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A lightweight beak-like sensing system for grasping tasks of flapping
aerial robots

Daniel Feliu-Talegón, José Ángel Acosta, Vicente Feliu-Batlle, and Anibal Ollero,

Abstract—Many sensor systems in robotics are bio-inspired
by similar mechanisms in living creatures. Birds frequently
use their beaks to grasp and manipulate objects. This work
proposes a very lightweight sensor system that emulates a bird’s
beak, thus allowing flapping aerial robots to interact with the
environment, as e.g. to perform grasping or manipulation tasks.
The sensor system is composed of a flexible link (beam) actuated
by a micro servomotor, two strain gauges placed on different
points and a rigid link opposed. Additionally, a new algorithm
is also developed that estimates the instant at which the beak
impacts with an object, the contact position and the exerted
force. Our sensor system outperforms the existing designs in
robotics applications, because it is lightweight, small, cheap, with
very low computational load and without any complementary
perception. It is demonstrated that the adequate placement of
two strain gauges allow the estimation of the contact point and
the force exerted between the beam and an object, and the
accuracy achieved is enough to reckon properties of the object
and develop force control systems. The validation has been made
and reported through finite-element simulations and experiments,
and the results illustrate the efficiency of the prototype and the
proposed algorithm.

I. INTRODUCTION

In the framework of the European project GRIFFIN ERC
Advanced Grant [1], this work continues the research and
development of limbs and sensing subsystems for flapping-
wing robots and, in particular, for the current aerial platform
called E-FLAP [2]. As it was thoroughly explained in [2], and
unlike all the existing flapping-wing robots, the backbone of
this project is to develop a platform with the ability of physical
interaction with the environment, to explore the possibility of
perching and performing some manipulation tasks once the
system is perched. However, the hard challenge of adding E-
FLAP functional limb and sensing subsystems has not been
resolved yet. Reliable solutions for the robot skeleton with
a claw and the non-trivial control problem of manipulating
while the system is perched maintaining the equilibrium are
provided in [3] and [4], respectively. It is worth mentioning
that taking into account the inherent limitations of the system,
the control solution provided in [4] has been addressed for the
first time.

Flapping-wing robots are a very promising technology that
deserves to be deeply explored. These robots outperform other
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aerial platforms in many aspects. For example, the ability
to fly in different modes (flapping, gliding and soaring) can
increase flight efficiency by saving energy, and the absence of
propellers makes them quieter and safer, allowing operation
in close proximity to humans. However, this technology is
not mature yet, since it suffers from a hard limitation in size
and weight, mainly due to the lack of ultralight structures
and its dependence on batteries. This fact impulses the de-
velopment of lightweight sensor subsystems, i.e. composed
of lightweight sensors and actuators. Finally, it is crucial to
develop algorithms with low computational load that run on
ultralight electronics.

Taking into account those requirements, this work focuses
on the development of a sensor subsystem imitating the beak
of birds. In Nature, birds use their beaks as an external
anatomical structure for killing preys, eating or manipulating
objects. The beaks are composed of two jaws, known as the
upper and lower mandibles. The proposed sensor subsystem
emulates the upper part of the beak with a flexible link
with actuation, and the lower part with a rigid link. This
is the configuration that uses the minimum number of parts
to carry out grasping and manipulation tasks. In particular,
the upper part contains a lightweight flexible beam, a micro
motor and a pair of strain gauges placed on two different
points of the flexible link. Strain gauges are ultralight sensors
that, being adequately placed, are very reliable and effective
sensors to measure strains, and thus they can be used to
estimate force/torques. In fact, flexible links have been recently
used in many promising applications as: object identification
and spatial localization [5]; texture discrimination in mobile
robots [6]; simultaneous localization and mapping techniques
for robot navigation [7]; classification of objects based on
their material properties [8]; underwater sensing whiskers to
measure water flow velocity [9], and as two-flexible-fingers
gripper for grasping tasks [10].

The success of grasping with this configuration relies on
a good estimate of the contact point of the object with the
beak, which can occur anywhere on the mandible. Then it is
crucial to know its exact location in order to exert a prescribed
force. In most of the force control applications, this location
is known or it is assumed that the contact is produced at the
tip of the robot (e.g [11] and [10]). This limits the range
of operation in the manipulation and reduces its accuracy.
Another way to identify the contact location and the contact
force is adding a complementary system like computer vision
[12]. This increases the weight and complexity of the sensing
subsystem and, for this reason, is discarded here.

