
A Graph Based Semi-Supervised Approach for Analysis of Derivational
Nouns in Sanskrit

Amrith Krishna, Pavankumar Satuluri*, Harshavardhan Ponnada,
Muneeb Ahmed#, Gulab Arora, Kaustubh Hiware and Pawan Goyal

*School of Linguistics & Literary Studies, Chinmaya Vishwavidyapeeth CEG Campus ;
#Dept. of Electrical Engineering, Indian Institute of Technology BHU;

Dept. of Computer Science & Engineering, Indian Institute of Technology Kharagpur
amrith@iitkgp.ac.in

Abstract

Derivational nouns are widely used in San-
skrit corpora and is a prevalent means
of productivity in the language. Cur-
rently there exists no analyser that iden-
tifies the derivational nouns. We pro-
pose a semi supervised approach for iden-
tification of derivational nouns in San-
skrit. We not only identify the deriva-
tional words, but also link them to their
corresponding source words. The nov-
elty of our work is primarily in its de-
sign of the network structure for the task.
The edge weights are featurised based on
the phonetic, morphological, syntactic and
the semantic similarity shared between the
words to be identified. We find that our
model is effective for the task, even when
we employ a labelled dataset which is only
5 % to that of the entire dataset.

1 Introduction

Derivational affixes are a prevalent means of vo-
cabulary expansion used in natural languages.
Derivational affixes are non meaning preserving
affixes, that when applied to a word induce a new
word. The affixes signify one or possibly more
than one semantic senses that is passed onto the
new derived word (Marchand, 1969). For exam-
ple, the noun ‘driver’ is derived from the verb
‘drive’ and the adverb ‘boldly’ is derived from
‘bold’, where the derivational affixes ‘-er’ and ‘-
ly’ are used. However, affixes that modify only
the morphological or syntactic role of a word in
its usage are not considered derivational, but as in-
flectional (Faruqui et al., 2016).

Whenever a new word comes into existence in
a language, all of its derived forms are potent to
be part of the language’s vocabulary as well. But,

whenever a derived word is used in conversation,
a human does not require an explicit knowledge
about the derived word to infer its meaning. The
knowledge about the source word and the affix is
sufficient for her to infer the derived word’s mean-
ing. For example, if a new country is formed with
name nauratia, an English speaker can infer the
meaning for the word nauratian as “a person re-
siding in nauratia”, in spite of never hearing the
derived word previously. Similarly, It is desirable
to identify a derived word and link it to its cor-
responding source word computationally. It is of
great practical value if we can obtain a semantic
word representation for a derived word from the
semantic word representation of its source word.
It is often the case that corpus evidence for the
source word might be abundant, but the corpus
evidence for all the possible derived words need
not be available readily (Cotterell and Schütze,
2017). Lazaridou et al. (2013) proposed multi-
ple approaches, all being modifications of Compo-
sitional Distributional Semantic Model (CDSM)
(Mitchell and Lapata, 2010), for obtaining the se-
mantic word representations for a derived word
by combining the representations for source word
representation and the representation of the affix .

Identifying derived words from a corpus is chal-
lenging. Usage of pattern matching approaches
in strings are often inept for the task. Tasks that
rely on string matching approaches alone, often
result in a large number of false positives. For ex-
ample, while the word ‘postal’ is generated from
‘post’, the word ‘canal’ is not generated from
‘can’. String matching approaches often result in
low recall as well, due to the variations in patterns
in the derived and source word pairs, even for the
same affix. Both ‘postal’ and ‘minimal’ are de-
rived using the affix ‘al’, but the source word for
postal is ‘post’, while the source word for mini-
mal is ‘minimum’. Soricut and Och (2015), re-

cently proposed an approach for analysis and in-
duction of morphology in words using word em-
beddings. But, the authors find that their approach,
though effective for inflectional affixes, has limita-
tions with derivational affixes.

In this work, we propose an approach for anal-
ysis of derivational nouns in Sanskrit. The rules
for generation of derivational nouns are well doc-
umented in the ancient grammar treatise on San-
skrit, As. t.ādhyāyı̄. In fact, it can be observed that
the grammar treatise has devoted about a 1115
of 4000 rules for dealing with derivational nouns,
which is indicative of the prevalence of deriva-
tional noun usage in Sanskrit. Currently, there ex-
ists no analyser for Sanskrit that deals with the
derived words. This leads to issues with large
scale processing of texts in Sanskrit. The recent
surge in digitising attempts of ancient manuscripts
in Sanskrit, like the Digital Corpus of Sanskrit,
The Sanskrit Library, GRETIL, etc. provides us
with abundance of unlabeled data. But, lack of
labeled data and other resources led us to develop-
ment of a semi supervised approach for identifica-
tion and analysis of derived words in Sanskrit. We
use the Modified Adsorption algorithm (Talukdar
and Crammer, 2009), a variant of the label prop-
agation algorithm for the task. In this task, we
effectively combine the diverse features ranging
from rules in As. t.ādhyāyı̄, variable length character
n-grams learnt from the data using Adaptor gram-
mar (Johnson et al., 2007) and word embeddings
for the candidate words using word2vec (Mikolov
et al., 2013).

The novel contributions of our task are:
1. We propose a semi-supervised framework us-

ing Modified adsorption for identification of
derived words and their corresponding source
words for Sanskrit.

