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Abstract

Robotics has revolutionized several industries across the globe through technologies
never seen before. However, society still expects more than what today’s robots
are really capable of. To deal with such expectations, innovative algorithms must
be translated into viable solutions so that robots can continue to improve labor
in workplaces and ordinary people’s lives. Among the most important are motion
generation algorithms, whose advancements can solve some of the biggest barriers
towards more flexible and safe human-robot interactions and operations in dynamic
environments. The developments in optimization algorithms and computer proces-
sor technology have led nonlinear model predictive control (NMPC) to gain popu-
larity in robotics as a motion generation technique. The main reason for that is its
ability to minimize a cost function while respecting a set of constraints that typi-
cally represent the system’s physical and operational limitations. Ultimately, these
are the elements that grant NMPC an improved performance compared to classic
approaches. Despite being a promising technique, the non-negligible computational
burden associated with the online solution of the underlying optimal control prob-
lems has decisively limited its roll-out to robotic systems subject to short sampling
times and resource-constrained hardware.

This thesis proposes multiple tailored algorithms for real-time motion gener-
ation in robotic systems based on high-performance implementations of NMPC.
The primary computational bottlenecks concern the numerical simulation of the
continuous-time nonlinear dynamic models and the online solution of the stemming
large yet well-structured nonlinear program. The thesis shows that it is possible
to achieve significant speed-ups in solution times while preserving nonlinearities
through efficient software implementations that cover standard building blocks from
nonlinear programming, tailored quadratic programming solvers, and fast approxi-
mate schemes for NMPC. Additionally, a discussion is provided in terms of dynamic
modeling. It encompasses the design decisions required to create a model that ex-
poses the system limitations so that high-quality motions can be attained due to a
more accurate representation.

Among the ever-growing plethora of robotic systems, the thesis focuses on the
motion generation of a double inverted pendulum and a quadrotor. In particular,
two numerical simulations addressing human-robot interaction and operation in
dynamic environments and two real-world applications dealing with position control
demonstrate a significant improvement in control performance, with solution times
in the range of micro- and milliseconds.
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Chapter 1

Introduction

Since Karel Čapel coined the word robot, breakthroughs in technology have accel-
erated the creation of robots that now fan out into everyday life. Once rare, these
devices have been migrating steadily into the daily grind through existing service
industries such as hospitality, retailing, security, in-home assistance, and entertain-
ment (see Figures 1.1, 1.2, and 1.3). Furthermore, driverless cars are set to change
the personal transport industry’s future in the same way as delivery robots are
setting the tone for the sector for years to come (see Figures 1.4 and 1.5). These ex-
citing new applications result from the automation escalation outside the factories,
giving rise to so-called service robots. Despite the technological barriers for today’s
service robots, there is a high degree of enthusiasm about prospects and opportu-
nities for them. There are a few technical challenges to be tackled to secure their
enduring growth such that a widespread deployment is achieved. Chief among them
are trajectory planning and closed-loop control, which united synthesize the motion
generation research field. Although the resources provided by research in the last
decade have not yet made service robots exactly conventional, several segments are
already leveraging them.

Autonomous guided vehicles (AGV) are paving their way around factories, ware-
houses, and distribution centers, carrying out tasks that involve material handling.
Thanks to the advances in autonomous driving technology, the segment has been
boosted so that companies could attain safety ratings for their vehicles. Yet, there
are problems AGVs are expected to solve, such as random pick-and-place tasks.
Similarly, retail stores have had their shelves scanned by mobile robots that cap-

Figure 1.1. (left) robotic barista in a cafe; (right) cleaning robot in a retail store.
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Figure 1.2. (left) receptionist robot in a hotel; (right) fighting robots in a live battle.

Figure 1.3. (left) security robot platform; (right) care robot to keep track of shopping
lists, play music, and work as a videoconference system.

ture each product’s data, which is then used to optimize the way workers unload
delivery trucks and get products from the truck to the shelves faster.

In recent years, drones have expanded their addressable activities tremendously.
As the fast development of component technology has made them affordable to
most end-users, the segment’s growth falls on value-added services. Among others,
drones can execute 2D and 3D mapping, which has already been used in construc-
tion, agriculture, and mining. In construction and mining, drones are typically
deployed to perform volumetric measurements on stockpiles or provide a visual as-
sessment of haul roads state. However, to achieve the accuracy required for the
final estimations, the vehicle must discharge high-precision flights using algorithms
capable of maintaining a constant altitude and velocity while images are being gath-
ered. Agriculture is no different. For instance, multispectral photos are combined
into a map that provides farmers with an understanding of the crop state, stressors,
diseases, and pests. Moreover, drones have shown great potential in long-range
delivery. Successful examples already include blood and vaccine delivery in hard-
to-reach areas in Africa and consumer goods’ last-mile delivery. Limitations defined
in terms of maximum payload (different weights and types of goods) and collision
avoidance with electrical wires, birds, buildings, and trees represent the most sig-
nificant challenges to these robots’ broad and ambitious dissemination. At last,
drones are particularly valuable for autonomous inspections of large geographical
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Figure 1.4. Autonomous cars navigate through Pittsburgh (left) and San Francisco (right).

areas. They are dramatically altering how monitoring activities are carried out on
telecommunication towers, wind turbines, solar panels, electric grids, pipelines, and
so on. Breakthrough solutions are sought to achieve energy-efficient flights and also
enhance collision avoidance features.

Field robotics is also taking hold in the agricultural segment. As crops have
always been subject to weather vagaries, soil conditions, and pests, the demand for
robotic solutions to help farmers in duties such as weed control, plant nursing, and
feeding has been high. Motivated by a micro-level understanding of agricultural
practices and a way to redress labor shortages, field robots are now blossoming
into businesses with the help of motion generation techniques. Because there is no
popular algorithm at the moment, there is plenty of room for innovative solutions
that can handle monitoring, precision spraying, and harvesting. The most viable
improvements when looking ahead are related to safe motions in steep slope terrains,
where the robot has a limited roll, pitch, and yaw angles; complete coverage on
uneven terrains without overlap; collision avoidance; and effective gripping on fruit-
picking robots.

Research suggests that robotics is also making strides in healthcare spaces. Sur-
gical robots have aided in minimally invasive procedures, making them easy and
accurate to reduce the risks of infections and other complications. Shortly, techno-
logical furtherance will enable those robots to move through certain body regions
while avoiding nerves and other obstacles. Rehabilitation robots are helping pa-
tients recover from strokes, paralysis, or traumatic brain injuries. They provide
an assessment of prescribed exercises, measuring degrees of movement in distinct
positions and tracking progress more accurately than the human eye. In the future,

Figure 1.5. (left) drone delivery; (right) six-wheeled delivery robot.
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these features are likely to make robot-assisted rehabilitation more effective com-
pared to conventional rehabilitation, which represents a massive opportunity for the
development of novel motion generation methods.

Humanoid robots have been gradually introduced into social interaction con-
texts, albeit their primary use remains the research. This trend stems from the
fact that as robots get more lifelike, people start investing in them with more trust.
Conceptually, the physical acceptance experienced by humanoids aper to play a
significant role in effective human-robot interactions. As opposed to other robots,
humanoids’ grounded acceptance is already a solid reason to support their techno-
logical development. Thus far, they have been used in research, personal assistance
and caregiving, education, entertainment, search and rescue, and public relations.
Even though engineering has made unprecedented progress in reproducing humans’
grasp and gait patterns, today’s robots cannot match humans’ hands or legs.

After long years of limited interaction with humans, traditional robots finally
broke out their cages and brought forth the idea of collaborative robots or cobots.
Unlike the robots programmed to do repetitive, assembly-line tasks, cobots were
conceived to meet today’s industrial challenges, which demand higher versatility.
As this idea reshapes the traditional industry, one can anticipate that the near
future workplace will inevitably be an environment where humans and robots will
work together to maximize each other’s capabilities. This forethought also holds
for every segment outside of the manufacturing/industrial domain. Regardless of
the application, it will be necessary to take the time upfront to comprehend the
workflow and ensure a robotic solution suits well in that environment to achieve
this harmonious future. While flexibility is the word that will describe the most
important characteristic of such solutions, defining the limits of that flexibility will
be just as important. It becomes much easier to deploy and adapt a robotic solution
to similar environments or workpieces when it has well-defined boundaries where
small changes can take place.

Advancing motion generation algorithms is critical to ensuring the continued suc-
cess of all robotic systems mentioned. Through them, robots will generate complex
motions that will result, on one side, in more reliability when navigating in human
spaces, and on the other side, in more fluid human-robot interactions. Therefore,
research should not be limited to designing algorithms that result in robots outper-
forming nature only in force, speed, and precision. Instead, as robots will likely
blend into our lives as the years go by, research should also look for algorithms that
allow them to interact with humans or operate in dynamic environments. This the-
sis believes that algorithms must meet three desiderata to reach a broader repertoire
of robot movements:

First, they must embody models that expose the limitations of dynamic prim-
itives. As seen in natural systems, motor control often uses dynamic primitives
(e.g., submovements and oscillations) to compose complex motions. For instance,
the act of hovering in mid-air experienced by bees involves a series of forward-,
mid-, and rearward-strokes at extremely high wingbeat frequencies. While bees’
wing angle of attack ranges from 41.1 to 50.5 degrees at mid-stroke to prevent a
stall, their forward-to-rearward stroke range of 90 degrees creates an imaginary
plane whose tilting enables them to move forward and in reverse. These findings
taught researchers how some aerial robots could perform vertical take-off, hovering,
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and steering. Likewise, several studies are still underway to learn more about how
humans move in order to achieve stable skip, gallop or skitter in walking robots
and sit-to-stand in exoskeletons. The importance of bringing limitations to light is
because robotic systems, for the most part, are reproductions of natural systems,
which in turn are endowed with limited dynamic primitives. For this reason, motion
generation algorithms ought to use models that take into account such limitations
to avoid setting unrealistic standards of what robots can do.

Second, they must make the best of the synergy between robots and their
computers. Most of the robotic applications previously mentioned are compute-
intensive. As a result, their algorithms have traditionally had to grapple with trade-
offs between motion quality and efficiency. This observation reveals that researchers
have so far given scant attention to performance-oriented architectural algorithms
that can leverage such trades more aggressively. As each computer system has a dif-
ferent architecture and approach to trade-offs, exposing information from hardware
to software allows, for example, better hardware throughput. Therefore, motion
generation algorithms shall exploit the instructions that all machines implementing
a particular architecture must support, such as arithmetic, floating-point, vector
operations, and several possible extensions as a direct means to improve overall
performance.

Third, they must obey a strict real-time limit. Several motion generation prob-
lems in robotics are tackled by addressing trajectory planning and closed-loop con-
trol separately. In a traditional algorithmic framework, a trajectory planner gener-
ates a feasible trajectory in the configuration space, and a feedback control policy
faithfully tracks it. Ideally, online trajectory planning is preferable to offline so-
lutions because, in this way, the robot can react to dynamic obstacles and prior
miscalculations. However, the computational burden to converge to a feasible and
optimal solution under real-time constraints ultimately limits online trajectory plan-
ning approaches. Computational complexity can be alleviated if one uses simplified
dynamic models rather than highly accurate ones but at the price of overloading
the control policy that now needs to reject disturbances and deal with model mis-
matches. Whether coupling or decoupling trajectory planning and control, an algo-
rithmic framework must terminate whatever computations are carried out within a
real-time limit given a priori, returning a sufficiently accurate solution.

Problem statement The problem addressed in this thesis concerns real-time
motion generation in robotic systems. The goal is to develop high-performance
solutions in terms of resource-efficiency and motion quality that allow a robot to
move either autonomously or semi-autonomously in predictable environments where
static or dynamic obstacles may occasionally be present.

Real-time optimal control is a promising approach for solving the class of motion
generation problems that this thesis is interested in. It allows one to minimize online
a given cost function while satisfying a set of constraints that typically arise from
operational or physical limitations. It is a sophisticated way of formulating a real-life
problem through an optimal control problem (OCP) where cost, system dynamics,
and constraints are explicitly taken into account. The online solution of an OCP
outlines the elegant principle of model predictive control (MPC). The idea is simple:
i) estimate the current state, ii) solve an OCP formulated over a time horizon using
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the current state as the initial value, iii) get the first control of the trajectory that
results from the numerical solution of the OCP, iv) apply it to the system for one
time step, v) shift the horizon forward in time and repeat.

Models are the foundation of any predictive controller. Linear MPC (LMPC)
is characterized by the use of linear dynamic models in the prediction, whereas
nonlinear MPC (NMPC) uses nonlinear ones. Although both require the iterative
solution of OCPs on a finite-horizon, the first striking difference is that in LMPC,
these problems are convex, while in NMPC not necessarily. This trait poses signif-
icant challenges for both numerical solution and real-time feasibility, reasons why
NMPC was restricted to slow dynamics systems for a long time. Given the context
seemingly discouraging, a legitimate question to raise is: is there a place for NMPC?
This question lies at the heart of what may be called “the paradox of accurate rep-
resentation of a process model.” It refers to the challenge in selecting a model, be it
linear or nonlinear, that can appropriately describe a process’s evolution. Although
linear models have proven to be an educated approximation of real processes on
many occasions, nonlinear models have become more valuable as researchers and
practitioners seek to produce testable characterizations of nonlinearities that can
guarantee superior performance in terms of motion quality. Besides, nonlinear
models with a reasonable complexity are less prone to cause dynamic systems to
exhibit non-physical behaviors.

The applicability of NMPC strongly relies on efficient optimization routines for
solving the underlying OCPs. Since in NMPC, the problem that is repeatedly solved
has a fixed structure, one can use this information to build tailored strategies to
exploit sparsity and knowledge about the matrices size. To this end, much effort has
been put into developing structure-exploiting algorithms that can reduce computa-
tional complexity and memory footprint through efficient and scalable factorization
routines. These efforts have inspired other algorithmic breakthroughs that include
linear algebra kernels for small-to-midsize matrices, optimized for different CPU ar-
chitectures. Combined, these ideas enabled the implementation of high-performance
MPC solvers that guarantee significant speed-ups in solution times.

Among the advantages of NMPC compared to classical control techniques is the
unification of trajectory planning and control problems. Assuming that a trajectory
can be quickly optimized, it can be used as a feedback control policy for a closed-loop
system, yielding robust feedback against unforeseen disturbances and errors due to
model-plant-mismatch. However, the main computational bottleneck in NMPC
is typically the numerical solution of the (potentially) nonconvex OCPs. Hence,
researchers have been devoted to finding remedies to this limitation. One attractive
alternative relies on direct optimal control methods using Newton-type optimization
algorithms to cast real-time NMPC controllers. At the core of it, instead of iterating
to convergence an OCP that becomes more and more outdated as the system evolves,
one can use an approximate feedback policy that, under proper initialization, runs
within real-time limits and, thereby, reacts to disturbances considerably faster.

For all these reasons, this thesis considers that real-time NMPC uniquely meets
all desiderata sought. Furthermore, among all the robotic systems mentioned earlier,
this thesis will be committed to solving motion generation problems of only two: i) a
double inverted pendulum whose stabilization principle typically describes complex
motions in walking or self-balancing robots, and ii) a quadrotor.
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1.1 Contributions and overview
This thesis contains eight chapters, including this introduction and final remarks.

Chapter 2 – Real-time nonlinear model predictive control This chapter
introduces the class of dynamic systems and optimal control problems dealt with
throughout the thesis. It then provides a detailed overview on direct optimal con-
trol, including a discussion on the most successful shooting methods for nonlinear
optimal control problems in robotics. It presents the fundamental concepts and
numerical methods for nonlinear programming. In particular, sequential quadratic
programming (SQP) and Newton-type optimization, crucial for the efficient imple-
mentation of real-time optimal control. Besides, it presents state-of-the-art tailored
quadratic programming (QP) solvers for the solution of the resulting QP subprob-
lems. In particular, two methods are presented and analyzed: active-set methods
and interior-point methods. The analysis is further leveraged by introducing two
condensing approaches and the situations in which they may be favorable. The
chapter shows how one can exploit the particular structure of the subproblems to
achieve significant speed-ups in solution times. The chapter also provides a concise
survey of the most recent real-time optimization algorithms, followed by a detailed
description of the real-time iteration (RTI) scheme, the algorithm underlying the
real-time NMPC controllers in the thesis. Finally, it describes the open-source
software packages that implement the RTI scheme used in this thesis.

Chapter 3 – Dynamic models This chapter is divided into two parts. The
first part quickly goes through the derivation of a nonlinear dynamic model of a
double inverted pendulum called Pendubot. The second part proposes a nonlinear
dynamic model of a quadrotor, including an initial discussion on the trade-off be-
tween the level of model complexity and the simplicity needed to design a controller.
It proceeds by stating some assumptions and then continues with a brief presenta-
tion of the coordinate system transformation, followed by explaining the forces and
moments acting on the quadrotor. It describes the rotor dynamic model, which is
crucial for building up two different sets of ordinary differential equations: one for
the Crazyflie nano-quadrotor and one for the MikroKopter quadrotor. In reliance on
the concepts built in the previous chapter and current one, all subsequent chapters
present the thesis’s main contributions.

Massimo Cefalo kindly provided the parameters for the Pendubot model, while the
parameters for the MikroKopter model were generously given by Gianluca Corsini.

Chapter 4 – Real-time NMPC for motion generation of a double inverted
pendulum The inverted pendulum stabilization principle has been translating a
myriad of motion generation problems in robotics up to now. These problems
drive some of the technological trends that, in turn, reveal where the use of this
principle may eventually lead. On these grounds, high-performance control in terms
of computational efficiency and motion quality becomes the key when trying to resize
the solution for any similar but high-dimensional system, such as walking or self-
balancing robots. To this end, this chapter describes the design and implementation
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of an efficient real-time NMPC to solve the swing-up problem of a double-inverted
pendulum, a more challenging robotic variant. The controller is implemented using
ACADO, a software package for dynamic optimization and control, implementing the
RTI scheme. The QP subproblems arising from the tailored OCP are solved with
the active-set method solver qpOASES, devised for real-time optimal control. The
NMPC controller is validated through real-world experiments, and the results reveal
that it is efficient enough to run in the microsecond range.