The main contribution of this work—keeping in mind
the requirements described above for flapping aerial robot
applications–can be summarized as follows: 1) design and
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construction of a lightweight sensor prototype that allows
interaction with the environment, based on flexible materials
and inspired by the birds beak, and 2) a method to estimate
the impact instant, the contact point and the exerted force
at the contact point, relying only on the measure from two
ultra-lightweight strain gauges. To the best of the authors’
knowledge this is the first sensor of this kind. This sensor
subsystem outperforms previous works in the following:

1) Reduced size and weight mechatronics. The lightweight
prototype is the combination of: a flexible link, for a
soft interaction with the environment [10]; two ultra-
lightweight strain gauges; actuation with high-reduction
micro-motor with encoder, in fact, the smallest com-
mercial one available; and a compact electronics. This
sensing system constitutes then a feasible solution for
force control in aerial robotics, unlike conventional heavy
force-torque sensor combinations (see e.g. [13] and [14]).
More importantly, no complementary perception system
is needed.

2) New force estimation method including gravity. The
method estimates the position of the contact point and the
force exerted there, based on the steady-state deflection
measurements of the flexible link. This makes the esti-
mation very simple and with a very low computational
demand. Unlike other methods, real time estimation of
the natural frequencies of the beam is not needed, which
can be very tedious. Moreover, our method considers the
gravity effect showing its importance in our application
what distinguish us from other former methods (e.g. [15]).

The paper is organized as follows. Section II is devoted
to the related works. Section III presents the dynamic model
of the system. Section IV explains the developed methods.
Section V shows the experimental prototype, some simulations
obtained with a finite element software and the experimental
results. Finally, some conclusions are given in Section VI.

II. RELATED WORKS

This section describes some already existing sensing sys-
tems and the methods that they use to estimate the impact
instant and the contact point distance. The technology to
estimate the location of an impact/contact point in real time
in a slender flexible link has been mainly developed in the
context of the research on robotic sensing antennae.

One of the first results in this subject was proposed in [16].
The proposed sensing system was composed of a flexible link
that moved in a horizontal plane, a torque sensor, a joint
position sensor, a rotational actuator, and a payload at the
tip end of the link. The contact point of the antenna with
the environment was determined by measuring the natural
frequencies of the links oscillations during the contact mode.
It was proved that only using the fundamental and the second
natural frequencies is sufficient to uniquely determine the
contact point of the antenna with the environment provided
that: the link has uniform mass and stiffness distributions; and
a light payload is added at the endpoint of the antenna in order
to avoid the indeterminacy. Experiments demonstrated that it
is a very useful sensing strategy, and reported estimations of

the contact point of the link with relative errors about 3% of
its length.

Another former approach was given in [13], where a sensing
antenna composed of a flexible link, two rotational motors
for 3D movements, joint position sensors installed in the
motors, and a six-axis force/moment sensor placed at the
base of the link was developed. This sensing system finds
the contact location as the quotient between the measured
moment and force. This paper considers gravity and lateral
slip in the estimation. Results show contact point estimations
with relative errors about 1-5% of the length of the antenna.

A sensing whisker was built by [17]. The setup was similar
to the one of [13], but with a link much more flexible. The
link sweeps around the unknown object determining the three-
dimensional location of contact points. Experiments reported
relative errors about the 3% of the length of the link.

Another antenna prototype similar to [13] was developed
in [14]. The only difference was that a payload was added at
its tip. It combined an estimator of the impact instant with an
estimator of the contact point based on the static information
provided by the forces and torques measured by the six-axis
force/moment sensor placed at the base of the link [18]. The
results reported relative errors of 3% of the length of the
antenna. Subsequently, the tip payload was removed and its
link was replaced by a nearly twice longer link in [19]. The
results reported similar relative errors (3% of the length of the
antenna) but without the need of adding a mass at the tip and
increasing the workspace of the system.

Finally, in [20], a contact point estimator that combines
static and dynamic information of the six-axis force/moment
sensor placed at the base of the link was proposed. The method
proposes a fusion of the information provided by two of the
previous strategies: the one that uses the natural frequencies
of vibration of the antenna [16] and the one that uses the static
information provided by the forces and torques measured at
the base of the antenna. This method improves the accuracy
in the estimation up to 2% of the length of the antenna and is
valid for horizontal and vertical movements.