2. We are able to scale our approach onto unla-
belled data by using a small set of labelled data.
We find that our model is effective even under
experimental settings where we use a labelled
dataset of 5 % size as that of the entire dataset.
In other words, we we can label upto 20 times
more data than the labeled data we have, and
we perform a human evaluation to validate our
claim on the unlabeled datasets.

3. By leveraging on the rules from As. t.ādhyāyı̄, we
not only find different pattern differences be-
tween the source and derived word pairs, but
we also group patterns that are likely to emerge
from the same affixes. Currently, given a pat-

tern we can narrow down the possible affixes
for a pair to a maximum of 4 candidates from a
set of 137 possible affixes.

2 Challenges in Sanskrit Derivational
Nouns

In this section, we discuss the challenges in identi-
fying the derivational nouns computationally. The
section uses some terms, which bear technical def-
initions as used in the lingusitic discipline of San-
skrit. Table 1, gives the definitions for all such
technical terms that we use in this paper. Here, we
attempt to build a semi supervised model that can
identify usage of derived words in a corpus and
map them to their corresponding source words.
Here, we are specifically interested in the usage
of secondary derivative affixes in Sanskrit, known
as Taddhita. ‘Taddhita’ refers to the process of
derivation of a ‘prātipadika’ from a ‘prātipadika’.
In Sanskrit, a ‘prātipadika’ may refer to a noun or
an adjective. Hence, Taddhita covers non-category
changing derivations, and can be recursive as well
(Bhate, 1989).

The derivation procedure proceeds by use of af-
fixation on a word where the affix modifies the
source word to form a derived word. While some
affixes substantially modify the derived word from
its source word, some other affixes tend to form
minimal variation. In fact, the variations need not
occur only at the word boundary but also at inter-
nal portions of a word. Table 2 illustrates some
cases which are discussed here. In case of ‘up-
agu’, the derived word gets an internal change and
forms ‘aupagava’. But in case of ‘dand. a’, ‘dand. in’
is derived, where no internal modifications occur.

In Sanskrit, there are 137 affixes used in Tad-
dhita. The edit distance between the source
and derived words due to the patterns tends to
vary from 1 to 6. For example, consider the
word ‘rāvan. i’ derived from ‘rāvan. a’, where the
edit distance between the words is just 1. But,
‘Āśvalāyana’ derived from ‘aśvala’ has an edit dis-
tance of 6. Since, the possible variations that can
be expected are quite high, this might lead to a
large candidate space when the said patterns are
used for matching the words. Additionally, a num-
ber of affixes used in taddhita are used for other
purposes as well. For example, kr.danta, nouns de-
rived from verbs, share some of the affixes with
taddhita. In Table 2, ‘stutya’, a kr. t, derived from
‘stu’ follows similar pattern as with the derivation

Term Definition
prātipadika A prātipadika is a technical term which is used to collectively address nouns and adjectives in

Sanskrit. In Sanskrit, both nouns and adjectives belong to the same category
taddhita Set of secondary derivative affixes i.e. affixes used for deriving a prātipadika from an existing

prātipadika. Incidentally the prātipadikas so derived are also called as taddhita (or taddhitānta)
kr.t Set of primary derivative affixes used for deriving a prātipadika from a verbal roots.
kr.danta Prātipadikas derived from verbal roots by affixing primary derivative suffixes (kr.t) are called

kr.danta.
vr.ddhi The sounds ‘ā’, ‘ai’ and ‘au’ are designated as vr. ddhi. In taddhita, it is observed that the

first occurrence of a vowel in words often gets transformed to one of the vr. ddhi vowels. This
operation is also termed as vr. ddhi.

gun. a The sounds‘a’,‘e’ and ‘o’ are called as gun. a. Whenever the gun. a operation is invoked in, the
mentioned vowels will be replaced in place of other vowels.

Table 1: Technical terms in Sanskrit and their definitions

of ‘dāks.hin. ātya’, a taddhita word, derived from
‘daks.hin. ā’. Now, ‘kālaśa’ is derived from ‘kalaśa’,
where only an internal change is visible. But the
similar pattern between ‘karan. a’ (Instrument) and
‘kāran. a’ (Reason) is a mere coincidence.

We can find that for deriving the word
‘vainateya’ (Son of Vinatā) from vinatā (Wife of
sage Kaśyapa, a mythological character), the ‘ā’
at the end gets replaced with ‘eya’, and an internal
modification happens from ‘i’ to ‘ai’. So ([i→ai],
[ā→ eya]) is a valid pattern transformation. Simi-
larly, gāṅgeya (Son of the river Ganges) is formed
from the word gaṅgā (River Ganges). The pat-
tern ([a→ā], [ā→eya]) is followed. We could find
more than 400 different such patterns induced by
the 137 affixes.

With our knowledge from As. t.ādhyāyı̄, we can
abstract out some of the regularities in the modi-
fications made, especially those happening at the
internal portions of a word. We see those modifi-
cations as result of specific operations performed
on the word. In this work, we consider two such
operations, important for taddhita which we de-
fine now.

Vr.ddhi - The sounds ‘ā’, ‘ai’ and ‘au’ are des-
ignated as vr. ddhi. In taddhita, it is observed that
the first occurrence of a vowel in words often gets
transformed to one of the vr. ddhi vowels. This op-
eration is also termed as vr. ddhi. In Table 2, upagu,
pramukha, aśvala and kalaśa are some taddhita
words that show vr. ddhi of its words. The opera-
tion is not exclusive to taddhita and occurs in other
instances as well. sr. , kr. are some examples.