This chapter is based on the work published in [1]. The experiments were carried
out jointly with Giulio Turrisi, Valerio Modugno, and Massimo Cefalo in the DIAG
Robotics laboratory at Sapienza University of Rome.

Chapter 5 – An efficient real-time NMPC for quadrotor position control
under communication time-delay The advances in computer processor tech-
nology have enabled the application of NMPC to agile systems, such as quadrotors.
These systems are characterized by their underactuation, nonlinearities, bounded
inputs, and time-delays. This chapter presents the design and implementation of
an efficient position controller for quadrotors based on real-time NMPC with time-
delay compensation and bounds enforcement on the actuators. To deal with the
limited computational resources onboard, an offboard control architecture is pro-
posed. It is implemented using the high-performance software package acados,
which solves optimal control problems and implements an RTI variant of an SQP
scheme with Gauss-Newton Hessian approximation. The quadratic subproblems
in the SQP scheme are solved with HPIPM, an interior-point method solver built
on top of the linear algebra library BLASFEO, finely tuned for multiple CPU archi-
tectures. Solution times are further reduced by reformulating the QPs using the
efficient partial condensing algorithm implemented in HPIPM. The capabilities of the
architecture are demonstrated experimentally using the Crazyflie nano-quadrotor.

This chapter is based on the work published in [2]. Besides the detailed com-
parisons shown in the chapter, the author released an open-source ROS stack with
an efficient real-time NMPC as an additional contribution. It is readily available
at [3]. The experiments were carried out jointly with Tommaso Sartor and Andrea
Zanelli and with the generous help of Maximilian Ernestus, Benedikt Schleusener,
and Johan Vertens in the AIS arena at the University of Freiburg.

Chapter 6 – Real-time NMPC for quadrotor motion generation in dy-
namic environments Today’s robotics has shown many successful strategies to
solve several navigation problems. However, moving into a dynamic environment is
still a challenging task. This chapter presents a novel method for motion generation
in dynamic environments based on real-time NMPC. At the core of the approach is a
least conservative linearized constraint formulation built upon the RTI scheme with
Gauss-Newton Hessian approximation. It is demonstrated that the proposed con-
straint formulation is less conservative for planners based on Newton-type method
than for those based on a fully converged NMPC method. The approach is validated
in two simulated scenarios. First, the Crazyflie nano-quadrotor avoids balls and
reaches its desired goal despite the uncertainty about when the balls will be thrown.
Second, it successfully avoids all obstacles in a cluttered environment, reaching the
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goal without any constrain violation. The numerical results prove the theoretical
findings and illustrate the computational efficiency of the proposed scheme.

This chapter is based on the work published in [4].

Chapter 7 – Mixed-initiative control based on real-time NMPC for safe
human-quadrotor interaction This chapter presents a novel algorithm for blend-
ing human inputs and automatic controller commands, guaranteeing safety in mixed-
initiative interactions between humans and quadrotors. The algorithm is based on
NMPC and involves using the state solution to assess whether safety- and/or task-
related rules are met to mix control authority. The mixing is attained through the
convex combination of human and actual robot costs and is driven by a contin-
uous function that measures the rules’ violation. To achieve real-time feasibility,
the algorithm relies on the RTI scheme to cast the mixed-initiative controller. Its
effectiveness is shown through numerical simulations, where a second autonomous
algorithm is used to emulate the behavior of pilots with different skill levels. Simula-
tions show that the scheme provides suitable assistance to pilots, especially novices,
in a workspace with obstacles while underpinning computational efficiency.

This chapter is based on the work accepted for publication in [5].

Chapter 8 – Conclusions and future research The remarks on the given
contribution and the directions for future research are summarized.

1.2 Notation
In this thesis, we use R for the set of real numbers, and R+ for the non-negative ones.
The set of real-valued vectors of dimension n is denoted by Rn. Analogously, we
write Rn

>0 to denote the set of positive real-valued vectors of dimension n. The space
of quaternions is denoted by H. The set of matrices with n rows and m columns
is denoted by Rn×m. We use round brackets when presenting vectors and matrices.
Vectors are column vectors and we use the notation (x; y) to denote concatenation.
The operator x ≤ y is understood to be element-wise. We denote the gradient vector
∇f(x) ∈ Rn as column vector. Sometimes, for a symmetric positive-definite matrix,
we write A � 0. It is denoted by In the set of n× n identity matrices. An all-ones
vector of dimension n is denoted by 1n, whereas 0n denotes a n-vector of zeros.
When dealing with norms of vectors x ∈ Rn, we denote by ‖x‖ the Euclidean norm.
Denoted by ‖x‖2Q = xTQx is the weighted ℓ22-norm with positive-definite weighting
matrix Q ∈ Rn×n. The weighted ℓ1-norm is defined by µ‖x‖1, where µ ∈ Rn.
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Chapter 2

Real-time nonlinear model
predictive control

MPC is an advanced control method that involves the solution of a finite-dimension
optimization problem where the current state is used as the initial value to produce
the optimal control action at a given instant. The optimization problem is solved
using a dynamic model to forecast system behavior over a horizon shifted forward in
time in an online procedure that grants convenient robustness against disturbances.
Models are, therefore, crucial to every form of MPC [6]. For systems that can be
adequately described by linear models, LMPC has become the prevailing advanced
control method in the process industries [7]. Arguably this is due to its ability
to handle large-scale systems subject to physical and operational constraints with
reasonable computational complexity. As the optimization problem is parametric on
the initial value and the controls are piecewise affine, there is an affine dependence
between control and parameter. This allows one to precompute the feedback policy
for every point in the feasible parameter space, reducing the computational cost to
a search in a mapping table for the suitable critical region [8]. Although systems
in the robotics domain are most likely to have a nonlinear model, LMPC has still
been widely applied to various robots under the umbrella of simplified models (see,
e.g., [9, 10, 11, 12, 13, 14, 15]). The method press ahead in this domain mainly
because the underlying problems are typically quadratic or linear programs, known
to be convex, and for which there exist a plethora of mature numerical methods.

While the computational complexity of LMPC poses a modest challenge for cur-
rent processor technology, the complexity of NMPC undoubtedly limits its impact
across multiple domains due to the challenges associated with the online solution
of nonlinear nonconvex programs. Despite the difficulties, nonlinear models are
quickly becoming common as researchers hanker for high-accuracy control perfor-
mance, catapulting new software implementations. The results obtained in the early
years of nonlinear optimal control theory (from the 1950s to the 1980s), with the
well-founded formalizations [16] and [17], set off several academic studies in NMPC,
for instance, [18, 19, 20, 21, 22, 23, 24, 25]. There have been some attempts to advo-
cate NMPC as a viable control method in the process industries (see, e.g., [7, 26]).
In particular, domains characterized by sufficiently long sampling times, such as
chemical processing and oil refineries, have seen successful industrial applications of
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NMPC since the 1980s. As the computation times associated with the solution of
the underlying optimization problems can be rather long, the employment of NMPC
has only recently been extended to applications where shorter sampling times are
required [2]. The advances in numerical methods have enabled the development
of a mature class of optimization algorithms such as SQP and interior-point (IP)
methods. However, the real-time dilemma lies in the fact that while the SQP/IP
iterations are being performed, the physical system evolves, and the information
used to compute the control action becomes outdated [27]. This observation gives
rise to recent NMPC schemes that trade accuracy for speed to achieve real-time
feasibility. Underpinned by the progress in numerical methods that go back to the
1970s with LMPC, these approximate schemes can solve NMPC problems online ef-
ficiently, exploiting the inherent problem structure and reducing the computational
burden.

As the lag in computer processor technology was never a long-lasting issue to
stop new algorithms from being developed, this thesis aims at demonstrating that
NMPC is ready for use in the context of complex robotic systems. Due to their
strong real-time requirements, we rely on a successful approximate scheme known
as the RTI scheme to present practical realizations of NMPC for motion generation
in robotic systems. This chapter shows in detail the theoretical concepts needed for
applying real-time NMPC to this class of systems.

2.1 Preliminaries
In this thesis, we consider continuous-time dynamic models described by a first-order
ordinary differential equation (ODE)

ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0,∞), (2.1)

with initial condition
x(t0) = x0. (2.2)

Here, x ∈ Rnx and u ∈ Rnu denote the states and control inputs of the system
whose dynamics are described by f : Rnx × Rnu → Rnx , and whose initial state is
x0 ∈ Rnx .

For this ODE setting, we will state a continuous-time infinite-dimensional OCP
that minimizes a cost function of Bolza type∫ tf

t0

L(x(t), u(t))dt+ E(x(tf )), (2.3)

where L(x, u) is the stage cost, and E(x(tf )) is the terminal cost. The state and
control trajectories are defined on the time horizon of interest, i.e., ∀t ∈ [t0, tf ],
where tf is the horizon length. The OCP will also take into account the path
constraints

gl(t) ≤ g(x(t), u(t)) ≤ gu(t), ∀t ∈ [t0, tf ) (2.4)

and the terminal constraint

glf (t) ≤ gf (x(tf )) ≤ guf (t), (2.5)
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which must be satisfied for system (2.1) over the horizon.
This thesis aims at solving OCPs that typically arise in MPC where the current

state estimate x̄0 is considered a parameter. Thus, the OCP that we address is:

min
u(·)

1

2

∫ tf

t0

‖η(x(t), u(t))− η̃‖2Ws
dt+ 1

2
‖ηf (x(tf ))− η̃f‖2Wf

(2.6a)

s.t. x(t0)− x̄0 = 0, (2.6b)
ẋ(t)− f(x(t), u(t)) = 0, ∀t ∈ [t0, tf ), (2.6c)
xl(t) ≤ x(t) ≤ xu(t), ∀t ∈ [t0, tf ), (2.6d)
ul(t) ≤ u(t) ≤ uu(t), ∀t ∈ [t0, tf ), (2.6e)
gl(t) ≤ g(x(t), u(t)) ≤ gu(t), ∀t ∈ [t0, tf ), (2.6f)
glf (t) ≤ gf (x(tf )) ≤ guf (t). (2.6g)

Therein, the stage and terminal cost terms are of least squares type, characterizing
the so-called tracking objective. The positive-definite matrices Ws ∈ Rnη×nη and
Wf ∈ Rnη,f×nη,f are called weighting matrices. The output functions in the stage
and terminal cost terms are denoted by η : Rnx × Rnu → R, while ηf : Rnx → R
and variables η̃ ∈ Rnη and η̃f ∈ Rnη,f denote the time-varying references. For
simplicity, we explicitly divide the path constraints into: i) bounds on the states
(2.6d) and controls (2.6e), with given lower an upper bound values; ii) nonlinear
path constraints (2.6f).

To implement OCP (2.6) in an MPC fashion, one must also decide on a sampling
time ts with which it has to be solved. This choice must be a compromise between
a ts that is short enough to capture the evolution of the system’s fast dynamics
and long enough so that the necessary computations are carried out in time. In the
following, we wrap up the principle of MPC:

1. get the current state estimate x̄0 from measurements

2. solve in real-time the parametric optimization problem (2.6)

3. inject the first control u0 for time ts into the system

4. repeat 1-3 after sampling time ts
This principle is additionally illustrated in Figure 2.1, where the predicted state
trajectories and the optimized control inputs at a certain sampling time are shown.

2.2 Direct optimal control
As mentioned earlier, NMPC is a feedback control strategy based on the solution
of finite-horizon OCPs. There are three main classes of methods that one can use
to address continuous-time OCPs: (a) dynamic programming (DP), (b) indirect
methods, and (c) direct methods. Despite seemingly unrelated, these three classes
have much more in common than was initially thought. As we will see throughout
this chapter, the optimality conditions for many direct methods have a deep-seated
relationship with the early two. In the following, we briefly outline their derivation.
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Figure 2.1. Illustration of the model predictive control principle.

DP seeks a solution to the Hamilton-Jacobi-Bellman (HJB) equation [28], which
provides the necessary optimality conditions for continuous-time OCPs. The solu-
tion is related to the optimal cost of a value function, or cost-to-go function, which
satisfies the HJB partial differential equation but requires the enumeration of the
continuous state and control spaces for each sampled state. The solution is itera-
tively approached by first performing a backward recursion to compute all functions,
starting from the end of the sampled horizon, reducing the step by one until the
beginning of it, and then performing a forward recursion that selects the optimal
control action to the given state. This process allows the reconstruction of the opti-
mal trajectory through forward simulation, starting from the current state estimate,
thanks to Bellman’s principle of optimality, which alleges that each subtrajectory
of an optimal trajectory is an optimal trajectory as well. Advantages of DP include
the solution of the OCP up to global optimality, cheap forward simulations, and the
computation of a feedback control law in closed form and not just a trajectory. On
the other hand, if it shall be applied to systems with continuous state and control of
moderate dimensions – as commonly found in robotics – computational complexity
and memory requirements increase exponentially due to the large-scale state-space
tabulation. This issue is what Bellman called the curse of dimensionality.

Indirect methods use Pontryagin’s maximum principle [16] (also referred to
as the minimum principle when convenient) to set up the necessary optimality
conditions for continuous-time OCP. These conditions lead to the definition of a
multi-point boundary value problem (MPBVP), which is, in other words, a set of
differential-algebraic equations (DAEs) that are iterativelly solved, typically by a
Newton method. Here, the optimal trajectory can be reconstructed through forward
simulation once the initial value for the adjoint equations is known, a guesstimate
that is rather non-trivial. A great advantage of indirect methods compared to direct
methods (described next) is that they offer solutions with high accuracy, where
accuracy refers to the selected accuracy region of the applied integration method [29].
However, many drawbacks arise when they are employed in a practical context in
robotics. Some examples are: i) the need for expert knowledge on indirect methods;
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ii) the derivation of the MPBVP is often analytically tedious or intractable [30], iii)
the solution of the higher index DAE system itself is problematic; iv) the elimination
of all controls through algebraic manipulation before solving the MPBVP may not
always be straightforward or even possible.

Direct methods transcribe the continuous-time, infinite-dimensional OCP into
a finite-dimensional nonlinear program (NLP) for which the necessary optimality
conditions are set up and numerically solved using an NLP solver. While indirect
methods are sketched as first-optimize-then-discretize methods since the optimality
conditions are first written in continuous-time and then discretized, direct meth-
ods are instead sketched as first-discretize-then-optimize methods. In general, they
all rely on a piecewise constant parametrization for the control trajectory, while
the state trajectory is treated according to the discretization method employed.
Among the advantages of direct methods are their flexible implementation to dif-
ferent robotic systems classes and their rather upfront handling of inequality con-
straints. Disadvantages include that solutions are only locally optimal, and only
open-loop controls can be determined [29]. Two major discretization approaches
can be distinguished within the direct methods class: (a) sequential and (b) simul-
taneous. The direct single shooting is a sequential approach where the variable space
of the NLP is reduced by eliminating all states, except the initial one, through a
forward simulation. In this way, the optimization problem is solved in the space
of control parameters and initial state only [6], which confers an advantage to this
approach as the reduced problem has much fewer variables. However, because of
the usual long time-span associated with the numerical integration (from the be-
ginning until the end of the time horizon), the nonlinearity propagation tends to
increase, making direct single shooting not ideal for highly nonlinear or unstable
systems. To overcome this issue, direct multiple shooting is proposed by Bock and
Plitt [31]. At the price of a heavier computational demand, the time horizon is split
into a set of smaller intervals in a time grid (usually equidistant). Each interval
can be considered an independent single shooting approach with the addition of
continuity constraints. Direct multiple shooting is a simultaneous approach that
generally shows a much faster convergence. It is preferred for highly nonlinear or
unstable systems [32] as it avoids creating a very nonlinear map in the NLP opti-
mality conditions. Another successful simultaneous approach is direct collocation.
The approach’s key idea is to include the variables of all mesh points involved in
the numerical integration (states, their derivatives, and controls) as NLP variables.
In most cases, this idea is implemented using the orthogonal collocation method. In
particular, each state’s trajectory per interval, therein called collocation interval, is
approximated via Lagrange interpolation polynomial [33].

There are several reasons why this thesis believes in the employment of direct
methods to solve constrained OCPs arising in (N)MPC formulations for real-time
motion generation in robotic systems:

1. There is ample room for online strategies with direct methods. The necessary
optimality conditions provide a lot of information on how to approach the
solution. This information can be used to build online strategies that benefit
from the plethora of algorithms developed for real-time optimal control.
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2. Shooting methods render the initial NLP a block-structured NLP. Structure-
exploiting NLP solvers can leverage this particular structure to provide speed-
ups in solution times.

3. Direct methods tend to be more accurate as the grid becomes progressively
denser, making them suitable for applications requiring a moderate accuracy
solution.

Remark 1. In such applications, it is of paramount importance to find a
trade-off between computational efficiency and accuracy, as denser grids can
lead to unrealistic solution times.

For all reasons above, this thesis focuses on direct methods for addressing real-
time optimal control. More specifically, direct multiple shooting is the chosen ap-
proach.

2.2.1 Direct multiple shooting
The previous section established that this thesis would employ direct multiple shoot-
ing to address continuous-time OCPs. This means that OCP (2.6) will be tran-
scribed into a finite-dimensional NLP, which stands for a discrete-time approxi-
mation of the original problem. This section will focus on the parameterizations
required by direct multiple shooting, which will be used throughout this thesis.

Shooting intervals Let us first define an equidistant grid with N + 1 shooting
nodes

t0 < t1 < · · · < tN = tf , (2.7)
which split the prediction horizon into N shooting intervals, such that we have
the discrete-time step ∆t = (tN − t0)/N . Note that one can also consider a non-
equidistant grid.