Recently, another approach was proposed to estimate the
contact point in an artificial tapered whisker sensor by in-
specting the strain according to a specific angular displacement
[15]. They demonstrate the unique correlations among strain,
contact distance and angular displacement. However, this
method does not consider the effect of gravity and, thus, it
is discarded for our application. It is important to highlight
that none of the aforementioned works estimate the exerted
force between the flexible link and the environment. They only
focus their attention in the estimation of the contact distance.

Aforementioned systems need to detect efficiently the col-
lision of the robot with an object. This detection has to be
accurate in order to stop immediately the robot reducing the
damage of the impact or, in applications where the robot has
to interact with the environment, to switch from position to
force control. Several algorithms are already available in the
literature. They are based on detecting when either a measured
torque or its residue, i.e, the difference between the measured
torque and its value predicted by a model, exceed a threshold:
[21] and [22] for rigid and [11] and [23] for flexible link
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robots. Based on the same principle, efficient algorithms have
recently been developed that detect the impact instant of a
sensing antenna with an object [19] and [24]. These algorithms
are needed to control robots that interact with the environment.
For example, in [25] one of the algorithms was used to
achieve force control with robustness to uncertainties in the
environment.

All the methods described above fail to meet the require-
ments of our application, mainly because of the their size,
their weight (they use heavy force-torque sensors or require a
small payload at the tip), not considering the gravity or, more
importantly, they are antennas/whiskers and hence not able to
grab objects with the necessary size. Therefore, these are the
raison d′être of the present work.

III. DYNAMIC MODEL OF THE BIRD’S BEAK

The upper mandible of the beak is made of an elastic
material and can be modelled as a flexible link that deflects as a
function of the contact point of the mandible with the grasped
object and the force exerted on it. The lower mandible is a rigid
link. Fig. 1 shows a simplified scheme of our robotic beak. Our
sensing system measures the deflection at two points of the
upper mandible using strain gauges, as depicted and colored in
Fig. 1. In this way, we aim at estimating the instant at which
the mandible impacts the object, the position of the contact and
the exerted force. The algorithms that estimate these values are
based on an accurate model of the beak, which is developed
in this section.

The lower mandible is a rigid link. Then its dynamic model
is simple and no more attention will be paid to it. This section
focuses on the much more involved dynamics of the upper
mandible. The knowledge of this dynamics is essential in
order to extract useful information from the mandible bending
measurements provided by the strain gauges.

A. Hypotheses about the planar movement of the beak

Fig. 1 sketches the bending of the upper mandible in a plane
perpendicular to the surface of the object at the contact point
(this plane includes the origin O and the contact point pc).
In this figure, X −Y is the 2D rotating frame of the bending
plane, where X is the direction of the mandible if it were
rigid; p(x,y) is a generic point of the mandible in which x is
the position of this point along the mandible if it were rigid
and y is the deflection of the point; (xc,yc) are the coordinates
of the contact point pc, which is assumed invariant because
the contacted object is rigid; X0−Y0 is the 2D absolute frame
whose axis Y0 defines the direction opposite to the gravity
g; θu and θl are respectively the angles of the upper and
lower mandibles in the absolute frame (given with respect to
axis X0); and θm is the opening angle of the beak, which is
the difference between θu and θl . The opening angle θm is
provided by a servo controlled motor and is known because
it is measured by the encoder integrated on it. Most of these
variables vary with time, which is represented by t.

Fig. 1 also mentions the mechanical characteristics of the
upper mandible: E is the Young’s modulus, I is the inertial
moment of the beam cross section, L is the length of the beam,

Fig. 1 Sketch of the robotic beak.

ρ is the linear density of the beam, m is the mass of the beam
(m = ρ ·L) and dm is the mass of the differential element of
mass. The nondimensional contact position is λ = xc/L. The
first strain gauge is placed on the base of the beam and the
second one x2 m away from the base.

The following assumptions are made about the beam that
constitutes the upper mandible:

1) The maximum deflection of the beam is limited to 10% of
the total beam length in order to obtain linear deflections.
Then deflections y are small when compared to their
corresponding x values. The deflected abscissa, therefore,
has approximately the same value as the undeflected one;
arctan

( y
x

)
≈ y

x ; and x and y become the coordinates of a
point of the deflected beam expressed in the frame X−Y .
This assumption is justified because: a) the value of
10%, needed to assume a geometrically linear deflection,
is commonly used in studies of beam deflections and
vibrations (a justification can be found in [26]), b) though
free movements can perform fast trajectories, deflections
are lower than this limit because the mandibles are very
lightweight and, then, inertial forces are low and c) in the
contact mode, the force exerted by the mandibles on the
object must be high enough to allow a reliable estimation
of the contact point but low enough to prevent exceeding
this deflection limit.