Gun. a - The sounds ‘a’,‘e’ and ‘o’ are called as
gun. a. Whenever the gun. a operation is invoked in
As. t.ādhyāyı̄, the mentioned vowels will be replaced
in place of other vowels. In case of ‘aupagava’, at
a certain point of derivation, it takes the form ‘au-

pagu a’, and the ‘u’ gets converted to ‘o’ by virtue
of gun. a, finally resulting in aupagava. This oper-
ation is called gun. a. It is important to note that,
the pattern ‘ava’ in the derived form instead of ‘u’
in the source word is result of the transformation
sequence u → o → av → ava, which would not
have been possible without applying the gun. a op-
eration. For the complete derivation procedure of
the derivational noun ‘aupagava’ from upagu as
prescribed in As. t.ādhyāyı̄, please refer to Table 1
in Krishna and Goyal (2015).

We define the character sequence which gets
modified or eliminated from the source word dur-
ing the derivation as ‘source pattern’ or ‘sp’, and
the character pattern that appears in the derived
word is termed as ‘end-pattern’ or ‘ep’. The pat-
terns contain all the other changes apart from gun. a
and vr.ddhi. With this knowledge, now if we look
into the patterns ([i→ai], [ā→ eya]) and ([a→ā],
[ā→ eya]), we can abstract the first component in
both the pattern transformations as vr.ddhi opera-
tion. For, vinatā and gaṅgā the source pattern (sp)
is the phoneme ‘ā’. The end pattern for both the
words is the phoneme ‘eya’. With this abstraction,
we narrow down the pattern variations to about
70 end-patterns (ep). We originally had 400 pat-
terns altogether but now we group the possible
(derived word, source word) pairs based on their
end-pattern only. Thus such a pair can only be-
long to one of the 70 possible end-patterns. Table
2 shows the end-patterns for the taddhita words
provided in it.

3 Method

We define our task over a dataset of finite set
of vocabulary C. We enumerate all the possible
70 end-patterns as mentioned in Section 2, that
can be applied on a source word. With the ex-

Word Derived Word Type ep
upagu (Name of a person) aupagava (male offspring of Upagu) Taddhita a
śiva (Name of a Hindu god) śaiva (male offspring of śiva) Taddhita a
rāvan. a (A mythological character) rāvan. i (male offspring of Rāvan. a) Taddhita i
tila (Sesame) Tilya (Which is beneficial to sesame) Taddhita ya
pramukha (Prominent) prāmukhya (Prominence) Taddhita ya
dand. a (Stick) dand. in (One who carries stick) Taddhita in
sr. (To go) sārin (One who moves) Kr.t –
kr. (To do) kāraka (One who does) Kr.t –
aśva (Horse) aśvaka (bad horse) Taddhita ka
aśvala (Holy priest of King Janaka) āśvalāyana (male offspring of aśvala) Taddhita āyana
stu (To praise) stutya (Worthy of praise) Kr.t –
daks.hin. ā (South direction) dāks.hin. ātya (Southern) Taddhita –
kalaśa (Pitcher) kālaśa (related to Pitcher) Taddhita a
karan. a (Instrument) kāran. a (Reason) Random –

Table 2: Derivational nouns and their corresponding source words in Sanskrit. Additionally, possible
cases of false positives that follow similar patterns to derivational nouns are provided as well

tracted patterns, we identify word pairs wpi =
(wj , wk) ∈ C2 and represent each such pair as a
tuple twpi = 〈wj , wk, sp, ep, vr.ddhi = o, gun.a =
p, awpi1 , awpi2 , awpi3〉, where o, p ∈ {0, 1} and
sp, ep are the source pattern in wj and the end-
pattern added to the derived word wk respectively.
The variables o, p assume the value 1 if the pattern
is considered to be obtained only after the applica-
tion of the corresponding operation. For each wpi,
we encode a vector awpi1 ∈ {0, 1}|A1|, where A1

is the set of all rules in As. t.ādhyāyı̄ relevant for
derivational nouns and awpi,l = 1 indicates that
the rule l is applicable to the word pair. Simi-
larly, the vector awpi2 ∈ [0, 1]|A2| represents prob-
ability value for each of the variable length char-
acter n-grams in A2 learnt from Adaptor gram-
mar (Johnson et al., 2007). awpi3 represents a
word embedding for wj in A3 obtained using
word2vec (Mikolov et al., 2013). For example, the
word ‘dand. in’, derived from ‘dand. a’ can be repre-
sented as a tuple 〈dand.a, dand. in, a, in, vr.ddhi =
0, gun.a = 0, awpi1 , awpi2 , awpi3〉.

With the extracted pairs Wcandidates ⊆ C2, we
propose a binary relevance model that trains a sep-
arate classifier for every unique end-pattern.