Control parameterization As in most direct methods, the direct multiple shoot-
ing requires a finite-dimensional vector parameterization q ∈ Rnq for the control
trajectory u(t) ∀t ∈ [t0, tN ) defined on the time horizon of interest. To preserve
the inherent sparsity of the problem, we use a simple piecewise constant control
parameterization

u(π) = qi, π ∈ [ti, ti+1). (2.8)

State parameterization Direct multiple shooting considers the states si ≈ x(ti)
at the shooting intervals’ boundary points as NLP decision variables. Thus, the
approximation of the state trajectory x(π) at each shooting interval is the numerical
solution of the initial value problems (IVPs)

ẋ(π) = f(x(π), qi), x(ti) = si, π ∈ [ti, ti+1], (2.9)

for i = 0, . . . , N −1 and starting at x(0) = x̄0. To constraint the artificial degrees of
freedom introduced by the time horizon splitting, continuity constraints are imposed

si+1 = xi+1(ti; si, qi), i = 0, . . . , N − 1. (2.10)
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Therein, xi+1(·) denotes the numerical solution of function (2.9) given the value of
x(ti) = si. For convenience, we rewrite function (2.10) as

si+1 = F (si, qi), i = 0, . . . , N − 1, (2.11)

where F (·) represents the discrete-time system dynamics that will be used through-
out this thesis as the integrator. In particular, we use one step of explicit Runge
Kutta 4th order (ERK4) per shooting interval. Despite the practical appeal of the
Euler method (EM) due to its simplicity, high-order methods are preferred in this
thesis, as they converge faster given the moderate accuracy required by real-time
NMPC algorithms. Convergence is the property that indicates how fast an inte-
grator converges as N increases. A method is said to be convergent with order m
if si → x(ti) as N → ∞. In other words, for every ODE (2.1), with a Lipschitz
function f , and every t > 0

lim
N→∞

max
i=0,...,N

‖si − x(ti)‖ = O(∆tm). (2.12)

Suppose we want to simulate an ODE with a certain desired accuracy ε, considering
first- and fourth-order methods (e.g., EM and ERK4). It follows that to achieve
the accuracy ε, the fourth-order method needs four times less number of steps N
compared to the first-order method, even if a fourfold cost per RK step is required
which turns out to be significantly cheaper than the first-order method. This ex-
ample is also illustrated in Figure 2.2. This desirable property makes ERK4 a fast
and numerically stable candidate for an integrator in direct multiple shooting algo-
rithms if one works with short simulation times and nonstiff systems of ODEs. For
problems in which the system is known to be described by stiff ODEs a priori, the
reader is advised to use implicit integrators. We refer to the studies in [34, 35] for
detailed information about them.

Figure 2.2. Illustration showing that ERK4 is cheaper than EM for desired accuracy ε.
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Path constraints and terminal constraint For simplicity, the linear and non-
linear path constraints are defined on the same refined shooting grid

xli ≤ si ≤ xui , i = 1, . . . , N − 1, (2.13)
uli ≤ qi ≤ uui , i = 0, . . . , N − 1, (2.14)
gli ≤ Gi(si, qi) ≤ gui , i = 0, . . . , N − 1, (2.15)

which, in practice, often guarantees constraint satisfaction in-between shooting
nodes if a reasonable choice of the discretization step size is made. Moreover, the
terminal constraint is defined as

glN ≤ GN (sN ) ≤ guN . (2.16)

Nonlinear programming formulation After discretizing the cost function (2.6a)
on the same shooting grid, we obtain the large-scale but sparse NLP:

min
s0,...,sN ,
q0,...,qN−1

1

2

N−1∑
i=0

‖η(si, qi)− η̃‖2W +
1

2
‖ηN (sN )− η̃N‖2WN

(2.17a)

s.t. s0 − x̄0 = 0, (2.17b)
si+1 − F (si, qi) = 0, i = 0, . . . , N − 1, (2.17c)
xli ≤ si ≤ xui , i = 1, . . . , N − 1, (2.17d)
uli ≤ qi ≤ uui , i = 0, . . . , N − 1, (2.17e)
gli ≤ Gi(si, qi) ≤ gui , i = 0, . . . , N − 1, (2.17f)
glN ≤ GN (sN ) ≤ guN , (2.17g)

with state trajectory s := (s0, . . . , sN ) and input trajectory q := (q0, . . . , qN−1),
where si ∈ Rnx and qi ∈ Rnu . For convenience, variables Ws, Wf , g

l
f , g

u
f , η̃f , tf of

OCP (2.6) are renominated to W, WN , g
l
N , g

u
N , η̃N , N in NLP (2.17) respectively.

Figure 2.3 illustrates a continuous-time OCP solution using a discretization based on
the direct multiple shooting approach. The state trajectory becomes continuous only
when the NLP solution is reached, where the continuity constraints are enforced.

2.3 Nonlinear programming
To fully understand how to deal with the most general forms of real-time optimal
control problems, it is essential to have a thorough grasp of nonlinear optimization’s
theoretical concepts. To that end, we stack the optimization variables of NLP (2.17)
into a vector

w = (s0; q0; . . . ; qN−1; sN ), (2.18)
such that we have the following compact NLP:

min
w

φ(w) (2.19a)

s.t. G(w) = 0, (2.19b)
H(w) ≤ 0, (2.19c)
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Figure 2.3. Illustration of the direct multiple shooting approach. A numerical integrator
builds the simulations xi+1(ti; si, qi) for each interval [ti, ti+1]. In yellow the state
trajectory at the solution, where the continuity constraints are satisfied.

where φ : Rnw → R is the cost function, G : Rnw → Rng and H : Rnw → Rnh

represent the vectors that group equality and inequality constraints respectively.
Furthermore, we assume the following:

Assumption 1. Functions φ(w), G(w) and H(w) are twice continuously differen-
tiable.

2.3.1 Optimality conditions
When dealing with nonlinear programming for real-time optimal control problems,
one wants to know if a feasible point w̄ ∈ Ω satisfies the necessary optimality
conditions. In case it does satisfy these conditions, w̄ is a candidate local minimizer
for NLP (2.19). We proceed with some basic definitions.

Definition 1 (Feasible set). The feasible set Ω is the set that collects all points
satisfying the constraints

Ω := {w ∈ Rnw : G(w) = 0,H(w) ≤ 0}.

Definition 2 (Feasible point). The point w̄ ∈ Rnw is a feasible point iff the con-
straints

G(w̄) = 0, H(w̄) ≤ 0

are satisfied.

The points we are interested in are the feasible points that locally minimize the
cost function φ(w).

Definition 3 (Local minimizer). The point w⋆ ∈ Rnw is a local minimizer iff w⋆ ∈ Ω
and there exists a neighborhood N of w⋆ (i.e., an open ball around w⋆), so that

∀w ∈ Ω ∩ N : φ(w) ≥ φ(w⋆),

where φ(w⋆) is a local minimum.
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To verify whether w⋆ is a local minimizer or not, we need to characterize the set
N . This set, however, depends on the inequality constraints active locally.

Definition 4 (Active constraint). An inequality constraint is termed active at a
feasible point w̄ ∈ Ω iff

Hi(w̄) = 0.

Definition 5 (Active set). The active set is an index set

A(w̄) ⊂ {1, . . . , nh},

where the indices specify the inequality constraints that are active.

The concepts above are important because one can only state the first-order
necessary conditions (FONC) for optimality if a constraint qualification (CQ) is
established. Normally, the regularity concepts are referred to as QC and are formally
stated as follows.

Definition 6 (LICQ). The linear independence constraint qualification (LICQ)
holds at a feasible point w̄ ∈ Ω iff all vectors ∇Gi(w̄) for i ∈ 1, . . . , ng and ∇Hi(w̄)
for i ∈ A(w̄) are linearly independent.

If we stack all equality and inequality functions in a column vector, then the
LICQ becomes equivalent to the full-row rank Jacobian matrix

∇G̃i(w̄) =

(
∇Gi(w̄)

∇Hi(w̄)(i ∈ A(w̄))

)
. (2.20)

We now define the Lagrangian, an essential function in nonlinear optimization.

Definition 7 (Lagrangian function). The Lagrangian function for NLP (2.19) is
defined as

L(w, λ, µ) := φ(w) + λTG(w) + µTH(w).

We call the λ ∈ Rng and µ ∈ Rnh above Lagrange multipliers, or dual-variables.

To give further meaning to the Lagrangian, let us now formulate the famous
KKT conditions, derived initially by Karush [36], and Kuhn and Tucker [37].

Theorem 1 (Karush-Kuhn-Tucker (KKT) conditions). Let w⋆ be a local minimizer
of NLP (2.19) for which the LICQ holds. Then, there must exist Lagrange multiplies
λ⋆ and µ⋆ for which

∇wφ(w
⋆) +∇wG(w

⋆)λ⋆ +∇wH(w⋆)µ⋆ = 0 =: ∇wL(w, λ, µ) (2.21a)
G(w⋆) = 0 =: ∇λL(w, λ, µ) (2.21b)
H(w⋆) ≤ 0 =: ∇µL(w, λ, µ) (2.21c)

µ⋆ ≥ 0 (2.21d)
µ⋆iHi(w

⋆) = 0, i = 1, . . . , nh, (2.21e)

holds. If some (w⋆, λ⋆, µ⋆) satisfy the KKT conditions, then it is also a solution to
the primal and dual problems.
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Proof. See Section 12.3 in Nocedal and Wright [38].

In nonlinear optimization, Eq. (2.21a) denotes the stationarity condition, Eq.
(2.21b) and (2.21c) the primal feasibility, Eq. (2.21d) the dual feasibility, and Eq.
(2.21e) the complementary slackness. In particular, one obtains the so-called com-
plementarity conditions by lumping together the last three KKT conditions, i.e.,
(2.21c)–(2.21e). They define a nonsmooth L-shaped manifold in which µi and Hi

are allowed to live at the solution. When

A0(w
⋆) = {i : Hi(w

⋆) = 0, µ⋆i = 0}, (2.22)

we have the case of weakly active constraints, which is often not desirable due to
the nondifferentiability at the origin. Conversely, when

A+(w
⋆) = {i : Hi(w

⋆) = 0, µ⋆i > 0}, (2.23)

we have the case of strictly active constraints, a vital notion in nonlinear optimiza-
tion. Note that the active set at the solution is defined by the union of both sets,
i.e., A(w⋆) = A0(w

⋆) ∪ A+(w
⋆). Figure 2.4 illustrates all these cases.

Figure 2.4. Illustration of the nonsmooth µiHi(w) = 0 manifold resulting from the KKT
conditions.

Strict complementarity is, as we shall see in Section 2.3.3, a crucial concept
to ensure some key properties of numerical methods. It can be formally define as
follows.

Definition 8 (Strict complementarity). Let (w⋆, λ⋆, µ⋆) be a KKT point. Strict
complementarity holds at this KKT point iff all active constraints are strictly active.

This thesis is interested in solving strictly convex NLPs. In this particular case,
the KKT conditions are necessary and sufficient to ensure that there exists at most
one local minimizer of the optimization problem at hand. We refer to excellent
numerical optimization textbooks [39, 38, 40] for more details about general non-
convex problems, where complex second-order sufficient conditions (SOSC) can be
formulated.
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2.3.2 Sequential quadratic programming
An OCP with a quadratic cost function and linear constraints is called a quadratic
program (QP). These programs are of particular interest since they typically arise as
subproblems in many nonlinear optimization methods, such as in the SQP method.
The SQP method approximates the general NLP (2.19) by a QP through successive
linearizations of functions φ(w), G(w), and H(w). Starting with an initial guess
(w0, λ0, µ0), a full step SQP iteration is performed at each iteration k as follows:

wk+1 = wk+α∆wk, λk+1 = λk+α(λ
QP
k −λk), µk+1 = µk+α(µ

QP
k −µk), (2.24)

where α ∈ (0, 1] is the step length determined using a globalization strategy [38],
and (∆wk, λ

QP
k , µQP

k ) is the solution of the QP subproblem:

min
∆w

∇wφ(wk)
T∆w +

1

2
∆wTBk∆w (2.25a)

s.t. G(wk) +∇wG(wk)
T∆w = 0, |λQP (2.25b)

H(wk) +∇wH(wk)
T∆w ≤ 0. |µQP (2.25c)

Therein, ∇wG(wk) and ∇wH(wk) denote the constraint Jacobians, the matrix Bk

denotes the exact Hessian of the Lagrangian ∇2
wL(wk, λk, µk), and ∇φ(wk) is the

gradient of the cost function. This thesis will focus on SQP methods to solve strictly
convex problems resulting from real-time optimal control applied to robotic systems.
This is motivated by their warm-starting capabilities and because SQP methods can
satisfy the linearized versions of the inequality constraints (2.19c).
Assumption 2. Because in real-time optimization, the previous iterate generally
provides a sufficiently good initial guess to warm-start the subsequent problem, glob-
alization strategies such as trust-region [41], line-search [42], or filter methods [43]
are hereafter neglected. Therefore, we assume α = 1. This assumption will prove of
particular importance in the context of real-time NMPC algorithms in Section 2.5.

2.3.3 Newton-type optimization
Newton-type optimization can be interpreted as an SQP method where at each
iteration, the primal-dual iterate (∆w, λQP

k , µQP
k ) is found and used to warm-start

the subsequent QP subproblem. To comprehend this meaningful parity, let us first
regard the KKT conditions for the equality-constrained version of NLP (2.19) based
on Theorem 1

∇wφ(w) +∇wG(w)λ = 0 =: ∇wL(w, λ) (2.26)
G(w) = 0. =: ∇λL(w, λ) (2.27)

Given a continuously differentiable function R : Rnr → Rnr , z : (w, λ) 7→ R(z), we
aim to solve the nonlinear system of equations R(z) = 0 using Newton’s method.
We proceed by recursively generating a sequence of iterates {z}∞k=0, starting from
an initial guess z0. An exact Newton iteration, or Newton direction, at the current
iterate can be explicitly written as

∇zR(zk)

∆z︷ ︸︸ ︷
(z − zk) = −R(zk). (2.28)
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Applying (2.28) to the KKT conditions (2.26)–(2.27), we obtain the following exact
Newton iteration

(
∇2

wL(wk, λk) ∇wG(wk)
∇wG(wk)

T 0

)(
∆w
∆λ

)
= −

R(wk,λk)︷ ︸︸ ︷(
∇wL(wk, λk)
∇λL(wk, λk)

)
. (2.29)

Using the definitions in (2.26), the above system is equivalent to(
∇2

wL(wk, λk) ∇wG(wk)
∇wG(wk)

T 0

)(
w − wk

λ− λk

)
= −

(
∇wφ(wk) +∇wG(wk)λk

G(wk)

)
. (2.30)

Observe that contributions depending on the current multiplier λk cancel each other,
yielding (

∇2
wL(wk, λk) ∇wG(wk)
∇wG(wk)

T 0

)(
w − wk

λ

)
= −

(
∇wφ(wk)
G(wk)

)
(2.31)

and, hence,(
wk+1

λk+1

)
=

(
wk

0

)
−
(
∇2

wL(wk, λk) ∇wG(wk)
∇wG(wk)

T 0

)−1(∇wφ(wk)
G(wk)

)
. (2.32)

Note that, from one side, one can now compute the next multiplier λk+1 directly.
However, from another side, the exact Hessian matrix still carries the dependency
on λk. The last observation has motivated the development of a broader class of
Newton-type optimization approaches, where methods to approximate the Hessian
matrix Bk ≈ ∇2

wL(wk, λk) are considered. Using such an approximation, one ob-
tains a general Newton-type iteration or search direction as(

wk+1

λk+1

)
=

(
wk

0

)
−
(

Bk ∇wG(wk)
∇wG(wk)

T 0

)−1(∇wφ(wk)
G(wk)

)
. (2.33)

Newton-type optimization algorithms differ in how approximate the Hessian matrix
Bk in (2.33), a choice that has profound implications for local convergence and
computation time, as we will briefly describe below. In summary, we can observe
that Newton-type iterations in the KKT conditions (2.26)–(2.27) can be interpreted
as solving equality-constrained QP approximations of the original NLP for a given
fixed active set [38].

Hessian approximations

The difference between the exact Hessian and the Hessian approximation in the
KKT matrix, i.e., δbk = Bk −∇2

wL(wk, λk), determines the local convergence rate
on a Newton-type optimization algorithm based on the SQP method. Exact Hessian-
based SQP methods rely on the computation of second-order derivatives, i.e., Bk :=
∇2

wL(wk, λk), which can be rather expensive [44]. Their main advantage is that,
because of the more sophisticated Hessian matrix, they have a quadratic convergence
rate in a neighborhood of the optimal solution w⋆, when the iterate is sufficiently
close to w⋆.
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Definition 9 (Q-quadratic convergence rate). Assume wk ∈ Rnw , wk → w⋆ for
k → ∞. The sequence wk converges Q-quadratically if there exists a constant
Cq ∈ (0,∞) such that

lim
k→∞

‖wk+1 − w⋆‖
‖wk − w⋆‖2

≤ Cq.

Exact Hessian-based SQP was successfully employed to solve a time-optimal race
car driving problem in [45]. Other exact Hessian-based applications in the context
of robot motion generation are found in [46, 47].

Another widely used technique is based on Quasi-Newton Hessian update, par-
ticularly the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [38]. In this case,
Bk is iteratively approached by evaluating the Jacobian ∇wL at distinct points so
that the curvature information is retrieved, enabling the estimation of ∇2

wL(wk, λk)
at a considerably reduced computational cost. As the iterations proceed, the Hes-
sian approximation Bk becomes increasingly similar to the exact Hessian, i.e., Bk →
∇2

wL(wk, λk), in the relevant directions. In principle, the BFGS update technique
has a superlinear convergence rate in a neighborhood of the optimal solution w⋆.

Definition 10 (Q-superlinear convergence rate). Assume wk ∈ Rnw , wk → w⋆ for
k → ∞. The sequence wk converges Q-superlinearly if

lim
k→∞

‖wk+1 − w⋆‖
‖wk − w⋆‖

= 0.

However, in practice, the authors in [48] point out that this technique suffers from
fluctuating convergence rates due to jumps in the state, associated with external
noise. In these circumstances, the Hessian approximation proves to be poor, so that
many BFGS updates are needed to recover a reasonable convergence rate, making it
unadvisable in the context of real-time optimal control. Despite the drawback, it is
possible to find recent studies in which the BFGS update performed very favorably,
for example, in [49, 50, 51, 52].