2) The upper mandible has an uniform cross section.
3) Since the upper mandible is slender, rotatory inertia, shear

deformation and internal friction are ignored.
4) The contacted object does not move during sensing.
5) The vibration associated to the first mode is much more

relevant than the vibrations associated to other modes in
the free movement of the upper mandible [27] and the
gravitational force cannot be neglected neither in the free
mandible movements or in the contact condition.

And the following assumptions are made for the contact:
1) The contacted object is rigid.
2) The contact is produced at a single point (it is often

assumed in previous works about robots contacting the
environment).

3) A first-order beam analysis (e.g, [28]) will be carried out
on the upper mandible, i.e., the points of the mandible
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are displaced by the applied forces perpendicularly to the
mandible assumed being rigid.

4) Sliding of the contacting bodies relative to one another is
negligible once a specific value of the grasping force has
been attained, i.e. if the grasping force of the mandible
on the object surpasses a specific value.

5) Since there is no deformation of the upper mandible in
the X axis, longitudinal contact forces do not influence
the dynamics modeled.

As consequence of the previous assumptions, the system
shown in Fig. 1 has linear dynamics and the superposition
principle can, therefore, be applied. Then the deflection of
the upper mandible can be expressed as the addition of its
transient response yt(x, t) and its steady state component ys(x)
(permanent deflection of the beam assuming that the transient
has vanished). They will be subsequently characterized.

B. Transient dynamics of the upper mandible in contact
If the third assumption about the beam holds, the transient

can be obtained from the partial differential equation of Euler-
Bernouilli beams

E · I · y′′′′t (x, t)+ρ · ÿt(x, t) = 0 (1)

where ( ′ ) represents the spatial derivative with respect to x
and ( ˙ ) the time differentiation.

Transient yt(x, t) is obtained from (1) by assuming that the
base end of the upper mandible is clamped to the motor and
the point at which the mandible comes into contact with the
object is aligned with X axis. Then the differential equation
(1) is solved using the following contour conditions [16]:

yt(0, t) = 0, y
′
t(0, t) = 0, y

′′
t (L, t) = 0,

y
′′′
t (L, t) = Rm · ÿL(L, t), yt(xc, t) = 0,

y
′
t(x

+
c , t) = y

′
t(x
−
c , t), y

′′
t (x

+
c , t) = y

′′
t (x
−
c , t) (2)

where x−c means that x approaches xc from the left, x+c means
that x approaches xc from the right, and Rm =mt/m is the ratio
between the mass of the payload mt and the mass of the beam,
m. In our case, Rm = 0, because the upper mandible has no pay-
load at its free tip, i.e, mt = 0. Equations (1)(2) can be solved
by using the separation of variables [29] yielding a general
solution of the form yt(x, t) = ∑

∞
j=1 A j ·ϕ j(x) · sin(ω j · t +α j)

where ϕ j(x) is the natural mode, ω j is the angular frequency,
A j is the amplitude and α j is the phase angle of the j− th
vibration mode.

Upon introducing the variable β 2
j = ω j ·

√
ρ

E·I , the frequen-
cies of the vibration modes are the solutions of the equation

cosh(β j(L− xc))[sin(β jxc)cosh(β jxc)− sin(β j(L− xc))]+

cos(β j(L− xc))[sinh(β j(L− xc))− sinh(β jxc)cos(β jxc)]+

cos(β jxc)[sin(β jxc)− cos(β jxc)sinh(β jxc)] = 0 (3)

The derivation of this model can be found in [16].

C. Steady state of the upper mandible in contact condition
Component ys(x) can be obtained from the Euler-Bernouilli

deflection equation of a static beam given by

E · I · y′′′′t +ρ ·g · cos
(
θ u
)
= 0 (4)

where θ u is the steady state value of the angle of the upper
mandible with respect to the horizontal axis X0, assuming that
neither external forces, nor internal forces or moments are
applied, i.e, assuming that the mandible is rigid. This angle is
supposed to be known since it is the sum of the angle of the
lower mandible, which is known, and the angle of the motor.
Its solution is a four degree polynomial in x.