We use Modified Adsorption (MAD) algorithm,
a graph based semi-supervised approach for our
task (Talukdar and Crammer, 2009). MAD fits to
our requirements specifically on two aspects. Pri-
marily the semi supervised setting helps us to use
minimal set of labelled nodes as seed nodes and
incorporate other unlabeled nodes into the system.
The objective function penalises the results when

similar nodes are assigned with different labels.
Unlike other semi-supervised algorithms (Zhu and
Ghahramani, 2002; Zhou et al., 2003), MAD al-
lows us to design the network structure explicitly
as required. In MAD, every node has a label as-
sociated with it and is seen as a distribution of the
labels rather than a binary assignment. The un-
labeled nodes initially have no label assignments,
but as the algorithm is executed, every node is up-
dated with a distribution of the labels in the la-
bel space. The seed nodes are also allowed to
be provided with a label distribution rather than
hard-assigned labels. In MAD(G,Vseed), the al-
gorithm inputs a graph structure G(V,E,W) and
additionally a seed distribution, Vseed, for the seed
nodes in the vertex set, Vseed ⊆ V . The algorithm
outputs a label distribution V , for every v ∈ V .

For our setting, we find that Wcandidates =
U ∪ S ∪ G, where U is the set of unlabelled
nodes, S is the set of seed nodes used as la-
belled nodes for training and G is the set of gold
nodes which is used as the test data for evalua-
tion of the model1. For the system a node ob-
tained from U and G are indistinguishable. Also,
all the three sets are mutually disjoint. For ev-
ery end-pattern, epi, we construct a classifier
MADi = {MADi1(Gi1,Si)|MADi2(Gi2,Vi1)
|MADi3(Gi3,Vi2)}, where Gik is a graph
Gik(Vi, Eik,Wik), and ‘|’ is the pipe symbol sig-
nifying that, the output at the left of the operator is
used as input to the right of the operator. Note that

1We follow the same naming conventions as Faruqui et al.
(2016) wherever possible

Figure 1: Graph structure for the end-pattern
‘ya’. The nodes are possible candidate pairs in
Wcandidates. Nodes in grey denote seed nodes,
where they are marked with their class label. The
Nodes in white are unlabelled nodes.

the vertex set Vi remains the same for all the three
graphs Gi1, Gi2, Gi3. Also, Vik is the label dis-
tribution output for MADi(k) and the seed label
distribution for MADi(k+1) . Figure 1 shows the
graph structure Gik, for the epi = ya. Our clas-
sifier is a sequential pipeline of 3 graphs, where
each graph structure uses label distribution from
previous MAD run as its seed. We provide our
manually labelled seed set only for the MAD run
on MADi1. In MADi, the vertex set Vi remains
same in all the runs and is essentially a set of all
word pairs that follow a certain end-pattern epi.

In our approach, the network structure is in-
fluenced by the edge sets {Ei1, Ei2, Ei3} and the
corresponding weight sets {Wi1,Wi2,Wi3}, and
both are decided by 3 different set of attributes
A1,A2,A3 that provide the adjacency and the
weights for the relation between the nodes. We ex-
plain how the edge set and weight set are defined
in each of the phases.

3.1 Phase 1: As. t.ādhyāyı̄ rules

As. t.ādhyāyı̄ is a grammar treatise on Sanskrit with
about 4000 rules, estimated to be written some-
where between fourth century BC and sixth cen-
tury BC by Pān. ini. About 1115 rules of the 4000
in As. t.ādhyāyı̄, i.e., more than 25 % of the rules, are
devoted to affixation of derivational nouns. The
rules related to Taddhita either are string rewrit-
ing rules, conditional rules, or attribute assignment
rules (Krishna and Goyal, 2015). Table 3 illustrate
some of the rules related to Taddhita, the sense
they carry and effect on source word due to the

affixation. We consider only the conditional rules
used by Pān. ini for the task, which can further be
sub-categorised as given below.
1. Phonological and phonemic - Pān. ini uses pres-

ence of certain phonological or phonemic en-
tity in the source word as a condition for affix-
ation. For example, the rule ‘A.4.1.95 - ata iñ’,
states that a lemma ending in ‘a’ will be given
the affix ‘iñ’ when the affix is used to denote
the sense of patronymy.

2. Morphological and lexical properties - Pān. ini
incorporates a predefined set of lexical lists like
gan. apāt.ha where words that are suitable for
similar affixal treatment are grouped together.
For example, the rule ‘A 4.1.112’ in Table 2,
states to apply the affix ‘an. ’ to all the words in
the lexical list headed by ‘Śiva’.

3. Semantic and pragmatic - As. t.ādhyāyı̄ which
was intended for human usage, relies on se-
mantic and pragmatic conditions as well. We
use additional lexical lists instead of the seman-
tic and pragmatic aspects for the purpose. For
example, the rule ‘A.4.2.16‘ applies to those
words that signify ‘food that is processed or
prepared’. Here Pān. ini does not enumerate list
of such foods, but just mentions the quality.
In Phase 1 we consider all the rules that deal

with any of the phonological, phonemic, morpho-
logical and some of the semantic properties. We
do not consider the pragmatic conditional rules.
Each rule is considered a separate attribute at
Phase 1 and the collection is represented as A1.
We define the vertex score ℘k, for vk ∈ Vi with
the tuple tk, the weight set Wi1 and edge set Ei1

as follows.