In addition to the SQP methods based on the exact Hessian and BFGS update,
another widespread technique is the Generalized Gauss-Newton (GGN) method,
which we employ in this thesis. This technique grants a multiplier-free Hessian
approximation within the Newton-type optimization algorithm, relinquishing the
need for a good initialization. The GGN method is applicable when the cost function
explicitly takes the form of (nonlinear) least squares. To illustrate, let us rewrite the
cost function of the equality-constrained version of NLP (2.19) in a more general
form

φ(w) =
1

2
‖F(w)‖22, (2.34)

where F : Rnw → Rm is a smooth function called residual.
In the GGN method, the Hessian Bk is approximated by first-order derivatives,

i.e., Bk := ∇wF(wk)∇wF(wk)
T ≈ ∇2

wL(wk, λk), underpinned by the assumption
that nonlinearities are sufficiently small. In other words, given the exact second-
order derivative

∇2
wL(w, λ) = ∇wF(wk)∇wF(wk)

T +
m∑
i=1

Fi(w)∇2
wFi(w) +

ng∑
i=1

λi∇2
wGi(w), (2.35)
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Figure 2.5. Illustration showing the convergence rates of Newton-type optimization algo-
rithms in the neighborhood of the local minimizer w⋆.

the terms ∇2
wFi(w), ∇2

wGi(w) are ignorably small in practice. For a linear regression
model F(w) or small residual problems (with small residuals at the solution), the
GGN method performs well and with a linear convergence rate once the iterate wk

has fallen into a small neighborhood around the solution w⋆.
Definition 11 (Q-linear convergence rate). Assume wk ∈ Rnw , wk → w⋆ for k →
∞. The sequence wk converges Q-linearly if there exists a constant Cl ∈ (0, 1) such
that

lim
k→∞

‖wk+1 − w⋆‖
‖wk − w⋆‖

≤ Cl.

This is typically the case in tracking formulations of optimal control problems, where
the residuals at the solution tend to zero [48]. In principle, exact Hessian-based
SQP methods are expected to perform better than those with a Gauss-Newton
Hessian approximation due to the former’s sophisticated Hessian matrix. However,
in practical applications, where the current state estimate is highly corrupted by
noise, the Gauss-Newton Hessian approximation is preferred to the exact Hessian.
It turns out that, due to the increased noise, the inclusion of the second-derivative
term can be destabilizing if the model fits badly [53].

Because of its properties, much interest in the GGN method has been roused
in the robotics community; see, e.g., [54, 55, 56]. In [57, 4, 2], the GGN method
was considered in the underlying optimization problems arising in real-time NMPC
controllers. The interested reader can find a comprehensive review of the Gauss-
Newton Hessian approximation in [58]. Moreover, Figure 2.5 illustrates the outline
on local convergence rates in Newton-type optimization algorithms based on SQP
method. Detailed definitions are provided in [38].

Inequality constrained optimization

Newton-type optimization algorithms can be extended to the case where inequality
constraints need to be considered if one establishes a way to treat them in the KKT
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conditions (2.21) [48]. The advances in optimization strategies have enabled the
development of a mature class of optimization algorithms for this purpose. Among
others, two main classes of algorithms stand out: IP methods and SQP methods.

In IP methods, the idea is to substitute the complementarity condition (2.21e)
with a smooth approximation, typically a hyperbola µ⋆iHi(w

⋆)+τ = 0, i = 1, . . . , nh.
The barrier parameter τ > 0 is introduced in the KKT conditions so that for a
small value of τ , the L-shaped set is closely approximated by the hyperbola and
vice-versa. The resulting KKT system can be seen as a root-finding problem under
the form of R(z, τ) = 0 where the primal-dual solution (w⋆(τ), λ⋆(τ), µ⋆(τ)) is
iteratively approached by generating a sequence of positive barrier parameters for
which τ → 0. One can also interpret this problem as solving the KKT conditions
of a barrier problem, typically referred to as the primal barrier method or log-
barrier method. As the name suggests, the inequality constraints are handled by
adding a log-barrier term to the cost function, i.e., φ(w) − τ

∑nh
i=1 log(−Hi(w))

where τ penalizes the inequality constraints as they approach the boundaries of the
feasible set. IP methods have been successfully applied to solve motion generation
problems, including moving through narrow passages [59], motion refinement [60,
61], engineering design optimization for biomimetic robotics [62], and grasping force
optimization of multi-fingered robotic hands [63, 64]. One widespread and successful
implementation of an IP method is in the open-source code IPOPT [65], which is used
to solve general NLPs.

Conversely, SQP methods solve an inequality-constrained QP at each iteration,
resulting from the linearization of the original objective and constraint functions.
From the current perspective, to view this method as a Newton-type method, we
need to assume that strict complementarity holds in a neighborhood N of w⋆. Then,
if the SQP iterates wk are sufficiently close to w⋆, the solution of the equality-
constrained NLP with active constraints also satisfies the sufficient conditions of
the QP [66]. The fast local convergence, typical of Newton-type methods, can
also be observed in SQP methods. Unlike IP methods, which have not shown
any substantial benefit from a good initial guess as they work by following the
central path [67], the natural warm-starting capabilities of SQP methods make them
especially popular for embedded numerical optimization [68]. For these reasons, the
method remains a prominent candidate to solve many motion generation problems
such as gait generation for bipedal robots [69, 12], target chasing mission in cluttered
environments [70, 71], dynamic locomotion for quadruped robots [72, 15, 73], and
multi-robot motion optimization [74, 75].

The following section will provide a compact and, thereby, an incomplete overview
of how an inequality-constrained QP is actually solved. Although incomplete, the
section will present methods that will cover most cases of interest.

2.4 Tailored quadratic programming solvers for optimal
control

The fact that many robotics problems can be formulated as a QP has spurred
widespread use and development of SQP methods. However, the methods’ success
critically depends on efficient and reliable QP solvers, capable of capitalizing on
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warm-starts and handling QPs with an indefinite Hessian matrix. In this spirit,
researchers built up a substantial class of numerical algorithms for solving QP sub-
problems, such as dual Newton strategy, active-set method, and structure-exploiting
interior-point method. Yet, QP solvers are still a very active research area, and the
situation is not at all clear [66]. This is especially true in the context of real-time
optimal control, where the time available to solve a QP subproblem is rather tight.

This thesis is interested in fast solutions for QP subproblems arising from ap-
plying an SQP method to the direct multiple shooting-type NLP (2.17) with the
Gauss-Newton Hessian approximation. Given these considerations, the resulting
large and sparse QP subproblem reads as follows:

min
∆s0,...,∆sN ,
∆q0,...,∆qN−1

1

2

N−1∑
i=0

(
∆si
∆qi

)T

Bi

(
∆si
∆qi

)
+ φT

i

(
∆si
∆qi

)
+

1

2
(∆sTNBN∆sN ) + φT

N∆sN (2.36a)

s.t. ∆s0 = x̄0 − sk0, (2.36b)
∆si+1 −Ai∆si − bi∆qi − ci = 0, i = 0, . . . , N − 1, (2.36c)
xli − si ≤ ∆si ≤ xui − si, i = 1, . . . , N − 1, (2.36d)
uli − qi ≤ ∆qi ≤ uui − qi, i = 0, . . . , N − 1, (2.36e)
gli ≤ Gs

i∆si +Gq
i∆qi ≤ gui , i = 0, . . . , N − 1, (2.36f)

glN ≤ Gs
N∆sN ≤ guN , (2.36g)

where the state and control deviations are defined as ∆si = si − ski , ∆u = ui − uki
and the superscript k refers to the linearization point of the kth SQP iteration.
The linearization of the equality constraints in (2.17c) is defined by the first-order
sensitivities Ai := ∇sF (s

k
i , u

k
i )

T , bi := ∇uF (s
k
i , u

k
i )

T and the affine term ci :=
F (ski , u

k
i )−Ais

k
i − bis

k
i , responsible for triggering a first-order correction in the QP

(2.36). Similarly, Eqs. (2.36d)–(2.36f) denote the linearized path constraints, while
Eq. (2.36g) denotes the linearized terminal constraint. Finally, the stage Gauss-
Newton Hessian blocks are denoted by Bi for i = 0, . . . , N − 1, while the terminal
one is denote by BN .

The QP subproblem (2.36) has a particular block-structure that can be exploited,
yielding a reduced complexity solution in the number shooting intervals [32]. It is of
paramount importance to exploit this structure to obtain fast software implementa-
tions that may need to cope with resource-constrained hardware. For instance, one
can use structure-exploiting algorithms to reduce the memory footprint of general
QP solutions, especially as part of NMPC solutions.

This section reviews two different algorithms directly used in state-of-the-art
QP solvers targeting real-time optimal control. We present some approaches for
condensing the sparse QP and the situations where they may be favorable. We
show that these approaches are competitive within the context of real-time motion
generation, as they both benefit from rather recent research.
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2.4.1 Active-set quadratic programming solvers
Suppose that we are interested in solving a strictly convex QP written in the fol-
lowing compact form

min
w∈Rnw

1

2
wTBw + φTw (2.37a)

s.t. GTw + g = 0, (2.37b)
HTw + h ≤ 0, (2.37c)

where B � 0 is the Hessian matrix, and φ ∈ Rnw is a gradient vector. Active-set
methods were originally developed as extensions of the simplex method with the aim
of solving linear programming (LP) problems [76]. The main idea is to approximate
the subset of the active constraints A(w⋆), if we were to know it in advance, to a
working set W(w⋆) and directly solve the equality-constrained version of QP (2.37)

min
w∈Rnw

1

2
wTBw + φTw (2.38a)

s.t. g̃(w) = 0. (2.38b)

Here, for convenience the affine constraints are lumped together

g̃(w) =

(
GTw + g
HT

Ww + hW

)
, (2.39)

and the dependency on w⋆ is dropped. Since ∇g̃(w) is LICQ, there must exist a
regular point w satisfying the equality constraints (2.38b). This point is the solution
sought by the convex solver. Typically, the KKT conditions for this QP are set up

Bw + φ+Gλ+HWµW = 0 (2.40)
GTw + g = 0 (2.41)

HT
Ww + hW = 0 with µ = 0, (HTw + h) < 0 (2.42)

and solved using a Newton-type algorithm that generates a sequence of iterates
where the search direction is B G HW

GT 0 0
HT

W 0 0

 ∆w
∆λ
∆µW

 = −

 φ
g
hW

 . (2.43)

Suppose the working set is unknown a priori (which is often the case). If so, the
method iteratively refines it by changing one constraint at a time until the correct
active-set is estimated and the optimal solution is reached [32]. In fact, A is uniquely
defined at any feasible w, whereas there may be many choices for W. The delimita-
tion of the working set depends directly on the active-set method being employed
[77]. Most existing methods fall into three classes: primal, dual, and parametric
methods.

A conventional active-set method has two phases. In the first phase, a feasible
point is found while the cost function is ignored; in the second phase, the cost
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is minimized while feasibility is maintained [78]. The primal method (see, e.g.,
[38, 79, 78]) generates a sequence of feasible iterates for the primal inequalities, i.e.,
always satisfies (2.37c), until the dual inequalities are steered to zero, and an optimal
solution is obtained. Conversely, the dual method (see, e.g., [80, 78, 81]) maintains
the feasibility of the dual inequalities across iterations until primal inequalities are
satisfied, and hence an optimal solution is obtained.

Differently from its counterparts, the parametric method is a real-time variant
of the active-set method built on the expectation that the active set does not change
much from one QP solve to the other, which is similar to the idea in SQP methods.
More precisely, it is based on an affine-linear homotopy between a QP with a known
solution and the QP to be solved [82]. This method took inspiration from the explicit
or offline QP solution, but it was synthesized for the online context, e.g., real-time
NMPC applications, ducking the prohibitive offline computational cost. For this
reason, we now focus on its brief presentation.

Let τ ∈ [0, 1] parameterize the homotopy. We then rewrite QP (2.37) as the
one-parametric family of QP we want to solve

min
w(τ)∈Rnw

1

2
wT (τ)Bw(τ) + φT (τ)w(τ) (2.44a)

s.t. GTw(τ) + g(τ) = 0, (2.44b)
HTw(τ) + h(τ) ≤ 0. (2.44c)

Affine-linear gradients and constraints on the homotopy path are defined starting
at τ0 ∈ [0, τ1] and ending at τ1 such that

φ(τ) = (1− τ)φ(τ0) + τφ(τ1) (2.45)
g(τ) = (1− τ)g(τ0) + τg(τ1) (2.46)
h(τ) = (1− τ)h(τ0) + τh(τ1) (2.47)

hold. The central idea is to move along a homotopy path that traverses critical
regions towards the current QP subproblem solution. Advantages of using this
approach for real-time optimal control include: the first phase is unnecessary; the
sequence of optimal solutions for QPs can be prematurely terminated after every
partial step; the homotopy can be started at the current iterate towards the next [83].
These features will prove particularly valuable in Section 2.5. We refer the interested
reader to [83] for a detailed presentation of a parametric active-set method.

As our ultimate goal is to achieve real-time capabilities for NMPC controllers,
this thesis will use the open-source implementation of the parametric active-set
method qpOASES [84], which employs the null-space method and dense linear alge-
bra routines, in some of the proposed applications. It is worth mentioning that
because of the dense factorizations implemented in qpOASES, the solver is not ideal
for directly addressing the sparse QP (2.37). However, by eliminating the state vari-
ables using the so-called condensing approach [31], we can hand over a considerably
smaller but dense QP to the solver, resulting in significant speed-ups.

Full condensing

When condensing is employed to a QP subproblem resulting from the application
of direct multiple shooting, all state variables are eliminated through the continuity
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constraints. The condensed QP no longer has a multiple shooting block-structure.
Instead, it becomes similar in terms of variable space dimension and sparsity pattern
to the QP in the direct single shooting approach. At this point, one can use any
standard dense method for QP to approach the solution. Although the condensed
QP is solved in the reduced variable space Nnu rather than in the original space
(N + 1)nx + Nnu, the solution yet needs to be expanded to yield the original QP
solution. The fact that the iterations are still performed in the original QP space
constitutes the fundamental difference between this approach and the direct use of
single shooting in the control variables’ space [48].

Within an NMPC scheme, condensing must be performed at each sampling
instant, consuming a significant part of the available computation time. After
many years of thinking that the procedure’s computational complexity and memory
requirements grow with the prediction horizon length N as O(N3) [85], authors
[86, 87, 88] have shown algorithms for which they grow as O(N2). Yet condensing
is favorable if the problem’s horizon length N and control input dimension nu are
relatively small compared to the state dimension nx. One can note this more easily
through the block-structured Hessian matrix. In the original sparse QP, the Hessian
has N(nx + nu)

2 + n2x elements, while, in the condensed QP, it has (Nnu)
2. By

simple inspection, it becomes apparent that the sparse approach leads to a factor-
ization cost that is linear in N (O(N)), in contrast to the quadratic cost (O(N2))
exhibited by superior approaches. Therefore, employing condensing in unfavorable
circumstances can lead to an increase in memory footprint and solution times. The
reader is referred to [89] for a detailed comparison of condensing algorithms.

2.4.2 Structure-exploiting interior-point method solvers

The motivation for IP methods comes from the desire to find algorithms with better
theoretical properties than the simplex method [38]. Depending on the problem at
hand, the simplex method – here understood as the “active-set extension” – can lend
a rather poor performance or even fail. Unlike active-set methods that bear down
an optimal working set and, hence, a solution through many inexpensive iterations
starting at the boundary of the feasible set, IP methods approach a solution from its
interior. At the price of a more expensive iteration, the method works its way down
to an optimum and across the feasible set but never reaching its boundary. They
can be divided into two broad classes: primal barrier and primal-dual IP methods.

The primal barrier method, outlined in Section 2.3.3, consists of adding a loga-
rithmic term to the cost function to prevent feasible iterates from moving too close
to the feasible set boundary. In this way, iterates remain strictly feasible throughout
the process. This can be achieved by minimizing the cost using some Newton-type
algorithm that keeps the iterates strictly positive while ensuring a decrease at each
search direction. Such a method has been recently revisited in [90, 91, 92]. On the
other hand, the primal-dual method has distinguished itself as the most efficient
practical approach [38], becoming the basis for much of the current generation of
structure-exploiting QP solvers. Therefore, we focus on its concise presentation in
what follows.
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Let us consider a generic sparse QP in the form

min
w∈Rnw

1

2
wTBw + φTw (2.48a)

s.t. Gw = g, (2.48b)
Hw ≥ h. (2.48c)

In the primal-dual IP method, the inequality constraints (2.48c) are relaxed by
introducing slack variables s, leading to

s = Hw − h ≥ 0. (2.49)

Thus, the first-order necessary KKT optimality conditions read as

Bw + φ−GTλ−HTµ = 0 (2.50a)
−Gw + g = 0 (2.50b)

−Hw + h+ s = 0 (2.50c)
µisi = τ i = 0, . . . , nh (2.50d)

(µ, s) ≥ 0. (2.50e)

At every iteration, the primal-dual method finds the solution for KKT system (2.50)
through the employment of a Newton-type algorithm for which the search direction
is found by solving

B −GT −HT 0
−G 0 0 0
−H 0 0 I
0 0 M T



∆w
∆λ
∆µ
∆s

 = −


φ
g
h

Ms− τ1

 (2.51)

such that the inequalities (µ, s) ≥ 0 are strictly satisfied. Therein, M = diag(µ)
and T = diag(s).

Let us recall that, in the primal barrier method, the barrier parameter τ is
related to the log-barrier term, and it is steered towards zero as the iterations
approach the solution of (2.51) (see Section 2.3.3). In the primal-dual method, the
parameter τ > 0 defines the arc

C = {(w, λ, µ, s) : τ > 0} (2.52)

of strictly feasible points referred to as the central path. In a nutshell, it guides
the algorithm towards a solution along a track that, at the same time as enforces
(µ, s) > 0, steers the pairwise product µisi, i = 0, . . . . , nh to zero [38]. Unfortu-
nately, for IP methods, the previous optimization problem’s solution is not a good
initialization to the next because it typically lies at the boundary of the feasible
set [93]. These methods prefer starting points that enforce strictly feasibility of the
inequality constraints, which means starting sufficiently close to the central path.
For warm-start strategies in IP methods, we refer the reader to [67].

Most IP method solvers eliminate the slacks s and the Lagrange multipliers µ in
a preprocessing before the actual factorization [94]. The resulting system is nothing
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but the equality-constrained version of the KKT system (2.51)(
B +HTT−1MH −GT

−G 0

)(
∆w
∆λ

)
= −

(
φ−HT (T−1Mh− T−1(Ms− τ1)

g

)
.

