Cyber Security,

pp. 4, 2011.

9. https://www.kaggle.com/xiaozhouwang/competitions

10. Xdadevelopers Forum (2015). „Apktool v2.0.2.– A tool for reverse

engineering of apk files“, [Online]. Available:

http://forum.xdadevelopers.com/showthread.php?t=1755243

11. Github. (2015). „smali“ [Online]. Available:

https://github.com/JesusFreke/smali

12. https://android.googlesource.com/platform/dalvik/+/kitkat-release/op

code-gen/bytecode.txt

13. Yong-liang Zhao and Quan Qian, “Android Malware Identification

Through Visual Exploration of Disassembly Files” International

Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018

(DOI: 10.6633/IJNS.201811_ 20(6).07) 1061

14. Arash Habibi Lashkari, Andi Fitriah A. Kadir, Laya Taheri, and Ali A.

Ghorbani, “Toward Developing a Systematic Approach to Generate

Benchmark Android Malware Datasets and Classification”, In the

proceedings of the 52nd IEEE International Carnahan Conference on

Security Technology (ICCST), Montreal, Quebec, Canada, 2018.

AUTHORS PROFILE

Ahmed Hashem El Fiky received the BSc degree in

Computer Engineering Department Faculty of

Engineering Helwan University May 2012 (Grade:

Excellent and the first with honors) and Post-Grad

Diploma Degree in Computer Engineering May 2015

(Grade: Very Good). He worked as a Teaching

Assistant of Faculty of Engineering Helwan

University Computer Engineering Department for 5 years ago (2013-2018).

He is the author of several articles paper. Currently, He is an Information

Security Team Leader at Tanmeyah Micro-Enterprise Services Company,

Cairo, Egypt. and Also, He is a MSc student in Systems and Computer

Engineering department of Faculty of Engineering Al-Azhar University. His

main research interests are focused on Information Security, Network

Security, Cryptography, Reverse Engineering, Malware Analysis, Digital

Forensic and Space Science.

https://www.kaggle.com/xiaozhouwang/competitions
http://forum.xdadevelopers.com/showthread.php?t=1755243
https://github.com/JesusFreke/smali