℘k =

|A1|∑
l=1

ak1,l (1)

W
vk,vj
i1 =

∑|A1|
l=1 ak1,l · aj1,l
max(℘k, ℘j)

(2)

E
vk,vj
i1 =

{
1 W

vk,vj
i1 > 0

0 W
vk,vj
i1 = 0

(3)

In Equation 1, ak1,l is a component of the vec-
tor ak1 ∈ A∞, which indicates whether the ‘lth’
rule in our filtered set of As. t.ādhyāyı̄ rules is ap-
plicable for the word pair represented as the node
vk ∈ Vi and ak1 is part of the tuple tk. A source
word might satisfy multiple rules and only one of
the rules will emerge as the final rule that gets

Rule No Rule Semantic Relation Source Word Derived Word
4.1.95 ata iñ Patronym daśaratha dāśarathi
4.1.112 śivādibhyo’n. Patronym śiva śaiva
4.1.128 catakāya airak Patronym catakā cātakaira
4.2.16 sam. skr.tam. bhaks.āh. Processed kalaśa kālaśāh.

Table 3: conditional rules related to selection of suitable affix for derivational nouns from As. t.ādhyāyı̄.

applied (Scharf, 2009). Rules that carry differ-
ent affixes might find the eligibility for a given
pair. For example, consider the rules ‘A.4.1.95’
and ‘A.4.1.112’. For the word ‘Śiva’ both the rules
apply, and both the affixes iñ and an. find eligibil-
ity to be applied. But, according to As. t.ādhyāyı̄,
Śiva will get an. (Krishna and Goyal, 2015). But,
in this setting we keep all the attributes that the
word qualifies to. The complete derivation history
of a word needs to be examined in order to iden-
tify the exact rule that can be applied, which is a
challenging task by itself.

We consider all the rules that are relevant to
an end-pattern and we form an edge between two
nodes, if the source words in both the nodes share
at least one of the listed property.

3.2 Phase 2: Character ngrams similarity by
Adaptor grammar

Pān. ini had an obligation to maintain brevity, as his
grammar treatise was supposed to be memorised
and recited orally by humans (Kiparsky, 1994). In
As. t.ādhyāyı̄, Pān. ini uses character sub-strings of
varying lengths as conditional rules for checking
the suitability of application of an affix. We exam-
ine if there are more such regularities in the form
of variable length character n-grams that can be
observed from the data, as brevity is not a con-
cern for us. Also, we assume this would compen-
sate for the loss of some of the information which
Pān. ini originally encoded using pragmatic rules.
In order to identify the regularities in pattern in the
words, we follow a grammar framework called as
Adaptor grammar (Johnson et al., 2007). Adaptor
grammar is a non-parametric Bayesian approach
for learning productions for a Probabilistic Con-
text Free Grammar (PCFG). In the grammar, we
provide a skeletal grammar structure, along with
the non-terminals to be used in the grammar. The
grammar learns the productions and the probabil-
ities associated with each of the productions from
the observed data. The productions are variable
length character n-grams.

The grammar learns a distribution over trees

rooted at each of the adapted non-terminal (Zhai
et al., 2014; Krishna et al., 2016). In Listing 1,
‘Word’ and ‘Stem’ are non-terminals, which are
adapted. The non-terminal ‘Suffix‘ consists of the
set of various end-patterns. In this formalism, the
grammar can only capture sequential aspects in the
words and hence attributes like vr.ddhi that happen
at the internal of the word, non-sequental to rest of
the modified pattern, need not be effectively cap-
tured in the system.

Word→ Stem Suffix
Word→ Stem
Stem→ Chars
Suffix→ a|ya|.....|Ayana
Listing 1: Skeletal CFG for the Adaptor grammar

The setA2 captures all the variable length char-
acter n-grams learnt as the productions by the
grammar along with the probability score associ-
ated with the production. We form an edge be-
tween two nodes in Gi2, if there exists an entry
in A2, which are present in both the nodes. We
sum the probability value associated with all such
character n-grams common to the pair of nodes
vj , vk ∈ Vi, and calculate the edge score τj,k. If
the edge score is greater than zero, we find the sig-
moid of the value so obtained to assign the weight
to the edge. Equation 4 uses the Iverson bracket
(Knuth, 1992) to show the conditional sum opera-
tion. The equation essentially makes sure that the
probabilities associated with only those character
n-grams gets summed, which is present in both the
nodes. We define the edge score τj,k, weight set
Wi2 and Edge set Ei2 as follows.

τj,k =

|A2|∑
l=1

ak2,l[ak2,l = aj2,l] (4)

E
vk,vj
i2 =

{
1 τj,k > 0
0 τj,k = 0

(5)

W
vk,vj
i2 =

{
σ(τj,k) τj,k > 0
0 τj,k = 0

(6)

As mentioned, we use the label distribution per

node obtained from phase 1 as the seed labels in
this setting.

3.3 Phase 3: Semantic Word vectors

In phase 3, we try to leverage the similarity be-
tween word embeddings (Mikolov et al., 2013)
to propagate the labels. Due to limited resources
at our disposal, we find it difficult to train word
embeddings for Sanskrit. We resort to finding
synonyms of words using the digitised version of
Monier-Williams Sanskrit-English dictionary and
then use the corresponding pre-trained English
word vectors for the task. We find the word vec-
tors only for the source words as the dictionary
entries for derived words are even scarcer to ob-
tain. Since we perform only a dictionary lookup
for finding the synonyms of a word, we do not
get embeddings for named entities from the dic-
tionary. A given word might have multiple senses
in English and hence multiple English synonyms.
In such cases, we find all possible similarity scores
and take the maximum score among them.