(2.53)
The KKT system (2.53) can be interpreted as an equality-constrained QP for which
one can employ structure-exploiting routines on the dense submatrices to approach
the solution. For instance, [93] shows how an efficient Riccati block-elimination can
be applied to a suitably reduced version of system (2.53). An alternative approach
is presented in [95]. The Schur complement is used to procure a block-tridiagonal
matrix, with dense blocks of size nx×nx, which are later exploited using dense linear
routines. Later work proposes an efficient variant to the classical Riccati recursion
method that proves to be three times faster than the classical version, maintaining
the same accuracy [88].

IP method solvers’ exploitation capabilities make them great candidates to ad-
dress the robotic challenges of this thesis. The advances in high-performance solvers,
such as the high-performance interior-point method (HPIPM) [94], shed new light
on efficient real-time optimal control. HPIPM is an open-source code that imple-
ments an efficient primal-dual IP method in a modular fashion. The main feature
that distinguishes it from existing high-performance implementations of BLAS– and
LAPACK–like routines for embedded applications is the use of the hardware-tailored
linear algebra (LA) subroutines implemented in BLASFEO [96], optimized for small- to
medium-scale matrices. In addition to the solver itself, HPIPM implements condens-
ing and partial condensing routines. The second approach is of particular interest
in this thesis due to the potential performance improvement when combined with
the structure-exploiting solver in HPIPM for block-banded QPs.

Partial Condensing

A natural extension to the sparse and condensed approach is to combine the ad-
vantages of both. To this end, [97] proposes a technique to control the level of
sparsity in MPC problems specifically. It consists of introducing a new degree of
freedom in the MPC formulation to find the optimal sparsity level to the QP solver
at hand by trading-off horizon length for input vector size at each shooting interval.
Oppositely, the input vector size can be reduced at the price of a larger horizon
length through an operation called sequential update [89]. The motivation behind
partial condensing was the break in the sparse/dense dichotomy and the reduction
in flop counts within the QP solver by changing the problem dimensions [97]. For
the Riccati-based solver considered therein, it turns out that if roughly nx > nu,
reducing the horizon length leads to a reduction in the flop count, whereas if roughly
nx < nu, increasing the horizon length leads to a reduction in the flop count. In
the practical context of MPC, this means significant reductions in solution times.
Further investigations have found additional advantages in partial condensing that
cover speed-ups in convergence for some algorithmic schemes [98], and improved
efficiency of LA routines [99].

As in full condensing, partial condensing must be performed at each sampling in-
stant when applied to NMPC schemes. However, in the present case, solution times
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are expected to be reduced even further due to tailored LA subroutines. Particu-
larly in HPIPM, the solver performance increases rapidly for small- to medium-scale
matrices thanks to specific implementations in BLASFEO. The benefits realized from
the combination of the LA subroutines with the partially condensed QP arising
from an MPC formulation are significant. It turns out that there is a great advan-
tage in replacing many operations in very small matrices with fewer operations with
larger matrices, where LA subroutines can attain better performance [88]. As a re-
sult, the computational complexity grows with the prediction horizon N as O(N2).
Therefore, in this context, partial condensing allows better to exploit hardware
throughput for problems of such size.

2.5 Real-time iteration scheme for nonlinear model pre-
dictive control

Thus far, we know how to formulate continuous-time optimal control problems and
transcribe them into structured nonlinear programs that can be solved efficiently.
When dealing with NLPs such as (2.17) within a nonlinear optimization scheme, the
feasible state and control trajectory is found only at convergence. If these schemes
are solved in an NMPC fashion, one can call them a fully converged NMPC. However,
due to the non-negligible computational burden associated with their solution, it is
often necessary to use approximate feedback policies to achieve real-time feasibility.
This section will show that exploiting convex structures in nonlinear problems is
the key to reliable and fast algorithms. On a concise note, we will outline a few
algorithmic approaches in the domain of real-time optimization for NMPC that have
gained significant attention from researchers and practitioners. Immediately after,
we focus on describing the RTI scheme in detail.

Among many others, the continuation/generalized minimal residual (C/GMRES)
method by Ohtsuka [100] implements Newton’s method on the single shooting for-
mulation while treating inequalities in an IP-like style with a fixed barrier parameter
[101]. The advanced-step NMPC controller by Zavala and Biegler [102] performs IP
iterations until convergence and then implements a tangential predictor to compen-
sate for the computational delay. The algorithm continues with a correction step
based on the solution manifold’s linearization before applying the computed control
input to the system. Explicit MPC approaches use multiparametric programming
techniques to compute offline control actions given all possible states’ enumeration
so that online operations boil down to simple function evaluations [103, 104, 105].
Similar to DP (see Section 2.2), this approach is more suitable for systems with a
few states and controls. NLP sensitivity-based controllers represent an alternative
[106, 107, 108, 109, 110]. Several Newton-type controllers have been proposed to
reduce the feedback delay in NMPC [21, 111, 112, 113, 114, 115]. This thesis is
particularly interested in an efficient Newton-type algorithm for real-time NMPC
applications, originally developed by Diehl [116]: the so-called real-time iteration
(RTI) scheme.

The RTI scheme is an SQP variant that relies on the solution of a limited num-
ber of QP subproblems arising from direct multiple shooting and possibly with a
Hessian approximation, such as QP subproblem (2.36). More precisely, only one
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Algorithm 1: RTI with Gauss-Newton for NMPC at discrete-time k
Input: initial guess x[0] = (x

[0]
0 , . . . , x

[0]
N ), u[0] = (u

[0]
0 , . . . , u

[0]
N−1), k = 0

while true do
Preparation phase

1. call to the integrator (2.11) to obtain F (x
[k]
i , u

[k]
i ) and the first-order

sensitivities A[k]
i = ∇xF (x

[k]
i , u

[k]
i )T , b

[k]
i := ∇uF (x

[k]
i , u

[k]
i )T for

i = 0, . . . , N − 1.

2. linearize path and terminal constraints as in (2.36d), (2.36e),
(2.36f) and (2.36g).

3. evaluate the Gauss-Newton Hessian blocks
B

[k]
i = ∇F(x

[k]
i , u

[k]
i )∇F(x

[k]
i , u

[k]
i )T presented in Section 2.3.3.

4. optional: condense the sparse block-structured QP into a smaller
but dense QP using one of the condensing approaches discussed
in Section 2.4.1 and 2.4.2.

5. build QP (2.36) omitting the current state estimate x̄0.

6. wait until x̄0 is available.

Feedback phase

1. introduce x̄0 into the (possibly condensed) QP subproblem (2.36)
and solve it by computing the search direction (∆x,∆u) using a
tailored QP solver (see Section 2.4).

2. apply one full step SQP iterate x[k+1] = x[k] +∆x, u[k+1] = u[k] +∆u

(see Section 2.3.2), and send the new control input u[k+1]
0 to

the system.

3. increment k and shift the trajectories x and u forward in time.

end

linearization and QP solve are carried out per sampling instant, leading to an ap-
proximate feedback control policy. In this way, solution times can be drastically
reduced. Although only an approximate solution for (2.36) is obtained, the para-
metric manifold that describes the optimal solution q⋆(s) can be tracked, leading
to a feedback policy that, under suitable assumptions [117], achieves bounded sub-
optimality and preserves attractivity of equilibria.

The primary motivation behind the RTI scheme is to avoid iterating a problem
that becomes outdated as the system evolves but rather apply an approximate solu-
tion computed using the most up-to-date information. This motivation illustrates
the alleged real-time dilemma [27]. An important element in the RTI scheme is to
keep the current state estimate x̄0 as a constrained decision variable, which is often
referred to as initial value embedding. As presented in Algorithm 1, this property
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allows one to divide computations into a preparation and feedback phase, where the
former is typically more expensive. Also, it enables the integration of the dynamics
and the computation of first-order sensitivities without actually knowing the current
state estimate, as it enters in the optimization problem only via the trivial equality
constraint (2.36b) [32]. If the algorithm is initialized at a neighboring solution, this
constraint is readily satisfied by the first iterate and provides a good (first-order)
approximation of the solution manifold. One can show that when the initial value
embedding is combined with the Gauss-Newton Hessian approximation, one obtains
a multiplier-free, generalized tangential predictor, namely, one that can work across
active set changes [118].

A final and crucial element in the RTI scheme is the shifting initialization or
warm-start strategy. Suppose the horizon length is significantly short so that the
principle of optimality of subarcs (outlined in Section 2.2) does not hold, i.e., in
an NMPC framework. In that case, one can prove that subsequent optimization
problems may have very similar solutions [116]. Therefore, a rather natural way to
initialize subsequent problems is to warm-start them, that is, using the solution of
the previous iteration to initialize the current one. This is built on the expectation
that the actual state estimate x̄new

0 does not differ much from the first-order correc-
tion to the previous iterate’s optimal solution x̄new

0 ≈ s⋆ old
1 . Thereby, this strategy

has a very natural connection with the initial value embedding. Also, because of the
warm-start capability, local convergence and contraction rates [119, 120] are much
more relevant here than globalization strategies. For completeness, we refer to other
variants of the RTI scheme such as the multi-level iteration scheme [121, 122] and
the advanced step RTI [123].

Efficient implementations of real-time optimization methods have played a vi-
tal role in bringing NMPC to real-time applications. In this spirit, this thesis will
use the efficient implementations of the RTI scheme found in the open-source soft-
ware packages ACADO Toolkit [85] and acados [124]. Other successful examples of
real-time optimization packages with different methods are VIATOC [125], Control
Toolbox [126], MATMPC [127], and GRAMPC [128]. The remainder of this chapter will
present the features considered important in ACADO and acados. They will allow
us to write the OCPs associated with the motion generation problems we will deal
with. It is worth mentioning that the QP reformulations in the following sections
are introduced for notational convenience. Note that we rely on an explicit multiple
shooting notation to write QP subproblem (2.36). However, the use of shooting
techniques is typically taken for granted within the presented software packages.
Therefore, the QPs hereinafter are written directly in terms of states x, controls u,
and slack variables s in one of the cases.

2.5.1 ACADO Toolkit

The open-source software package ACADO Toolkit1 is dedicated to solving offline
dynamic optimization, parameter and state estimation problems, and online esti-
mation and MPC problems. It is written in C++ and implements the scheme in
Algorithm 1. It accounts with the so-called ACADO Code Generation Tool (CGT),

1http://acado.github.io

http://acado.github.io
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a feature to export an efficient, self-contained C code for real-time optimal con-
trol problems, which we use in this thesis. In ACADO, the OCP can be discretized
using the single or multiple shooting approach. The solution of the underlying
QP subproblems can be approached using one of the available solvers: qpOASES,
qpDUNES [129], FORCES [130] or HPMPC [131]. Condensing options include either the
classical O(N3) [31] or the superior O(N2) [87] condensing technique. There is a
large class of integrators for code generation, comprising implicit RK (IRK) and
ERK methods. Also, the RTI algorithm can be either based on the Gauss-Newton
Hessian approximation or the exact Hessian, as pointed out in [44]. We refer the
interested reader to the documentation [132] and some works related to the ACADO
Toolkit software [133, 32, 134] for more details. One can find many successful im-
plementations of real-time NMPC controllers for robotic applications using ACADO
in [135, 136, 137, 55, 138, 139, 140, 141, 142, 143, 1]. Alternatively, the authors
in [144] placed another layer on top of the C code generated by ACADO to make it
directly compatible with ARM-based embedded platforms.

Within this thesis’ scope, we deal with QP subproblems arising from applying an
SQP method to the direct multiple shooting type NLP (2.17) with Gauss-Newton
Hessian approximation and least squares tracking objective. Based on these choices,
the MPC-related QP formulation in ACADO reads as follows:

min
∆x0,...,∆xN ,
∆u0,...,∆uN−1

1

2

N−1∑
i=0

(
∆xi
∆ui

)T (
Qi Si
Si Ri

)(
∆xi
∆ui

)
+

(
qi
ri

)T (
∆xi
∆ui

)
+ (2.54a)

1

2
∆xTNQN∆xN + qTN∆xN (2.54b)

s.t. ∆x0 = x̄0 − xk0, (2.54c)
∆xi+1 −Ai∆xi −Bi∆ui − ci = 0, i = 0, . . . , N − 1, (2.54d)
dli ≤ Gx

i ∆xi +Gu
i ∆ui ≤ dui , i = 0, . . . , N − 1, (2.54e)

dlN ≤ Gx
N∆xN ≤ duN . (2.54f)

Therein, state and control deviations are defined as ∆xi = xi − xki , ∆ui = ui − uki
and superscript k denotes the linearization point for the states and inputs obtained
at the previous QP iteration. The sensitivities and the linearized equality and
inequality constraints are defined as

Ai := ∇xF (x
k
i , u

k
i )

T , Bi := ∇uF (x
k
i , u

k
i )

T ,

Gx
i := ∇xg(x

k
i , u

k
i )

T , Gu
i := ∇ug(x

k
i , u

k
i )

T ,

Gx
N := ∇xgN (xkN )T , ci := F (xki , u

k
i )−Aix

k
i −Biu

k
i ,

dli := gli −Gx
i x

k
i −Gu

i u
k
i , d

u
i := gui −Gx

i x
k
i −Gu

i u
k
i ,

dlN := glN −Gx
Nx

k
N , duN := guN −Gx

Nx
k
N .

(2.55)

The quadratic cost uses the exact gradients

qi = ∇x(η(x
k
i , u

k
i )− η̃ki )(η(x

k
i , u

k
i )− η̃ki )

ri = ∇u(η(x
k
i , u

k
i )− η̃ki )(η(x

k
i , u

k
i )− η̃ki )

qN = ∇x(ηN (xkN )− η̃kN )(ηN (xkN )− η̃kN )

(2.56)
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and the Gauss-Newton Hessian approximation:

Qi = ∇x(η(x
k
i , u

k
i )− η̃ki )W

x∇x(η(x
k
i , u

k
i )− η̃ki )

T

Ri = ∇u(η(x
k
i , u

k
i )− η̃ki )W

u∇u(η(x
k
i , u

k
i )− η̃ki )

T

QN = ∇x(ηN (xkN )− η̃kN )WN∇x(ηN (xkN )− η̃kN )T

(2.57)

withW x andW u denoting the blocks inW related to states and inputs respectively.

2.5.2 acados

The high-performance software package acados2 is the successor of ACADO. It has
been completely rewritten to include, as the name suggests, high-performance im-
plementations and state-of-the-art QP solvers. Unlike its predecessor, the auto-
matic code generation is not necessary anymore. Yet efficiency is not affected as
computationally intensive LA operations are performed using the high-performance
BLAS/LAPACK library BLASFEO. Moreover, the CasADi [145] modeling language
has been incorporated into the high-level interfaces of acados to generate nonlinear
functions and sensitivities conveniently.One additional benefit of using CasADi is
that it generates shorter instruction sequences and smaller (typically faster) code,
more suitable for embedded applications [124]. The acados core library is written
in C and implements the scheme in Algorithm 1 and other SQP-like methods in a
modular fashion, as we will see next.

Nonlinear OCPs are discretized using multiple shooting to avoid the convergence
problems common in single shooting formulations. The resulting QP subproblems
can be solved using one of the several QP solvers present in the OCP QP and Dense
QP modules, say: qpDUNES, HPMPC, OSQP [146], qpOASES, HPIPM, or OOQP [147]. The
Condensing module provides efficient implementations of full and partial condensing
routines O(N2) [99]. The Simulation module contains IRK and ERK integrators,
as well as novel implementations that cover lifted collocation integrators [148] and
the structure-exploiting IRK algorithm, called GNSF-IRK scheme [149]. As for the
Hessian approximations, a full-step SQP method is available in the OCP NLP mod-
ule with different algorithmic choices, such as Gauss-Newton Hessians, sequential
convex quadratic programming (SCQP) [150], and exact Hessians with regulariza-
tion/convexification. We refer the reader to [124] for more detailed information
about the acados software.

At the time of writing, acados was heavily under development to include, as
mentioned earlier, the latest algorithmic and software implementations, e.g., new in-
tegration, condensing and Hessian approximation algorithms, as well as QP solvers.
As a result, few studies have effectively implemented real-time NMPC controllers
tailored to robotic applications [151, 2, 4, 5] with the package. In particular, the
authors in [152] deployed the NMPC controller directly on a Cortex-A9 CPU run-
ning at 800 MHz onboard a human-sized quadrotor. The reader should be aware
that the majority of these studies come from the applications presented in Chapters
5, 6 and 7 of this thesis.

2https://github.com/acados/acados

https://github.com/acados/acados
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Under the same considerations for the QP subproblems in ACADO, the equivalent
QP formulation in acados reads as follows:

min
∆x0,...,∆xN ,

∆u0,...,∆uN−1,
s0,...,sN

1

2

N−1∑
i=0

(
∆xi
∆ui

)T

Hi︷ ︸︸ ︷(
Qi Si
Si Ri

)(
∆xi
∆ui

)
+

(
qi
ri

)T (
∆xi
∆ui

)
+ (2.58a)

1

2
∆xTNQN∆xN + qTN∆xN+ (2.58b)

1

2
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sui
1

T Z l
i 0 zli
0 Zu

i zui
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T
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T 0

sli
sui
1

+ (2.58c)

1

2

slNsuN
1

T Z l
N 0 zlN
0 Zu

N zuN
zlN

T
zuN

T 0

slNsuN
1

 (2.58d)

s.t. ∆x0 = x̄0 − xk0, (2.58e)
∆xi+1 −Ai∆xi −Bi∆ui − ci = 0, i = 0, . . . , N − 1, (2.58f)
si +Gx

i ∆xi +Gu
i ∆ui ≤ 0, i = 0, . . . , N − 1, (2.58g)

sN +Gx
N∆xN ≤ 0, (2.58h)

0 ≤ si, i = 0, . . . , N. (2.58i)

The linearized dynamics and inequality constraints use the following matrices:
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i u
k
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k
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(2.59)

Similarly, the quadratic cost uses the exact gradients qi, ri, qN and the Gauss-
Newton Hessian approximation Hi as defined in Eqs. (2.56) and (2.57). Different
from ACADO, slack variables s are introduced and associated with the path con-
straints sli, sui ∈ Rns , and the terminal constraints slN , suN ∈ Rns,N in acados. The
symmetric ℓ2 slack penalties for the stage and terminal cost are denoted by Z l

i , Z
u
i

and Z l
N , Z

u
N , respectively. Likewise, the symmetric ℓ1 slack penalties are denoted

by zli, zui and zlN , z
u
N . Note that not all QP solvers present in acados can directly

deal with slack variables. For those that do not, slack variables are reformulated as
extra input variables [124].