The contour conditions (2) are taken into account again in
order to solve the differential equation (4), with the exception
that condition yt(xc, t) = 0 is substituted by ys(x+c ) = ys(x−c ) =
yc and the argument t is removed from variable y. These new
eight contour conditions impose a polynomial on the interval
before xc and another on the interval after it, as ys,i(x) =− K

24 ·
x4 + ai

6 · x
3 + bi

2 · x
2 + ci · x+ di, x ∈ Ii, where i = 1,2, I1 =

[0,xc], I2 = [xc,L] and K =
g·ρ·cos(θ u)

E·I . The eight parameters
of these two polynomials are obtained from the eight contour
conditions after some calculations:

a1 = 3
2 ·

K·L
xc
·
(
xc− L

2

)
−3 · yc

x3
c
− K

8 · xc

b1 = K ·L ·
(
xc− L

2

)
−a1 · xc; c1 = 0; d1 = 0

a2 = K ·L; b2 =−K
2 ·L

2; c2 =− 3·d2
xc

d2 = − yc
2 −

1
8 ·K ·L

2 · x2
c +

1
12 ·K ·L · x

3
c− K

48 · x
4
c

(5)

D. Steady state forces and moments

The steady state moments Γs and forces Fs at a point x of
the upper mandible in the two intervals of the beam are:

Γs,i(x) = E · I · y′′(x) = E · I ·
(
−K

2 · x
2 +ai · x+bi

)
Fs,i(x) = −E · I · y′′′(x) =−E · I · (−K · x+ai) , i = 1,2

(6)
The reaction force Fc exerted by the object on the beam yields

Fc = Fs,1(xc)−Fs,2(xc) = E · I · (a2−a1) (7)

Remark: According to expressions (6), Γs,2(x) and Fs,2(x)
do not depend on the contact point pc since a2 and b2 do not
depend on xc nor yc. Then installing moment or force sensors
in I2 is useless in order to estimate the contact point xc or the
exerted force Fc. The sensors have to be therefore installed in
the interval I1 and, since xc is a priori unknown, they have to
be placed close to the base of the beam.

Moment Γs,1(x) can be expressed as a function of Fc as
follows. Substituting the value of a2 given by (5) in equation
(7) and equating a1 yields a1 = K ·L− Fc

E·I , which substituted
in the expression of b1 given by (5) yields b1 =

Fc·xc
E·I −

K·L2

2 .
Substituting these two expressions and the value of K in the
upper equation of (6) with i = 1, and operating gives

Γs,1(x) = Fc · (xc− x)− K ·E · I
2
· (L− x)2 (8)

IV. ESTIMATION ALGORITHM

The method with which to estimate the instant at which the
beak’s upper mandible impacts the object, the position of the
contact and the exerted force is developed here.

A. Detection of the impact instant tc
For simplicity, in this paper the estimator proposed in

[20] and [25] is used, which attains very good results. This
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algorithm is based on detecting when the residue of the torque
at the base of the beak, i.e., the difference between the torque
measured at the base by the strain gauges Γ1(0, t) and its
value predicted by the model Γ

p
1(0, t), exceeds a threshold.

This mechanism is very simple since Γ
p
1(0, t) can be easily

calculated using the dynamic model of the link in free motion,
see [25]. If this difference were noticeable, it would mean
that an external force is being exerted at the tip, and a
contact has happened. Thus, the detection condition yields
|Γp

1(0, t)−Γ1(0, t)|> γ , where γ is a threshold experimentally
determined, which is independent of the contact point. The
threshold is given by the maximum residual obtained during
free movements plus a security margin of 50%.

B. Estimator based on the steady state deflections

This section presents the new algorithm that estimates the
point of the flexible beam that comes into contact with an
object and the reaction force produced. It is based on the
information collected by the two strain gauges located at
x1 = 0 and x2. With them, the moments at these points can be
estimated, which would be given by expression (8) if x2 < xc.
Let us represent by Γ1 and Γ2 the measurements provided by
the strain gauges at points x1 and x2 respectively. They can be
expressed as:

Γ1 = Γs,1(x1 = 0)+ξ1 = Γc− K·E·I
2 ·L2 +ξ1

Γ2 = Γs,1(x2)+ξ2 = Γc−Fc · x2− K·E·I
2 · (L− x2)

2 +ξ2
(9)

where Γc = Fc · xc is the torque produced at the base of the
beam by the reaction force of the object, and ξ1 and ξ2 are
disturbances in the measurements of the strain gauges at x1
and x2 respectively, as e.g., offsets and high frequency noises.
The upper equation of (9) yields an estimator of Γc:

Γc,e = Γ1 +
K ·E · I

2
·L2 = Γc +ξ1 (10)

and substracting the two equations (9) and solving for Fc yields
its estimator, namely Fc,e, as

Fc,e =
Γ1−Γ2 +K ·E · I · x2 · (L−0.5 · x2)

x2
= Fc +

ξ1−ξ2

x2
(11)

Then an estimation of the contact point xc is obtained dividing
equations (10) and (11) and reads

xc,e = Γc,e
/

Fc,e (12)

Recall that K depends on the angle of the upper mandible in
the steady-state θ u. Angle θu is given by θu = θl +θm. In this
expression, the angle of the lower mandible with respect to the
direction of the gravity, θl , is obtained from the pitch angle of
the ornithopter measured by the IMU installed on our flapping
wing robot [2] and the relative angle between the lower
mandible of the beak and the body of the ornithopter (this
angle is exactly known after its manufacturing). Moreover,
θm is given by the encoder embedded in the motor of the
beak. Noisy measurements are not a problem because signals
are passed through low-pass filters. Then, the estimation of
the exerted force, Fc,e and the contact point xc,e can be
obtained from (11) and (12) using the properties of the flexible

beam, the position of the second strain gauge, x2, the torque
measurements Γ1, Γ2 and the steady-state angle of the upper
mandible θ u.

Expression (11) shows that if the second strain gauge is
installed close to the first one, i.e., x2 → 0, the effect of
the measurement disturbances on the estimation of Fc grows
rapidly due to the term ξ1−ξ2

x2
. Then, the effect of ξ1 and ξ2

on the estimation of Fc and, consequently, on the estimation
of xc–according to (12), xc,e depends on Fc,e- is reduced if the
second strain gauge is placed as far as possible from the origin,
i.e., x2 is as high as possible. Moreover, since it is assumed
that xc > x2, x2 cannot be too high in order to do not reduce
excessively the grasping zone. As consequence of the previous
considerations, once the grasping zone [x̂c,L] has been defined,
the second strain gauge must be installed as close as possible
to the lower limit x̂c of that interval.

The stages of the estimation method are: 1) the servo moves
freely the flexible beam in a controlled manner until it hits an
object; 2) the algorithm of Section IV-A estimates the instant
tc at which the flexible beam impacts the object; 3) after the
impact, the motor keeps pushing slightly the flexible beam
against the object to increase the contact force and prevent
the sliding; and 4) the estimator of the contact point and the
exerted force is triggered at time t1 = tc +∆t1 in which ∆t1
is the estimation time plus a safety margin. The estimator is
based on the expressions (11) and (12). The torque signals
used in the estimator are passed through a low-pass filter that
attenuates the transient dynamics and keeps only the steady-
state components.

V. SIMULATION AND EXPERIMENTAL VALIDATION

Experimental prototype. The experimental prototype (see
Fig. 3) consists of a lightweight flexible link (m = 5.5 g and
l = 300 mm) which is attached at one of its ends to a micro
motor (12 g weight) based on the Pololu micro metal motors
gears with high reduction ratio (n=250).

Fig. 3 Photograph of the prototype.

The flexible link is a circular cross section bar with a
diameter of 4.3 mm made of Polyetheretherketone (PEEK)
which is a thermoplastic polymer which has excellent me-
chanical properties (E = 3.33× 109 Nm) maintained to high
temperatures. Also, this material is easily deformable and its
density is considerably low. The motor rotates the system with
elevation movements and has embedded an incremental optical
encoder that measures its angular position. The system also has
two strain gauges (KFGS 3-120-C1-27, KYOWA) located at
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TABLE I Simulated results: without considering gravity
(x∗c,e,F

∗
c,e) and considering gravity (xc,e,Fc,e).