We use cosine similarity between the word vec-
tors as the edge weight in this phase. For each
node, for which we were able to obtain a word
vector, we find its cosine similarity with that of
every other node in the graph for which there ex-
ists a word vector. We find that our graph struc-
ture Gi3 for many end-patterns results in multi-
ple disconnected components, as not all words in
Wcandidates has an entry in the dictionary. We as-
sign teleportation probability to every node in the
graph in order to handle this issue.

4 Experiments

We explain the experimental settings and evalua-
tion parameters for our model in this section.

4.1 Dataset

We use multiple lexicons and corpora to obtain
our vocabulary C. We use IndoWordNet (Kulka-
rni et al., 2010), the Digital Corpus of San-
skrit2, a digitised version of the Monier Williams3

Sanskrit-English dictionary, a digitised version
of the Apte Sanskrit-Sanskrit Dictionary (Goyal
et al., 2012) and we also utiilise the lexicon em-
ployed in the Sanskrit Heritage Engine (Goyal and
Huet, 2016). We obtained close to 170,000 unique
word lemmas from the combined resources.

2http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
3http://www.sanskrit-lexicon.uni-koeln.de/monier/

Obtaining Ground Truth Data - For our clas-
sifier MAD, we obtain the seed labels S and the
gold labels G from a digitised version of Apte
Sanskrit-Sanskrit dictionary. The dictionary has
preserved the etymological information of the en-
tries in the dictionary. For each end-pattern we
filtered out the pair of words which are related by
Taddhita affixes. Seed nodes for the negative class
were obtained using candidate pairs which were
either marked as kr. danta words in the Apte Dic-
tionary or were found in the dictionary, but are not
related to each other. Additionally, we manually
tagged some word pairs so as to obtain a balanced
set of labels. We narrowed to 11 separate end-
patterns for which we have at least 100 candidate
pairs and have at least 5 % of word pairs as seed
nodes in comparison to the the size of the candi-
date pairs for the end-pattern. Table 4 shows the
statistics related to each of the 11 end-patterns on
which we have performed our experiments.

4.2 Baselines
We propose the following systems as the compet-
ing systems. We use label propagation (Zhu and
Ghahramani, 2002) as a strong baseline and we
also compare the output at each of the phase as
separate baseline systems. Altogether we compare
four systems as follows:
1. Label Propagation (LPi) - We propose a la-

bel propagation based semi supervised classi-
fier (Pedregosa et al., 2011) for each of the end-
pattern. For each node, we find the top K simi-
lar nodes and assign edges to only those nodes,
where K is a user given parameter. The sim-
ilarity is obtained from a feature vector that
defines a node, with features from the first 2
phases incorporated into a single feature vec-
tor. We do not use the word embeddings from
Phase 3 directly, but find the cosine similarity
between the embeddings of the words and per-
form a weighted sum with the similarity score
obtained from the similarity obtained from the
combined feature vector.

2. MADB1i - We report the performance of
the system MADB1i = {MADi1(Gi1,Si)},
where we define the network structure only
based on the Phase 1 in Section 3

3. MADB2i - We report the performance of
the system MADB2i = {MADi1(Gi1,Si)|
MADi2(Gi2,Vi1)}, where we define the set-
tings for MADi1,MADi2 based on the de-

End-pattern Wcandidates Seed S Gold Labels G Recall Precision Accuracy
a 2500 350 88 0.77 0.72 73.86
aka 1200 120 30 0.67 0.77 73.33
in 1656 270 68 0.82 0.74 76.47
ya 1566 258 64 0.72 0.7 70.31
i 1455 166 42 0.52 0.55 54.76
ika 803 122 30 0.6 0.69 66.67
tā 644 34 12 0.5 0.6 58.33
la 360 48 12 0.67 0.8 75
tva 303 22 12 0.67 0.8 75
īya 244 40 12 0.67 0.67 66.67
eya 181 34 12 0.83 0.71 75

Table 4: Recall (R), Precision (P) and Accuracy (A) for the candidate nodes evaluated on the gold labels.

scription in Phase 1 and Phase 2 respectively,
as defined in Section 3

4. MADi - This is the proposed system, as de-
fined in Section 3

4.3 Results
Table 4 shows the final results of our proposed sys-
tem MADi, for each of the 11 end patterns. We
report the Precision, Recall and Accuracy for each
of the classifier w.r.t the true class. Our results are
calculated based on the predictions over the test
data in G. Seven of Eleven patterns have an ac-
curacy above 70 %. End-pattern ‘i’ is reported to
perform the least among the 11 patterns provided.
We find that the average degree forGi1 for the pat-
tern ‘i’ is about 77.62, much higher than the macro
average degree for Gi1 for all the patterns, which
is 43.86. This is primarily due to the restrictive na-
ture of node selection that is employed for the pat-
tern ‘i’ as per As. t.ādhyāyı̄. We have selected only
those nodes which have the vr. ddhi attribute set to
1 and only those source words which end in ‘a’.
This has led to higher average degree among the
nodes that got filtered as per As. t.ādhyāyı̄ rules. In
order to keep uniform settings for all the systems,
we do not deviate from the design. But, for pat-
tern ‘i’,when we randomly down-sample the num-
ber of neighbours to 44 (to match with the macro
average), the accuracy increases to 61.9 %.