2.6 Chapter summary
This chapter gave a detailed overview of the necessary theoretical foundations for
real-time NMPC. It began by stating the class of dynamic systems and the corre-
sponding optimal control problem formulation this thesis addresses. The treatment
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of the resulting optimization problems was considered next, introducing the theory
related to direct methods that recall concepts of nonlinear programming. Such prob-
lems are, in general, difficult to solve in real-time. This observation motivated the
discussion about structure exploitation on QP subproblems, followed by a presenta-
tion of the numerical algorithms embedded in two efficient QP solvers. Afterward,
the chapter provided a survey on online algorithms for real-time NMPC, describing
the chosen method in detail – the well-established RTI scheme. It finished with
a discussion of the RTI scheme’s implementation as part of the software packages
ACADO Toolkit and acados, forming the algorithmic frameworks for the subsequent
chapters.
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Chapter 3

Dynamic models

3.1 Double inverted pendulum
This section presents the dynamic model of a double inverted pendulum called
Pendubot, schematically illustrated in Figure 3.1. It is a two-link underactuated
planar robot that has been widely used across the field of nonlinear control. Unlike
the Acrobot, which has the actuation at its elbow, the Pendubot is driven at its
shoulder joint. Let us now go through the derivation of its dynamic model, reaching
the ODEs that will be the basis for the controller design.

3.1.1 Dynamic model
The Pendubot dynamic model can be derived through the Euler-Lagrange equations
of motion, which leads to a set of second-order ODEs of the form

M(q)q̈ + C(q, q̇) +G(q) = τ, (3.1)

where q = (q1, q2) ∈ R2 is the vector containing the joint angle positions. Eq. (3.1)
makes use of the symmetric positive-definite generalized mass matrix

M(q) =

(
m11 m12

m21 m22

)
(3.2)

m11 = m1a
2
1 +m2(l

2
1 + a22 + 2l1a2 cos(q2)) + J1 + J2 + Jm

m12 = m21 = m2(a
2
2 + l1a2 cos(q2)) + J2

m22 = m2a
2
2 + J2,

(3.3)

generalized stiffness vector

C(q, q̇) =

(
−m2l1a2 sin(q2)q̇22 − 2m2l1a2 sin(q2)q̇1q̇2

m2l1a2 sin(q2)q̇21

)
, (3.4)

generalized gravitational vector

G(q) =

(
(m1a1 +m2l1)g cos(q1 + π/2) +m2a2g cos(q1 + π/2 + q2)

m2a2g cos(q1 + π/2 + q2)

)
, (3.5)
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Figure 3.1. Schematic of the Pendubot coordinate system.

and generalized input vector

τ =

(
u
0

)
(3.6)

due to an external input torque u. Therein, g ∈ R+ denotes the gravitational
acceleration, Ji ∈ R+ and mi ∈ R+ are the inertia moment and the mass of the
ith link, respectively, li ∈ R+ represents the length of the ith link, and ai is the
distance between the center of mass (CoM) of the ith link and the center of the ith
joint. Denoted by Jm ∈ R+ is the rotor inertia. Note that the joint position q1 is
measured with respect to the upwards vertical axis, while the angle q2 is defined
relative to the first joint, as depicted in Figure 3.1.

Nonlinear dynamics

If we solve Eq. (3.1) for q̈, we obtain(
q̈1
q̈2

)
=M(q)−1τ −M(q)−1C(q, q̇)−M(q)−1G(q), (3.7)

which corresponds to the Pendubot state equations whose frictionless nonlinear
dynamics we describe as

ẋ = fp(x, u) =


q̇1
q̇2
q̈1
q̈2

 . (3.8)

The state is defined by x := (q1, q2, q̇1, q̇2) ∈ R4, and the control input is the rotor
torque u ∈ R at the shoulder joint.
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3.1.2 Physical parameters
Accurate values for physical parameters are the key to creating a model that cor-
rectly describes a system’s behavior and allows for superior control performance.
The Pendubot model uses the parameters of the Quanser1 platform available in the
DIAG Robotics lab. They are presented in Table 3.1.

Table 3.1. Physical parameters for the Pendubot

Parameter Value Description
m1 0.193 kg total mass of link 1
l1 0.1483 m length of link 1
a1 0.1032 m distance to the center of mass of link 1
J1 3.54 ·10−4 kg·m2 inertia moment of link 1
m2 0.073 kg total mass of link 2
l2 0.1804 m length of link 2
a2 0.1065 m distance to the center of mass of link 2
J2 2 ·10−4 kg·m2 inertia moment of link 2
Jm 4.74 ·10−4 kg·m2 rotor inertia

3.2 Quadrotor
This section introduces the dynamic model of a quadrotor. Several models have
been proposed to describe a mathematical function that accurately captures the
physical reality and, at the same time, can be used in the controller design proce-
dure. But as the quadrotor dynamics uncover different characteristics according to
the flight mission, – e.g., hovering, vertical/longitudinal/lateral motion, acrobatic
maneuvers, etc. – one has to evaluate such a trade-off from the task’s perspective.
This assessment dictates the initial assumptions for the model derivation.

According to the literature, these models fall into two popular categories: force-
moment approach and single-rotor thrust approach. They both have in common
a system with four control inputs whose manipulation allows the control of out-
put states resulting from translational and rotational dynamics. The force-moment
approach defines the relationship between the output states and the total thrust
force, rolling moment, pitching moment, and yawing moment. Authors [153, 154]
use this approach in their modeling. Simplistic assumptions proved approximately
sound as they deal with trajectory tracking at low speeds. Bounds on forces and
moments were also considered, reflecting the control input limitations. In the single-
rotor thrust approach, the output states relate to the balance of forces and moments
around the quadrotor’s CoM, which typically depends on gravity and the individual
thrust force generated by each rotor. This approach was employed in the modeling

1https://www.quanser.com/solution/robotics/

https://www.quanser.com/solution/robotics/
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Figure 3.2. Schematic of the Crazyflie coordinate system.

of [46], where the task therein involves a high-speed 3D motion in an unknown
environment, thus requiring the incorporation of aerodynamic effects. Analogously,
[155] use this approach to model a quadrotor whose task is to move in a cluttered
and unknown environment where physical and operational constraints are also con-
sidered.

Given these considerations, this thesis is interested in models that capture the
quadrotor’s physical limitations since they can be treated explicitly in the NMPC
formulation. Thus, we opt for a quadrotor model that includes the rotor dynamics
to impose more realistic constraints while maximizing gains due to a more accurate
representation. This model also fits the type of tasks the thesis is interested in,
mainly requiring low-speed 3D motions.

This section will use a top-down approach, starting with the rigid body dynamics,
investigating the forces and moments acting on the quadrotor, and finally analyzing
the rotor dynamics.

3.2.1 Coordinate frames

The first step to obtaining the quadrotor dynamic model is to define the coordi-
nate frames. Two right-hand frames are used: an inertial frame, centered on {I}
and pointing towards North, West, and Up (NWU); and a body-fixed frame {B}
located at the quadrotor’s CoM and aligned with {I}, as shown in Figures 3.2
and 3.3. The quadrotor has position p = (x, y, z) ∈ R3 expressed in {I}, attitude
q = (qw, qx, qy, qz) ∈ H with respect to {I}, linear velocity vb = (vx, vy, vz) ∈ R3
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Figure 3.3. Schematic of the MikroKopter coordinate system

expressed in {B}, and angular rate ω = (ωx, ωy, ωz) ∈ R3 expressed in {B}. The
four rotors are numbered as indicated in the figures. The rotational speed of the
propellers is denoted by Ω = (Ω1,Ω2,Ω3,Ω4) ∈ R4, while the rotor torques are
denoted by τ = (τ1, τ2, τ3, τ4) ∈ R4.

3.2.2 Dynamic model
Before proceeding, we first list several general assumptions that will allow us to
simplify the model. Although they are not perfectly valid on the real platforms of
this thesis, they provide sufficiently good approximations.

• The quadrotor is a rigid body.

• The quadrotor is symmetric in its geometry, mass, and propulsion subsystem.

• The rotor’s flapping effect is neglected.

• Nonlinearities of the battery will be neglected.

• The ground effect is neglected during take-off and landing.

• All rotors have the same time constant.

When working with vectors expressed in different coordinate frames, it is impor-
tant to pass from one frame to another. The rotation of any point in the Euclidian
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3D space can be represented by a sequence of three single rotation matrices around
the Euler angles,

Rx(ϕ) =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 , Ry(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , (3.9)

Rz(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 .

Based on that, we can define a rotation matrix from {I} to {B} using their combi-
nation. This thesis uses the sequence Rx(ϕ) → Ry(θ) → Rz(ψ), corresponding to
the matrix product R = Rz(ψ)Ry(θ)Rx(ϕ). The result is

R =

cosψ cos θ cosψ sinϕ sin θ − cosϕ sinψ sinϕ sinψ + cosϕ cosψ sin θ
cos θ sinψ cosϕ cosψ + sinϕ sinψ sin θ cosϕ sinψ sin θ − cosψ sinϕ
− sin θ cos θ sinϕ cosϕ cos θ

 ,

(3.10)
where ϕ, θ, and ψ represent the roll, pitch, and yaw angles, respectively. Note that
due to the orthogonality property of R, its inverse is identical to its transpose, i.e.,
R−1 = RT . On another note, when θ = π/2, we lose one degree of freedom in the 3D
space due to the gimbal lock phenomenon. In particular, the gimbals ϕ and ψ start
spinning on the same plane, creating an ambiguity: one notation may represent
two orientations. One way to dodge this ambiguity is to use unit quaternions to
represent the attitude instead of Euler angles.

Quaternion is a quadrinominal expression composed of one term called the real
part and the three others called the imaginary part [156]: q = (qw, qx, qy, qz). Due
to their “all-attitude” capability and numerical advantages [157], unit quaternions
are now widely used in robotics to represent a rotating body’s attitude. One can
state their relation with the Euler angles representation as:

q =


cos(ϕ/2) cos(θ/2) cos(ψ/2) + sin(ϕ/2) sin(θ/2) sin(ψ/2)

−(cos(ψ/2) cos(θ/2) sin(ϕ/2)− sin(ψ/2) sin(θ/2) cos(ϕ/2))
−(cos(ψ/2) sin(θ/2) cos(ϕ/2) + sin(ψ/2) cos(θ/2) sin(ϕ/2))
−(sin(ψ/2) cos(θ/2) cos(ϕ/2)− cos(ψ/2) sin(θ/2) sin(ϕ/2))

 , (3.11)

where it should be noted that ‖q‖ = 1 at all times. One can also use quaternions to
rotate a Euclidean vector, in the same way that one uses R, thanks to the following
relation:

S =

2(q2w + q2x)− 1 2(qxqy + qwqz) 2(qxqz − qwqy)
2(qxqy − qwqz) 2(q2w + q2y)− 1 2(qyqz + qwqx)

2(qxqz + qwqy) 2(qyqz − qwqx) 2(q2w + q2z)− 1

 . (3.12)

The above expression corresponds to the rotation matrix from {I} to {B} in terms
of unit quaternions, which inherits the same orthogonality properties of R. This
thesis will mostly use unit quaternion for attitude representation. However, we will
see in the coming chapters that, according to the motion generation problem we will
be attempting to solve, the Euler angles representation can be more straightforward
than unit quaternions when it comes to tracking the quadrotor’s attitude.
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Translational dynamics

According to Newton’s 2nd law, the sum of forces in the inertial frame is

Fr = mv̇, (3.13)

where m is the quadrotor’s mass, and v its linear velocity. To make the derivation
more intuitive, let us now consider the sum of forces directly in the body-fixed frame,
where the Coriolis effect appears, yielding the following equation:

Fr = m(v̇b + ω × vb). (3.14)

The resulting force Fr establishes the relation between the propellers’ aerodynamic
forces and the weight force projected onto the body-fixed frame. One can formally
write this force balance as 0

0
Fz

− S

 0
0
mg

 = m

v̇xv̇y
v̇z

+

ωx

ωy

ωz

×

vxvy
vz

 , (3.15)

where g is the gravitational acceleration. If we solve for v̇b, we obtain

v̇b =

 0
0

Fz/m

− S

0
0
g

−

ωx

ωy

ωz

×

vxvy
vz

 , (3.16)

which is the first set of state-space variables associated with the translational dy-
namics. To determine the second set, we need to project the vector vb onto the
inertial frame to obtain the quadrotor’s velocity in this coordinate frame, which
leads us to

ṗ = ST

vxvy
vz

 . (3.17)

Each propeller produces a force along z′ that is used for lift. The net force cre-
ated by the propellers’ rotation through the viscous air and applied to the quadro-
tor’s CoM is

Fb =

 0
0
Fz

 , (3.18)

where Fz is referred to as the total thrust. It is widely known that, for a given rotor
j = 1, . . . , 4, the thrust force Tj depends quadratically on the propeller’s rotational
speed

Tj = CTΩ
2
j . (3.19)

The thrust coefficient CT ∈ R+ is usually large, indicating that the propeller turns
much more slowly than the driving rotor. The total thrust can then be expressed
in terms of the propeller’s rotational speed as

Fz =
4∑

j=1

Tj = CT

4∑
j=1

Ω2
j . (3.20)
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Rotational dynamics

Similar to the reasoning applied to the translational dynamics, the sum of moments
(torques) in the inertial frame is the derivative of the angular momentum in the
rotational case

Mr = L̇, (3.21)
with L being the angular momentum around the quadrotor’s center of gravity (CoG).
Expressing this sum of moments in the body-fixed frame and acknowledging the
Coriolis effect gives us

Mr = Jω̇ + ω × Jω, (3.22)
where J � 0 denotes the quadrotor’s moment of inertia tensor. It is calculated with
respect to its CoM and is given by

J =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 . (3.23)

If we solve Eq. (3.22) for ω̇, we obtain

ω̇ = J−1

Mx

My

Mz

−

ωx

ωy

ωz

× J

ωx

ωy

ωz

 , (3.24)

which stands for the first set of state equations in the rotational case. The second
set comes from the derivative of a time-varying quaternion

q̇ =
1

2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0



qw
qx
qy
qz

 (3.25)

or the relationship between the instantaneous rates of change of γ := (ϕ, θ, ψ) and
the instantaneous components of ω

γ̇ =

E︷ ︸︸ ︷0 0 1/ cos(θ)
0 1/ cosψ − tanψ tan θ
1 tanψ − tan θ/ cosψ

ωx

ωy

ωz

 , (3.26)

depending on the chosen attitude representation.
To calculate the net moment applied to the quadrotor’s CoM, we need to know

the rotation direction of each rotor. Figures 3.2 and 3.3 show that the Crazyflie
and the MikroKopter have different arrangements for the rotors. Therefore, we
explicitly regard two distinct net moments.

Due to the angular momentum’s conservation, each propeller generates a mo-
ment that opposes its rotation direction. Thus, the net moment resulting from
aerodynamics (the combination of produced rotor forces and air resistance) for the
Crazyflie is

cMb =

Mx

My

Mz

 =

CT · l(−Ω2
1 − Ω2

2 +Ω2
3 +Ω2

4)
CT · l(−Ω2

1 +Ω2
2 +Ω2

3 − Ω2
4)

CD(−Ω2
1 +Ω2

2 − Ω2
3 +Ω2

4)

 . (3.27)
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In contrast, for the MikroKopter is

mMb =

Mx

My

Mz

 =

 CT · l(Ω2
2 − Ω2

4)
CT · l(Ω2

3 − Ω2
1)

CD(Ω
2
1 − Ω2

2 +Ω2
3 − Ω2

4)

 . (3.28)

Therein, l ∈ R+ represents half of the distance between rotors for the Crazyflie, and
the arm length for the MikroKopter, CD ∈ R+ is the drag coefficient. The reaction
moment, due to rotor drag, acting on the body-fixed frame and generated by each
propeller can be modeled as

Mj = CDΩ
2
j . (3.29)

This differential equation pits the moment (torque) delivered by the rotor against
a quadratic-drag type loss, which depends on the propeller’s rotational speed.

Rotors

From Eqs. (3.20), (3.27) and (3.28), one realizes that a high-performance attitude
and position control directly implies a high-quality control at the propeller speed
level, which in turn is related to the rotor torque. Most medium-sized quadrotors,
such as the MikroKopter, are equipped with brushless DC (BLDC) motors whose
back electromotive force (back EMF) is used to perform rotor commutation and high-
frequency pulse width modulation (PWM) to control rotor voltage [158]. This thesis
considers single-input control at the rotor torque level, similar to more sophisticated
schemes

τ = DΩ+ JmΩ̇ + τL, (3.30)

to achieve improved performance in medium-sized quadrotors. In Eq. (3.30), τ ∈ R
is the electromagnetic torque, D ∈ R+ is the damping coefficient, Jm ∈ R+ is
the total moment of inertia that includes: the transmission system inertia, the load
inertia w.r.t. the rotor shaft, and the rotor inertia. Finally, τL is the torque required
to drive the load w.r.t. the rotor shaft, i.e., the torque of the jth propeller τL =Mj .
If we plug Eq. (3.29) into (3.30) and solve for Ω̇, we obtain the ODE representing
the rotor dynamics

Ω̇ =
1

Jm
(τ − CDΩ

2 −DΩ). (3.31)

The current supplied by the batteries ultimately limits control performance at
the rotor level [158]. Classic PID and linear quadratic regulator (LQR) controls
are agnostic to this physical limitation, requiring the introduction of saturation to
keep the rotor torque within its operating range. Unfortunately, when a feedback
control system’s operating point happens to be in the saturation range, a change
in the input does not cause any change in the output. In other words, the system
behaves exactly as in open-loop condition, and no control is available [159]. This
physical limitation does not represent a challenge for an NMPC controller since
rotor torques end up being explicitly regarded as bounded control inputs in the
optimization problem, as we will see next.
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Nonlinear dynamics

Having already assessed the forces and moments acting on a quadrotor, we will now
assemble the nonlinear models for the Crazyflie and the MikroKopter using the set
of state equations retrieved previously. Considering the Crazyflie nano-quadrotor
first, we assume that, due to its coreless DC motors, it is possible to change the
rotational speed of the jth propeller instantaneously. Thus, we define their set as
the control input of the system

u := (Ω1,Ω2,Ω3,Ω4) ∈ R4. (3.32)

The first-order ODEs then give the Crazyflie nonlinear dynamics:

ξ̇ = fc(ξ, u) =


ST vb
1
2q ⊗ ω

1
mFb − Sg1z − ω × vb
J−1(cMb − ω × Jω)

 , (3.33)

with state ξ := (p, q, vb, ω) ∈ R13. Here, 1z = (0, 0, 1) and denoted by ⊗, the
quaternion product.