xc(mm) 90 120 150 180 210 240 270 290
x∗c,e(mm) 85.8 114.8 145.8 179.4 219.9 268.8 333 373.2
xc,e(mm) 88.2 118.4 148.5 178.8 209 239.1 269.4 287.2
Fc(N) 1.15 0.726 0.43 0.28 0.197 0.148 0.114 0.1
F∗c,e(N) 1.05 0.657 0.376 0.23 0.15 0.101 0.068 0.056
Fc,e(N) 1.13 0.703 0.42 0.275 0.195 0.147 0.113 0.1
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Fig. 2 Simulated results

the base, x1 = 0, and at the point x2 = 78.75 mm, following the
results obtained in Section IV-B. They are connected to gauge
amplifiers, INA 125P (8 g weight) which have been thoroughly
calibrated to allow us to measure the torque at these points.
This x2 value is a good compromise between minimizing the
effect of measurement disturbances and achieving an important
grasping zone [78.75,300] mm. The data acquisition sampling
time is 5 ms.
Simulated results. Simulations using the finite elements soft-
ware package Adams together with Matlab/Simulink have
been carried out to verify the effectiveness of the proposed
algorithm and assess some aspects of the method. The proper-
ties of the flexible beam were used in the simulations, in which
our beam was modeled by 120 flexible elements. The beam
estimators proposed in expressions (11) and (12) are tested in
attitude movements where the gravity effect is important. To
estimate these values, both variables are passed through a first
order low-pass filter in order to attenuate the vibration and get
the steady-state values.

Considering the operating range λ ∈ [0.3,1], the natural fre-
quencies during the contact mode were obtained from equation
(3) using the properties of our flexible beam. Then, the range
of the first vibration frequency of the beak in function of the
normalized contact point λ is [116.2, 427.3] rad/s. A cutoff
frequency of ωc = 15 rad/s was chosen which is about seven
times lower than the inferior limit of this frequency range.
This value allows a reasonable filtering of the vibration for all
the contact points.

In those simulations, the system is moved until it hits
the object. Once the impact is detected, the motor continues
pushing the object with a determined force. In the simulations,
the contact was made at positions from 90 mm to 300 mm
with increments of 30 mm. The results of the estimations are
shown in Table I. It presents the differences between using
the estimator without considering the gravity effect, K = 0,
(x∗c,e,F

∗
c,e) and using our estimator which considers the gravity

effect (xc,e,Fc,e). The results show the importance of using
a model with distributed mass where the gravity effect is
considered. Fig. 4 shows the results of a simulation where the
flexible beam hits the object and then continues pushing the
object with different motor position values in order to verify
that the proposed algorithm is robust to the position of the
motor in xc = 240 mm. These simulations demonstrate the
importance of considering the gravity in the estimator. Contact
points close to the base are well estimated by both estimators
but, from xc = 180 mm to the end of the beam (see Table I), the
gravity has to be considered in order to attain good accuracy

in the estimation of the contact point and the exerted force.
Our estimator is robust to the motor position and the results
show the high accuracy of the contact point and the exerted
force estimations: a maximum error in the contact point of 2
mm (around 0.7% the length of the beam) and an error in the
exerted force of 0.02 N (2% the real value). Table I and Fig. 2
show that the estimation of the exerted force considering the
gravity is much better, note that it almost overlaps the ideal
case in blue and without gravity has a bias. The estimated
values of the force are bigger when considering the gravity
than without it, the latter corresponding to K = 0 in equation
(11) so it does not add value to the estimation.
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Fig. 4 Contact distance and exerted force estimations.

Experimental results. Experiments have been carried out with
this prototype that demonstrate the efficiency and robustness
of the proposed technique for different rigid objects. The real
value of the contact point is known placing the object in
determined positions whereas the real exerted force in the
contact point is calculated by using a electronic weighing
machine with a precision of 0.01 N. The object is located
above the scale and once the flexible beam hits the object,
the scale measures the equivalent force in the contact point.
An efficient control system for motors that move flexible links
has been implemented in the experiments (see [19], [27]). This
controller does not change during the complete maneuver, i.e.,
its parameters remain invariant during the free and contact
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motions. The position of the motor θm is measured by an
encoder and the torques Γ1 and Γ2 by the strain gauges with
the amplifiers. The upper mandible is moved on a vertical
plane until it hits an object. Then the impact instant is detected
by the algorithm of Subsection IV-A, where a threshold of
0.01 Nm has been used and experimentally estimated. Once,
the system detects the impact, the algorithm of Subsection
IV-B is launched to estimate the contact point and the exerted
force, and the mandible pushes on the object by moving
the motor forward an angle of 10◦ (angle increment with
respect to the contact angle). This angle increment produces a
deflection on the beak that yields a grasping force that is high
enough to avoid the sliding and low enough not to surpass
the deflection of 10% in any case. Given an increment of the
motor angle after the impact, the force exerted by the beak on
an object diminishes as the contact point moves away from the
motor. That motor angle increment has been therefore obtained
experimentally taking into account these considerations in the
force exerted at the tip of the beak. Again, a low-pass filter
with ωc = 15 rad/s cutoff frequency was used experiments.
In the experiments, the contact was made at positions from
120 mm to 300 mm with increments of 20 mm. Fig. 5 shows
the torques provided by the strain gauges. It also shows noise
level and the vibration during the contact (both attenuated by
the filter) and the detection of the impact instant.
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Fig. 5 Measured torques in the two points of the link.