Table 5 shows the results for the competing sys-
tems. We compare the performance of 5 end-
patterns, selected based on the vertex set size Vi1.
Our proposed system, MADi performs the best
for all the 5 patterns. Interestingly, MADB2i is
the second best-performing system in all the cases
beating LPi. For the pattern ‘aka’, the share of
word vectors available was < 10% overall. So,
in effect, only one of the false positive nodes got
the true negative label, after the third step is per-
formed. Thus the recall remains the same after

Pattern System P R A

a

MAD 0.72 0.77 73.86
MADB2 0.68 0.68 68.18
MADB1 0.49 0.52 48.86
LP 0.55 0.59 55.68

aka

MAD 0.77 0.67 73.33
MADB2 0.71 0.67 70
MADB1 0.43 0.4 43.33
LP 0.75 0.6 70

in

MAD 0.74 0.82 76.47
MADB2 0.67 0.70 67.65
MADB1 0.51 0.56 51.47
LP 0.63 0.65 63.23

ya

MAD 0.7 0.72 70.31
MADB2 0.61 0.62 60.94
MADB1 0.53 0.59 53.12
LP 0.56 0.63 56.25

i

MAD 0.55 0.52 54.76
MADB2 0.44 0.38 45.24
MADB1 0.3 0.29 30.95
LP 0.37 0.33 38.09

Table 5: Comparative performance of the four
competing models.

both the steps.
In Label Propagation, we experimented with

the parameter K with different values, K ∈
{10, 20, 30, 40, 50, 60}, and found that K = 40,
provides the best results for 3 of the 5 end-patterns.
We find that for those 3 patterns (‘a’,‘in’,‘i’), the
entire vertex set has vr.ddhi attribute set to the same
value. For the other two (‘ya’,‘aka’),K = 50 gave
the best results. Here, the vertex set has nodes
where the vr.ddhi attribute is set to either of the
values. We report the best result for each of the
system in Table 5.

4.4 Evaluation for Unlabeled Nodes
In order to evaluate the effectiveness of our sys-
tem, we pick nodes from unlabelled set U and
evaluate the word-pairs based on human evalua-
tion. We take top 5 unlabeled nodes predicted as
taddhita and top 3 unlabelled nodes predicted as
not taddhita from each of the the 11 end-patterns.
We collate the predictions and divide them into
3 lists of 22 entries each, as the remaining 22 of

the original 88 were filtered out. Seven experts,
with background in Sanskrit linguistics labelled
the dataset, of which one of the expert evaluator
is an author. We divide the set of 66 nodes into
3 mutually disjoint sets, and each set is evaluated
by 3 experts. We altogether receive 9 impressions
of which the author evaluator and one of the other
expert evaluator performed 2 impressions each. In
case of a conflict, we go with the majority votes for
each of the set. Since the entries are selected from
the top scoring nodes, we expected the results to
be better than the macro-average performance of
the system. We find that the evaluation of our sys-
tem provides a precision of 0.84, recall of 0.91 and
an accuracy 81.82 micro averaged over the 66 pre-
dictions.

5 Related Work
Computational analysis of derivational word
forms is gaining some traction in the NLP commu-
nity. Lazaridou et al. (2013) used CDSM (Mitchell
and Lapata, 2010) for derivational nouns, origi-
nally designed to learn representation for phrases.
Cotterell and Schütze (2017), extended the con-
cept of CDSM for derivational word forms with
neural models. The authors put forward the idea
of jointly handling the segmentation of words into
morphemes and semantic synthesis of the word
forms to improve the performance of a system for
both the tasks. Bhatia et al. (2016), does not make
a distinction of inflected word-forms or deriva-
tional affixes, but their work can be employed to
learn embeddings for a word-form from its mor-
phemes.

Soricut and Och (2015) introduced an unsuper-
vised method of inducing affixal transformations
between words using word embeddings. Faruqui
et al. (2016) further propose a semi supervised
graph based approach for morpho-syntactic lex-
icon induction. The authors show the effective-
ness of their model for inflectional morphology
over multiple languages. In Sanskrit, Krishna and
Goyal (2015) automated the derivation of Tad-
dhita, where the authors follow an object oriented
framework. Deo (2007) have preformed an in
depth linguistic analysis of inheritance network
used by Pān. ini in handling affixation in Taddhita.

6 Discussion

In Sanskrit, multiple affixes may give rise to sim-
ilar patterns. In fact, an affix in Sanskrit contains

two parts, where one part pertains to the pattern
to be induced, and other is a marker which gets
elided before the affixation. The presence of the
marker, termed as ‘it’ marker, also plays a role
in determining the type of rules that get triggered
during the derivation. For example, consider the
word ‘prāmukhya’ derived from ‘pramukha’ and
the word ‘sodarya’ from ‘sodara’. Both the words
have the same end-pattern ‘ya’. However, only
in the case of the former, vr. ddhi operation takes
place but not in the latter. Now, affixes that carry
the same pattern might differ by the ‘it’ markers.
Now, by encoding every candidate word pairs with
the suitability of rules of As. t.ādhyāyı̄ inA1, we can
narrow down the possible candidates for the af-
fix to at most 4 candidates of the 137 possible af-
fixes. In order to disambiguate further, we require
semantic and pragmatic level information, which
is currently unavailable. In this work, we only
consider the derivations in taddhita, as we find
that jointly modelling a system for both kr. danta
and taddhita is challenging. The rule arrangement
for kr. danta is different from that of taddhita in
As. t.ādhyāyı̄, thus we require a different model de-
sign for organising the rules in A1, i.e., the phase
1 in Section 3. Hence, in this work we restrict
ourselves to resolving taddhita nouns, which is the
larger section in As. t.ādhyāyı̄ among the two.