Let us now conseider the MikroKopter quadrotor. When dealing with a medium-
sized quadrotor, Jm is not negligible since the radius of the rotor’s axle is not small.
Therefore, in this case, the rotor torques are the control inputs of the system

u := (τ1, τ2, τ3, τ4) ∈ R4. (3.34)

Thus, the MikroKopter nonlinear dynamics are:

ϑ̇ = fm(ϑ, u) =


RT vb
Eω

1
mFb −Rg1z − ω × vb
J−1(mMb − ω × Jω)

1
Jm

(u− CDΩ� Ω−DΩ)

 , (3.35)

with state ϑ := (p, γ, vb, ω,Ω) ∈ R16. The element-wise product is denoted by �.

3.2.3 Physical parameters
Several studies provide reasonable approximations for the physical parameters of the
Crazyflie 2.X, such as [160, 161, 162]. Our Crazyflie 2.1 model uses the parameters
identified by [161], except for parameters l, m, and CT that were identified exper-
imentally. The values are summarized in Table 3.2. Likewise, our MikroKopter
model uses the parameters of the RIS-LAAS2 team platforms. Table 3.3 shows the
values accordingly. Note that we perform model scaling as MPC uses normalized
input/output variables. Other than equaling/approximating the variables’ range,
scaling provides further benefits. Among them, a more intuitive tuning of the
weights, which allows the designer to emphasize the relative priority of each term
in the cost function rather than the combination of priority and signal scale. It also
offers improved numerical conditioning as optimization routines are less prone to
round-off errors.

2https://www.laas.fr/public/en/ris

https://www.laas.fr/public/en/ris
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Table 3.2. Physical parameters for the Crazyflie 2.1

Parameter Value Description
m 0.33 kg total mass
l 0.0325 m arm length
Jxx 1.395 · 10−5 kg·m2 inertia moment around x
Jyy 1.395 · 10−5 kg·m2 inertia moment around y
Jzz 2.173 · 10−5 kg·m2 inertia moment around z
CD 7.9379 · 10−6 N·m/krpm2 drag coefficient
CT 3.25 · 10−4 N/krpm2 thrust coefficient

Table 3.3. Physical parameters for the MikroKopter

Parameter Value Description
m 1.04 kg total mass
l 0.23 m arm length
Jxx 0.01 kg·m2 inertia moment around x
Jyy 0.01 kg·m2 inertia moment around y
Jzz 0.07 kg·m2 inertia moment around z
CD 10 N·m/kHz2 drag coefficient
CT 595 N/kHz2 thrust coefficient
Jm 0.08 g·m2 total rotor inertia
D 0.5 mN·m·s damping coefficient

3.3 Chapter summary
This chapter introduced the nonlinear dynamic models of a Pendubot and a quadro-
tor. Among all trade-offs required for deriving a model, the most important is bal-
ancing the real system’s complexity and simplicity for the controller’s design. It is
crucial that the outcome of this balance explicitly states what is known about the
system’s physical limitations so they can be addressed explicitly by the NMPC. To
derive such a model for a Pendubot system, classical Euler-Lagrange equations of
motion were used to draw out a set of second-order ODEs that sharply describe
the relationship between the limited input torque of the first joint and the joint
accelerations. The friction amongst joints was neglected, but this property may not
be of great importance for most self-balancing control applications, as the results
suggest. Concerning quadrotors, two different systems were considered. Through
the Newton-Euler formalization, specific sets of first-order ODEs were derived for
each case. They differ in whether the rotor inertia is small enough so that it is
possible to change the limited propeller speeds instantly or if it is sufficiently big
such that nonlinear rotor dynamics drive propeller speeds.
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Chapter 4

Real-time NMPC for motion
generation of a double inverted
pendulum

4.1 Motivation and contribution
Several modern motion generation problems in robotics build up their foundation
on the inverted pendulum stabilization principle. This happens because it can
describe such problems quite naturally and concurrently explain countless biological
processes that robots often attempt to mimic. For this reason, the rich properties
of the inverted pendulum play a major role in inspiring technology trends as well as
detecting abilities of innovative control methods dealing with nonlinearities, delays,
oscillations, uncertainties, minimum phase dynamics, and so on [163]. These simple
– and plausible – implications reveal that top-level control of the inverted pendulum
benchmark yields first-rate solutions that may be easily translatable to intricate
robotic systems.

Technology trends are heading towards wheeled self-balancing robots for per-
sonal urban mobility and humanoid robots as human collaborators. Hoverboards
and one-wheel scooters are successful examples of the first case, while the T-HR31,
the Digit2, the Walker3, and Sophia4 are some cobots that illustrate the second
one. At the same pace, innovative control methods have been pushing systems
to their maximum performance while ensuring active trajectory tracking and sta-
bilization to prevent overbalancing. In single and multi-linked inverted pendulum
systems, the loci of equilibria lie on a nonlinear manifold. Therefore, an appropriate
choice is to use nonlinear controllers. Despite the elegant solutions handed by clas-
sic nonlinear control methods, such as feedback linearization and Lyapunov-based
methods, their design process becomes cumbersome when it comes to handling
constraints, as they do not scale well for high-dimensional systems. Alternatively,
when the NMPC’s ability to explicitly handle constraints is combined with pow-

1https://www.toyota-europe.com/startyourimpossible/t-hr3
2https://www.agilityrobotics.com/meet-digit
3https://www.ubtrobot.com/collections/innovation-at-ubtech?ls=en
4https://www.hansonrobotics.com/sophia/

https://www.toyota-europe.com/startyourimpossible/t-hr3
https://www.agilityrobotics.com/meet-digit
https://www.ubtrobot.com/collections/innovation-at-ubtech?ls=en
https://www.hansonrobotics.com/sophia/
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Figure 4.1. The Pendubot performing the swing-up task with the proposed NMPC con-
troller.

erful structure-exploitation numerical methods, the scalability bottleneck can be
mitigated.

From this perspective, this chapter aims at describing the design and implemen-
tation of a real-time NMPC controller to solve the swing-up problem of a double
inverted pendulum (see Figure 4.1), a more challenging realization of the original
benchmark. In particular, we benefit from the straightforward treatment of con-
straints in NMPC to enforce physical and operational limitations. The current work
can be seen as part of a broader study on tracking controllers for applications other
than the double inverted pendulum, such as motion generation in self-balancing
mobile robots or (potentially) walking pattern generation in humanoid robots. In
this sense, the main contributions of this chapter are:

• A real-time NMPC controller with constraints enforcement for tracking unsta-
ble equilibrium points in robotic systems characterized by balanced motion.

• An experimental validation that demonstrates the controller’s capabilities and
computational efficiency when employed to the Pendubot in a swing-up task.

4.2 Related works
Robotic benchmark systems have played a crucial role in teaching, research in con-
trol theory, and intelligent service robotics. Despite the simplified structures, they
offer several attractive control challenges that include model validation, implemen-
tation of novel control strategies, and performance evaluation. Among many, the
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most common robotic benchmarks are the Acrobot [164], the cart-pole [165], the Fu-
ruta pendulum [166], the reaction wheel pendulum [167], the ball-and-beam system
[168] (see Figures 4.2 and 4.3), and the Pendubot [169]. They fostered scientific find-
ings that helped researchers solve complex motion generation problems, enabling
novel technologies. Remarkably, their simplified models typically contain the in-
formation needed to capture the dynamic essence of the desired motion. The 3D
linear inverted-pendulum models (LIPM) [170] for walking pattern generation in hu-
manoid robots and the wheeled self-balancing robots, such as the Segway [171] and
the Ballbot [172], are notable examples. Presumably, high-quality control of such
benchmarks implies high-quality control of complex robotic systems.

Figure 4.2. (left) Acrobot; (right) Furuta pendulum.

Figure 4.3. (left) cart-pole; (center) ball-and-beam system; (right) reaction wheel pendu-
lum.

The Pendubot, as most other systems mentioned, constitutes one of the multiple
facets of the inverted pendulum benchmark. Since its conception in the early 1970s,
the double inverted pendulum (later called Pendubot by Spong and Block) has
been used for nonlinear control research. The first control objectives were described
by Sturgeon and Loscutoff in 1972 [173] and consisted of state transfer among
equilibria and stabilization. In 1977, Kimura [174] pointed out observers’ structure
for feedback control laws, immediately followed by Furuta’s stabilization controller
with a CADO minicomputer in 1978 [175], later extended to the case where the
system is on an inclined rail [176]. As early as the 1990s, when the now so-called
Pendubot was settling itself in control engineering education, many works started
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using this benchmark to validate different control schemes. Some examples are
partial feedback linearization [177], fuzzy-PD control [178], state-dependent Riccati
equation (SDRE) control [179], and Lyapunov stabilization [180].

Recent developments in nonlinear control theory have provided us with a rich
collection of powerful and successful control schemes. They show that Pendubot
continues to prove its usefulness in illustrating numerous new ideas in the field. A
nonlinear tracking control with sliding modes was validated on the Pendubot in [181].
Similarly, an almost-global asymptotic tracking controller is described in [182]. The
work in [183] considers the swing-up problem and proposes an efficient model-based
policy search algorithm to solve it. Fourier transformation and particle swarm
optimization are applied to the stabilization problem in [184]. Swing-up control
and stabilization are considered in [185], where the virtual holonomic constraints
approach is employed.

4.3 Control architecture

4.3.1 Problem formulation

Throughout this chapter, we will consider the following NMPC tracking formulation
as the OCP that needs to be solved numerically:

min
x0,...,xN ,

u0,...,uN−1,
s0,...,sN

1

2

N−1∑
i=0

‖η(xi, ui)− η̃i‖2W +
1

2
‖ηN (xN )− η̃N‖2WN

+
ρ

2

N∑
i=0

‖si‖22 (4.1a)

s.t. x0 − x̄0 = 0, (4.1b)
xi+1 − Fp(xi, ui) = 0, i = 0, . . . , N − 1, (4.1c)
ul ≤ ui ≤ uu, i = 0, . . . , N − 1, (4.1d)
q̇i ≤ q̇u + si, i = 1, . . . , N, (4.1e)
q̇i ≥ q̇l − si, i = 1, . . . , N, (4.1f)
si ≥ 0, i = 0, . . . , N, (4.1g)

where x ∈ Rnx and u ∈ Rnu represent the state and input of the Pendubot, re-
spectively. Its discrete-time dynamics are described by Fp : Rnx × Rnu → Rnx .
The weighting matrices are denoted by W, WN � 0, while ρ ∈ Rns denotes the
real-valued vector associated with the penalty on the slack variables si ∈ Rns . The
input bounds ul < uu ∈ Rnu and the joint velocity bounds q̇l < q̇u ∈ R2 repre-
sent the system’s physical and operational limitations, respectively. The functions
η : Rnx × Rnu → R and ηN : Rnx → R represent the stage and terminal output
functions, respectively. They are defined as

η(xi, ui) :=

(
xi
ui

)
, ηN (xN ) := xN . (4.2)

Analogously, the time-varying references are denoted by η̃i and η̃N . Finally, x̄0 is a
parameter describing the current state estimate, and N is the horizon length.
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Reference trajectory In the original work which this chapter describes, a learned
policy based on the deep deterministic policy gradient (DDPG) by Lillicrap et al.
[186] generates the reference trajectory. However, as reinforcement learning (RL)
techniques are not in the scope of this thesis, we will limit ourselves to briefly de-
scribing the role of the NMPC in leveraging what is considered the most significant
drawback in RL, its unconstrained nature. At each sampling instant, starting from
x̄0, the learned policy is applied to the dynamic model (3.8) over a fixed prediction
horizon. The resulting state-control trajectory is passed as a reference to the NMPC,
which in turn enforces constraints (4.1b)–(4.1g) and, hence, guarantees safety. In
particular, the trajectory is generated by forward integration through an efficient
ERK4 scheme. The interested reader can refer to the work in [1] for more detail on
the RL approach used to learn the offline policy that solves the desired task.

4.4 Experimental results
This section presents the experimental validation of the NMPC controller on the
real Pendubot. We consider the problem of swinging up and balancing the robot
around the up-up equilibrium, i.e., xf = (0, 0, 0, 0), starting from the stable down-
down equilibrium, i.e., x0 = (−π, 0, 0, 0) and satisfying the imposed constraints. In
principle, the swing-up can be performed either rapidly or with an energy pumping
maneuver, where the desired final state xf is reached through an oscillatory motion.
In both cases, it is common to use a local controller when the current state estimate
x̄0 is sufficiently close to xf . The controller is usually based on a linearization of
the system around the final equilibrium point, where the balancing phase starts. In
this regard, we employ an LQR. Furthermore, as the robot only accounts with shaft
encoders, angular velocities are numerically derived from position measurements.

LQR and NMPC controllers work with a sampling time of ts = 2 ms. The
NMPC considers N = 10 shooting intervals and an ERK4 integration scheme to
discretize the dynamics (3.1). The weighting matrices and the slack penalty are
W = diag(3, 3, 1, 1, 5), WN = diag(3, 3, 1, 1), and ρ = 40·12. Finally, the input
bounds are ul = −0.4 N·m, uu = 0.4 N·m, while the joint velocity bounds are
q̇l = (−7.8,−5) rad/s, q̇u = (7.8, 5) rad/s.

4.4.1 Hardware description
The proposed controller is experimentally validated using the Quanser Pendubot,
whose physical parameters are summarized in Table 3.1. It has two incremental
optical encoders, one per joint, with resolutions of 1/8192 (first joint) and 1/4096
(second joint) on lap angle. The actuator is a DC motor with permanent magnets
driven in current by an UPM stage that uses PWM at 40 kHz as the input signal.
It is well-known that PWM corresponds to the voltage applied to the motor, which
in turn represents the setpoint for the associated torque. For the Pendubot, these
voltages are internally limited to ±10 V. Moreover, the physical interface comprises
two cards: one for data acquisition, and A/D or D/A conversion with low-pass filters,
called MultiQ-PCI5 (a branded version of the Sensoray Model 626 multifunction I/O

5https://docs.quanser.com/quarc/documentation/multiq_pci.html

https://docs.quanser.com/quarc/documentation/multiq_pci.html


58 4. Real-time NMPC for motion generation of a double inverted pendulum

card); and another with connectors for the input-output channels.

4.4.2 Software interface

One can control the system through software interfaces that include MATLAB/Simu-
link or plain C/C++ code. In the first case, the manufacturer provides Simulink
blocks that rely on proprietary software code to communicate with some MAT-
LAB tools. In particular, the Real-Time Workshop, which performs automatic C++
code generation from Simulink models, and the Real-Time Windows Target, which
executes Simulink models in real-time. In the second case, application programs
written in C/C++ can be developed using the Model 626 driver6, an API that serves
as an interface between the application and the operating system. In practice, any
application that accesses the functions in the API must dynamically link to the cor-
responding shared library before calls are made to any of its functions, e.g., enable
communication with the board, read a counter’s latch registers, write an analog
output setpoint on a D/A converter channel, etc.

Despite the tremendous visual appeal and the potential real-time capabilities of
Simulink, we opt for a control framework wholly written in C, prioritizing perfor-
mance. The framework depends on some of the API functions to retrieve position
measurements and command the actuator and a second plain C code that solves NLP
(4.1) online. The code is generated by the ACADO CGT through its C++ interface,
and implements the RTI-based NMPC controller alongside the O(N3) condensing
technique. The QP subproblems are solved using the dense linear algebra QP solver
qpOASES.

4.4.3 Performance analysis

Figure 4.4 shows that the NMPC successfully performs the swing-up task despite
the velocity constraints. Let us recall that the LQR is used to stabilize the system
around the final equilibrium point xf , which explains the oscillatory behavior from
roughly t = 2 s to t = 4 s. As mentioned earlier, the reference trajectory generated
by the learned policy is kinodynamically infeasible. Yet, it is a reasonable warm-
start for the SQP-based algorithm that, through an iterative refinement, generates
a trajectory that is, in principle, feasible. The use of soft constraints in the NMPC
formulation becomes necessary to recover the local feasibility, as model inaccuracies
and noise may cause the opposite. Although this approach does not necessarily
guarantee that the constraints will be satisfied, if possible, it does allow a new
control input to be computed. In fact, we observe that the introduction of slack
variables causes the minor constraint violations shown by the insets of Figure 4.4.
The violations are about 0.1 rad/s and 1 rad/s, respectively, on the first and second
joint velocities. As we will see in detail in Chapter 6, one can alleviate this effect
by using the theory of exact penalty functions. This is done by introducing a
non-smooth ℓ1 penalty function whose value becomes greater than zero only when
necessary.

6https://github.com/jbrindza/Sensoray626-MATLAB-Interface/blob/master/doc/s626_
programming_manual.pdf

https://github.com/jbrindza/Sensoray626-MATLAB-Interface/blob/master/doc/s626_programming_manual.pdf
https://github.com/jbrindza/Sensoray626-MATLAB-Interface/blob/master/doc/s626_programming_manual.pdf
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lines represent the joint velocity bounds; insets show the moment when the bounds are
violated.
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Moreover, we evaluate the computational complexity of our NMPC controller.
The results reported here are from a PC equipped with an Intel i7-4770 @ 3.40 GHz
running Windows 7. The average solution time associated with the resulting RTI
scheme in ACADO is 98.6 µs. This result shows the efficiency of the proposed NMPC.
The overhead for non-MPC computations, i.e., data handling, state estimation, pol-
icy calculation, forward integration, and log-file writing, is fairly constant and is
around 1.5 ms. Note that condensing is well suited for this application due to the
small-scale dynamic system and the short prediction horizon. When employing this
NMPC controller to high-dimensional robotic systems described by balancing mo-
tion, one shall consider either solving the sparse problem or the partially condensed
one. This happens because, for a fixed prediction horizon N , an increase in the
state/control ratio leads to an increase in the number of affine constraints related
to the optimization variables vector in the condensed QP space, which directly im-
plies that the problem is much more difficult to solve. In practice, qpOASES would
possibly perform more working set recalculations, yielding longer solution times.