Fig. 6 shows the estimates given by expressions (11) and
(12) of the contact point, xc,e, and the exerted force, Fc,e.
Results of experiments with the object located in four different
positions are reported. These show the fast convergence of the
estimations and that the vibrations have been properly removed
by the low-pass filter. The real values of the contact point,
the steady state measurement of the force (orange line) and
their estimations (blue line) are also drawn. Admissible zones
of convergence have been highlighted for the contact point
estimation (xc±10 mm) and for the exerted force estimation
(Fc±0.03 N). These results demonstrate the robustness of our
algorithm to changes in the contact point and the force exerted
on the object. Our estimation algorithm is fast, it only has a
time delay between 0.3 s and 0.45 s (the difference between
the time at which the impact is detected and the time at which
the estimation of the contact point enters the admissible zone
of convergence).

Finally, Table II and Fig. 7 show the estimation of the
contact points, xc,e, and the exerted forces, Fc,e, provided by
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Fig. 6 Contact point distance and exerted force estimation.

our algorithm versus their real values xc and Fc. Estimates of
the contact point show a maximum error of 8 mm and a mean
error of 5 mm, which are respectively the 2.7% and 1.7% of
the length of the flexible link. Estimates of the force show a
maximum error of 0.03 N (5% of its real value). These results
also show that the accuracy of our estimator is similar to the
former works presented in Section II, but meeting the aerial
robotics requirements explained in the Introduction.

VI. CONCLUSIONS

This paper proposes a very lightweight sensor system that
emulates a birds beak to allow flapping aerial robots to
perform manipulation and grasping tasks. The robotic beak is
composed of an upper and a lower mandible. The upper one
constitutes the sensing system and is a flexible beam actuated
at the base by a micro motor. The estimation is performed
sequentially, first detecting the impact of the beak on the object
and, subsequently, estimating the contact point and the ex-
erted force. Our sensing system outperforms previous designs
because the algorithm is fast with a very low computational
load and the weight/size is very light/small. This sensor system
meets all the demanding requirements imposed by aerial robots
with flapping-wings. The effectiveness of the proposed method
has been validated through finite element simulations and an
experimental prototype. The simulations demonstrate the high
precision of the methodology and validate the assumptions
made in the dynamic model. On the other hand, the experi-
mental results show the effectiveness of the algorithm in real
applications obtaining a maximum error in the contact point of
2.7% the length of the flexible beam and a 5% in the exerted
force. Thus, the precision is similar to the available schemes
relying on force/torque sensors.

Future research will address the development of a force
control strategy for grasping tasks.
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TABLE II Contact detection results with the prototype.

xc(mm) 120 140 160 180 200 220 240 260 280 295
xc,e(mm) 112 132 153 187 208 215 237 262 288 293
Error xc,e(mm) 8 8 7 7 8 5 7 2 8 2
Fc(N) 0.59 0.52 0.4 0.3 0.29 0.26 0.24 0.23 0.19 0.18
Fc,e(N) 0.62 0.49 0.38 0.29 0.28 0.28 0.25 0.24 0.17 0.19
Error Fc,e(N) 0.03 0.03 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01

120 140 160 180 200 220 240 260 280
x

c
 (mm)

100

200

300

x c,
e
 (

m
m

)

Line x
c,e

 = x
c

x
c,e

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
F

c
 (N)

0

0.5

F
c,

e
 (

N
)

Line F
c,e

 = F
c

F
c,e

Fig. 7 Contact point and exerted force estimation

REFERENCES

[1] H2020-EU ERC Advanced Grant 788247, “General compliant aerial
robotic manipulation system integrating fixed and flapping wings to
increase range and safety, 2018.”

[2] R. Zufferey, J. Tormo-Barbero, M. M. Guzmán, F. J. Maldonado,
E. Sanchez-Laulhe, P. Grau, M. Pérez, J. Á. Acosta, and A. Ollero,
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