7 Conclusion

In this work, we developed a graph based semi
supervised approach for analysis of derivative
nouns in Sanskrit. We successfully integrate the
rules from As. t.ādhyāyı̄, variable length character
n-grams learnt from Adaptor grammar and word
embeddings to build a 3 step sequential pipeline
for the task. We find that our work outperforms
label propagation, which primarily shows the ef-
fect of explicit design of network structure. We
find that using the label distribution outputs at each
phase, for the input at the successive phases im-
prove the results of the model. Our work will be
beneficial to the Sanskrit Computational Linguis-
tic community for analysis of derivational words
in the digitised ancient manuscripts, as no other
analyser in Sanskrit currently handles derivational
nouns. Our work doubles as a tool for pedagogy,
as we are able to abstract out regularities between
the patterns and narrow down the possible affix
candidates for a word pair to four.

References

Saroja Bhate. 1989. Panini’s taddhita rules. Univer-
sity of Poona.

Parminder Bhatia, Robert Guthrie, and Jacob Eisen-
stein. 2016. Morphological priors for probabilis-
tic neural word embeddings. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Austin, Texas, pages 490–500.
https://aclweb.org/anthology/D16-1047.

Ryan Cotterell and Hinrich Schütze. 2017. Joint se-
mantic synthesis and morphological analysis of the
derived word. Transactions of the Association for
Computational Linguistics .

Ashwini Deo. 2007. Derivational morphology in
inheritance-based lexica: Insights from pāini. Lin-
gua 117(1):175–201.

Manaal Faruqui, Ryan McDonald, and Radu Soricut.
2016. Morpho-syntactic lexicon generation using
graph-based semi-supervised learning. Transac-
tions of the Association for Computational Linguis-
tics 4:1–16.

Pawan Goyal and Gérard Huet. 2016. Design and anal-
ysis of a lean interface for sanskrit corpus annota-
tion. Journal of Language Modelling 4(2):145–182.

Pawan Goyal, Gérard P Huet, Amba P Kulkarni, Pe-
ter M Scharf, and Ralph Bunker. 2012. A distributed
platform for sanskrit processing. In COLING. pages
1011–1028.

Mark Johnson, Thomas L Griffiths, Sharon Goldwa-
ter, et al. 2007. Adaptor grammars: A frame-
work for specifying compositional nonparametric
bayesian models. Advances in neural information
processing systems 19:641.

Paul Kiparsky. 1994. Paninian linguistics. The Ency-
clopedia of Language and Linguistics 6:2918–2923.

Donald E Knuth. 1992. Two notes on notation. The
American Mathematical Monthly 99(5):403–422.

Amrith Krishna and Pawan Goyal. 2015. Towards
automating the generation of derivative nouns in
sanskrit by simulating panini. arXiv preprint
arXiv:1512.05670 .

Amrith Krishna, Pavankumar Satuluri, Shubham
Sharma, Apurv Kumar, and Pawan Goyal. 2016.
Compound type identification in sanskrit: What
roles do the corpus and grammar play? In
Proceedings of the 6th Workshop on South
and Southeast Asian Natural Language Process-
ing (WSSANLP2016). The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 1–10.
http://aclweb.org/anthology/W16-3701.

Malhar Kulkarni, Chaitali Dangarikar, Irawati Kulka-
rni, Abhishek Nanda, and Pushpak Bhattacharyya.
2010. Introducing sanskrit wordnet. In Proceedings
on the 5th Global Wordnet Conference (GWC 2010),
Narosa, Mumbai. pages 287–294.

Angeliki Lazaridou, Marco Marelli, Roberto Zampar-
elli, and Marco Baroni. 2013. Compositional-ly
derived representations of morphologically complex
words in distributional semantics. In ACL (1). Cite-
seer, pages 1517–1526.

Hans Marchand. 1969. The categories and types of
present-day English word-formation: A synchronic-
diachronic approach. Beck.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence 34(8):1388–1429.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

P Scharf. 2009. Rule selection in the a ādhyā yi or is
pāinis grammar mechanistic. In Proceedings of the
14th World Sanskrit Conference, Kyoto University,
Kyoto.

Radu Soricut and Franz Josef Och. 2015. Unsu-
pervised morphology induction using word embed-
dings. In HLT-NAACL. pages 1627–1637.

Partha Talukdar and Koby Crammer. 2009. New
regularized algorithms for transductive learning.
Machine Learning and Knowledge Discovery in
Databases pages 442–457.

Ke Zhai, Jordan Boyd-Graber, and Shay B Cohen.
2014. Online adaptor grammars with hybrid infer-
ence. Transactions of the Association for Computa-
tional Linguistics 2:465–476.

Dengyong Zhou, Olivier Bousquet, Thomas Navin
Lal, Jason Weston, and Bernhard Schölkopf. 2003.
Learning with local and global consistency. In
NIPS. volume 16, pages 321–328.

Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning
from labeled and unlabeled data with label propaga-
tion .

https://aclweb.org/anthology/D16-1047
https://aclweb.org/anthology/D16-1047
https://aclweb.org/anthology/D16-1047
http://aclweb.org/anthology/W16-3701
http://aclweb.org/anthology/W16-3701
http://aclweb.org/anthology/W16-3701