4.5 Chapter summary
This chapter presented the design and implementation of an NMPC controller with
constraint enforcement for tracking unstable equilibrium points in self-balancing
robotic systems. The controller was experimentally validated on a double inverted
pendulum, named Pendubot, delivering solution times in the microsecond range.
According to the results, the condensing technique proved to be competitive for
short horizons, e.g., N ≤ 10, and low state/control ratio, allowing computational
efficiency. Due to model uncertainties and noisy data, the operational constraints
were relaxed using slack variables to avoid feasibility issues in the practical context.
Yet, bound violations were observed, implying that, for this setting, the penalty
weight must be larger than the one considered. Ultimately, this work aims to moti-
vate researchers to use NMPC to solve tracking problems in other robotic systems
described by balanced motion.
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Chapter 5

An efficient real-time NMPC
for quadrotor position control
under communication
time-delay

5.1 Motivation and contribution
NMPC is an advanced control technique that takes into account nonlinear dynam-
ics and constraints in the problem formulation, leading to significant performance
improvements compared to classical control solutions. At the price of a heavier com-
putational burden, one solves a parametric OCP at each sampling instant, which
can still cause latency and throughput if the time scale for feedback is too short.
Fortunately, the increasing available computational power and the advances in op-
timization strategies and algorithms have enabled the numerical solution of such
OCPs by now. Further research has shed light on algorithms that approximate the
optimal feedback policy so that real-time NMPC could also be viable and, hence,
applicable to systems with fast dynamics.

Quadrotors are well-known examples of agile systems. They are characterized
by their underactuation, nonlinearities, bounded inputs, and, in some cases, commu-
nication time-delays. The development of their maneuvering capability poses some
challenges that cover dynamics modeling, state estimation, trajectory generation,
and control. The latter, in particular, must be able to exploit the system nonlinear
dynamics to generate complex motions with high-accuracy (see, e.g., Figure 5.1).

Figure 5.1. Examples of high-accuracy motions on quadrotors.
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communication time-delay

However, the presence of communication time-delay is known to highly degrade
control performance.

This chapter presents an efficient position control architecture based on real-time
NMPC with time-delay compensation for quadrotors. The architecture consists
of predicting the state over the delay time interval, granting a nominally delay-
free model in the NMPC formulation, which takes into account the input bounds.
The NMPC algorithm is built upon the RTI scheme with Gauss-Newton Hessian
approximation, and it is implemented using the high-performance software package
acados. We use the automatic differentiation and modeling framework CasADi to
provide sensitivity calculations. The QP solver is the Riccati-based interior-point
method HPIPM, which relies on the hardware-tailored linear algebra library BLASFEO.
We show that by using a Hessian condensing algorithm particularly well-suited for a
structure-exploiting QP solver, a considerable speed-up can be achieved with respect
to a state-of-the-art NMPC solver. To experimentally validate the architecture,
we use the Crazyflie 2.1 nano-quadrotor, an open-source off-the-shelf platform for
research and education in robotics (see Figure 5.2 for an illustration). The main
contributions of this work are:

• An experimental validation of our architecture.

• An efficient software implementation that needs to cope with resource-constra-
ined hardware.

5.2 Related works
One important precondition for employing NMPC in the context of agile systems
is the availability of approximate schemes that enable real-time feasibility. Partic-
ularly successful schemes trade control performance for speed and typically hinge
on implementations of the: Newton-type method [187, 4], augmented Lagrangian
method [188, 189], and C/GMRES method [190, 191]. Solution times can be fur-
ther reduced by building efficient condensing approaches and structure-exploiting
solvers. Examples of numerical algorithms for condensing linear algebra are pre-
sented in [31, 192, 98, 193, 194], while [195, 196, 101, 197] propose algorithms for
structure-exploiting in optimal control problems.

The effects of delays on output feedback control of dynamical systems is an
issue that has been extensively studied in the literature over the years. However,
given the growing number of applications requiring collective interaction, the most
recent efforts are in the field of multi-agent control. Particularly, [198] present the
design and validation of a distributed backstepping controller for multi-quadrotor
systems subject to network delays. The controller has a stable delay-independent
structure under the influence of non-constant distributed delays. In [199], a time-
delay tolerant control law is synthesized to comply with collective aerial interaction
during a simulated transport operation. The interconnected dynamics feature a
communication delay exposed in the time-delayed consensus protocol and handled
by a PID controller. In [200], the authors combine a Lyapunov-based strategy with
a linear matrix inequality technique to derive sufficient conditions for the control
gain design that ensure asymptotic consensusability in the constant delay case and
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Figure 5.2. Composite image showing the real-time NMPC with time-delay compensation
being used on the Crazyflie during the tracking of a helical trajectory. Given the current
measurement, the state is predicted over the delay time interval using an integrator and
then passed to the NMPC, which takes into account the input bounds. The efficiency
of the proposed architecture leans on high-performance software implementations that
span: RTI scheme to address the NMPC problem, Hessian condensing algorithm suited
for partial condensing, structure-exploiting QP solver, and hardware-tailored LA library.
A video of the experiments is available at https://youtu.be/xZLVQ7BdUHA.

consensus with bounded errors in the time-varying delay case. Although these
strategies are encouraging, the resulting feedback control laws are not optimal.

5.3 Control architecture
5.3.1 State predictor
Because of the radio communication latency present in our aerial system, we have
delays both in receiving measurements (τ1) and sending control inputs (τ2). Like-
wise, since we intend to use NMPC, the potentially high computational burden
(τc) associated with its solution becomes an element that must also be taken into
account to minimize the state prediction error.

One-way latency is inherently difficult to measure due to the clock synchro-
nization dilemma, an issue that is usually solved by measuring the round-trip time
(RTT). In this context, the sum of network latencies must be considered and can be
deliberately placed where it is most convenient, as long as the RTT is not changed.
Following these considerations, we propose a state predictor based on the RTT as a
delay compensator. The prediction is computed by performing forward iterations of

https://youtu.be/xZLVQ7BdUHA
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system (3.33), starting from the current state estimate and over the RTT, through
an ERK4 integrator. Due to this operation’s independent nature, one can achieve
perfect delay compensation by adjusting the integration step equal to the RTT.
Thus, this chapter assumes that there is a fixed RTT, defined by τr := τ1 + τ2 + τc,
to be compensated. Although this prediction is simple (and inaccurate), it will
prove surprisingly effective in experimentation.

5.3.2 Problem formulation
Employing direct multiple shooting to discretize the underlying continuous-time
OCP and assuming a linear least squares objective, the NMPC problem considered
in this chapter is defined as the following constrained NLP:

min
ξ0,...,ξN ,

u0,...,uN−1

1

2

N−1∑
i=0

‖η(ξi, ui)− η̃i‖2W +
1

2
‖ηN (ξN )− η̃N‖2WN

s.t. ξ0 = ξ̂(k + τr),

ξi+1 − Fc(ξi, ui) = 0, i = 0, . . . , N − 1,

ul ≤ ui ≤ uu, i = 0, . . . , N − 1.

(5.1)

Therein, ξ := (ξ0, . . . , ξN ) and u := (u0, . . . , uN−1) denote the state and input
trajectories of the discrete-time system whose dynamics are described by Fc : Rnξ ×
Rnu → Rnξ . The functions in the stage and terminal least squares terms are denoted
by η : Rnξ × Rnu → R and ηN : Rnξ → R, respectively. Variables η̃i ∈ R(nξ+nu)

and η̃N ∈ Rnξ represent the time-varying references. The weighting matrices are
denoted by W,WN � 0. The inputs bounds are ul < uu ∈ Rnu . Finally, N denotes
the horizon length, and ξ̂(k + τr) represents the system’s estimated state at the
current time instant k.

5.3.3 Condensing approach and structure-exploiting QP solver
Among other methods to approximate the Hessian of the Lagrangian, a particularly
successful one is the GGN method, which is applicable when the objective function
is of least squares type, as in NLP (5.1). After applying it, the resulting QP has a
sparse banded structure and can be rewritten as:

min
w

1

2

N∑
i=0

wT
i Hiwi + hTi wi

s.t. ∆ξ0 = ξ̂(k + τr)− ξn0 ,

Ei+1wi+1 − Ciwi − di = 0, i = 0, . . . , N − 1,

gli ≤ Giwi ≤ gui , i = 0, . . . , N − 1,

(5.2)

where wi = (∆ξi ;∆ui), wN = ∆ξN with state and control deviations defined as
∆ξi := ξi − ξni , ∆ui := ui − uni . The superscript n refers to the linearization points
at the previous QP iteration. To match the QP formulation used in acados, we
define: Ci := (Ai Bi), Ei := (I 0), Gi := (0 I), for i = 0, . . . , N − 1, and EN := I.
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The matrices used in the linearized dynamics and the upper and lower bounds of
the polyhedral constraints are defined as

Ai := ∇ξFc(ξ
n
i , u

n
i )

T , Bi := ∇uFc(ξ
n
i , u

n
i )

T ,

di := Fc(ξ
n
i , u

n
i )−Aiξ

n
i −Biu

n
i ,

gli := ul − Iuni , gui := uu − Iuni .

Finally, we have that the Hessian and the gradient terms for i = 0, . . . , N − 1 are
defined as

Hi :=Wi =

(
Qi 0
0 Ri

)
, hi :=

(
qi
ri

)
,

where
Qi = ∇ξ(η(ξ

n
i , u

n
i )− η̃ni )W

ξ∇ξ(η(ξ
n
i , u

n
i )− η̃ni )

T

Ri = ∇u(η(ξ
n
i , u

n
i )− η̃ni )W

u∇u(η(ξ
n
i , u

n
i )− η̃ni )

T

qi = ∇ξ(η(ξ
n
i , u

n
i )− η̃ni )(η(ξ

n
i , u

n
i )− η̃ni )

ri = ∇u(η(ξ
n
i , u

n
i )− η̃ni )(η(ξ

n
i , u

n
i )− η̃ni ),

with W ξ and W u denoting the blocks in W related to states and inputs respectively,
and

QN = ∇ξ(ηN (ξnN )− η̃nN )WN∇ξ(ηN (ξnN )− η̃nN )T

qN = ∇ξ(ηN (ξnN )− η̃nN )(ηN (ξnN )− η̃nN ).

One way to address the QP (5.2) is to exploit its banded structure and apply
a sparse QP solver. Another way is first to reduce or condense the variable space
of the QP by eliminating all state deviations through the continuity constraint of
(5.2) and then apply a dense QP solver. Differently, in this work, we employ a
recently proposed approach, in-between the sparse and the condensed one, called
partial condensing. In particular, we use a Hessian condensing algorithm where a
state component is retained as an optimization variable at each partially condensed
QP stage [99]. The algorithm finds the optimal level of sparsity for the QP solver at
hand, trading horizon length for input vector size. Thus, partial condensing is em-
ployed as a preparation step before the call to HPIPM, the Riccati-based interior-point
method solver we use, which has been tailored to exploit the particular structure of
the obtained QP.

5.4 Simulation results
This section is divided into two parts. First, it assesses the performance of two
optimal controllers in simulation. In particular, an LQR and an NMPC will be con-
sidered. Such comparison is valuable since the LQR can perform an optimal control
law within short execution times and with a low computational burden, while the
NMPC deals with constraints and predictions. The values of the parameters ap-
pearing in the model are listed in Table 3.2. Accounting for numerous computation
time uncertainties, a sampling time of τs = 15 ms is set for both controllers in this
chapter. Second, it investigates the effect of the time-delay on the nano-quadrotor
system’s control performance, considering different RTTs.
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5.4.1 LQR controller

The first controller considered is the LQR. During the LQR control design, the
nonlinear dynamics (3.33) are linearized around the hovering steady state and input
(ξ̄, ū) and discretized using τs as sampling time, yielding:

ξk+1 − ξ̄ = A(ξk − ξ̄) +B(uk − ū). (5.3)

Due to the uncontrollable linearized quaternion dynamics, the local linear model
(5.3) is also not controllable. To address this issue, we project the dynamics onto a
controllable subspace as done in [201, 152], using the fact that the first component of
the quaternion vector can be eliminated thanks to the relation qw =

√
1− q2x − q2y − q2z .

Thus, we obtain the 12-state model needed to project the LQR static gain. A
discrete-time LQR controller can be designed by finding the infinite horizon solution
P associated with the discrete-time algebraic Riccati equation

ATPA− P − (ATPB)(BTPB +R)−1(BTPA) +Q = 0,

which yields the static feedback law u = Kξ + ū, where

K = (BTPB +R)−1(BTPA).

The positive-definite matrices Q and R are defined so that the stability of the closed-
loop system is guaranteed.

5.4.2 NMPC controller

The second controller is the NMPC. When designing an NMPC, choosing the hori-
zon length has profound implications for computational burden and tracking per-
formance. For the former, the longer the horizon, the higher the computational
burden. As for the latter, in principle, a long prediction horizon tends to improve
the controller’s overall performance. To select this parameter and achieve a trade-off
between performance and computational burden, NLP (5.1) has been implemented
in acados considering N = {10, 20, 30, 40, 50}, discretizing the dynamics (3.33) us-
ing an ERK4 integration scheme. Likewise, we compare the condensing approach
with the state-of-the-art solver qpOASES against the partial condensing approach
with HPIPM for the set of considered horizons. The weighting matrices W,WN are
the same in all simulations. The functions in the stage and terminal least squares
terms are defined as

η(ξi, ui) :=

(
ξi
ui

)
, ηN (ξN ) := ξN . (5.4)

Remark 2. We regulate for qd = (1, 0, 0, 0) so that the geodesic arc can be locally
approximated by a straight line.
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Figure 5.3. Closed-loop trajectories for different horizon lengths.
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According to Figure 5.3, horizon N = 50 provides a higher tracking performance.
Nevertheless, when considering a long horizon, the available computational power
may not be sufficient to deliver a solution within the runtime requirements of an
aerial system. In Figure 5.4, the average runtimes per SQP-iteration are reported.
As qpOASES is a solver based on the active-set method and dense LA, it requires
condensing to be computationally efficient. In line with the observations found
in the literature that condensing is effective for short to medium horizon lengths,
we note that qpOASES is competitive for horizons up to approximately N = 30
compared to HPIPM. The break-even point moves higher on the scale for longer
horizons, mainly due to efficient software implementations that cover: i) Hessian
condensing procedure tailored for partial condensing, ii) structure-exploiting QP
solver based on novel Riccati recursion, iii) hardware-tailored linear algebra library.

Furthermore, when dealing with a nominal NMPC formulation, as in this chap-
ter, the model uncertainties and their propagation also contribute to the horizon
length’s decision. The longer the prediction, the more the modeling errors accumu-
late, and the tracking performance can no longer be guaranteed. Uncertainty can
be added to the system model to account for the noise associated with the onboard
inertial measurement unit (IMU) and simulate the variability in the repetition of
the task. However, this has not been included in the scope of this work.

Therefore, we can conclude that horizon N = 50 offers a reasonable trade-off
between deviation from the reference trajectory and computational burden.

5.4.3 Comparison
This section is dedicated to compare and discuss the simulation results for LQR and
NMPC. Initially, the LQR controller was tuned so that its control policy was locally
equivalent to the NMPC one. However, as also experienced in the work of [152],
the simulations showed the need to detune the controller so that the performance –
specifically for the position in z in our case – was acceptable. Thus, the following
weighting matrices are chosen:

Q = blkdiag(12.24 · 103, 10.2 · 103, 9 · 105, 0.102 · I3, 71.4,

102, 408, 1.02 · 10−3 · I2, 1.02 · 103), R = 0.12 · I4.

For the NMPC, the weighting matrices are

W = blkdiag(120, 100 · I2, 1 · 10−3 · I4, 7 · 10−1, 1, 4, 1 · 10−5 · I2, 10, 6 · 10−2 · I4),

WN = 50 · blkdiag(120, 100 · I2, 1 · 10−3 · I4, 7 · 10−1, 1, 4, 1 · 10−5 · I2, 10),

while the input bounds on the propellers’ rotational speed are ul = 04, uu = 22·14
krpm.

The simulation scenario consists of producing steep reference changes in posi-
tion. Figure 5.5 shows the comparative results concerning the closed-loop tracking
performances. We notice that the NMPC controller outperforms the LQR, consid-
ering that absence of overshoots and faster response to changes in references can be
achieved. This may be due to the fact that nonlinearity and unmodeled constraints
can degrade the LQR controller’s performance for large reference changes.
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5.4.4 Time-delay
For the purposes of this analysis, we assume that τr = λτs for some nonnegative
integer λ. However, we emphasize that the same analysis can be done considering
any value of τr, as mentioned in Section 5.3.1. The results for the step response of
the proposed NMPC without considering the time-delay compensation are shown in
Figure 5.6. We observe that the greater the time-delay associated with the RTT, the
greater the NMPC performance’s degradation. This outcome is observed through
the increase of overshoots and oscillations in the system’s response, indicating that
the proposed NMPC cannot control the system properly. Unlike in simulation, in a
real-world context, where model uncertainties come into view, the overshoots and
oscillations will tend to be even more significant. Besides, other simulations have
shown that the system becomes unstable for greater RTTs. These observations
indicate that delay compensation is of particular importance in this application.

5.5 Experimental results
5.5.1 Hardware description
The proposed architecture is experimentally validated on the Crazyflie 2.1 nano-
quadrotor, developed by the Swedish company Bitcraze1. One can control the
system through the onboard long-range radio receiver and its correspondent trans-
mitter, the Crazyradio PA, or even through the Bluetooth LE (low-energy) connec-
tion. It has an open-source firmware based on FreeRTOS that allows the user to log
sensor data at a maximum frequency of 100 Hz. The radio communication uses a
protocol developed by Bitcraze, the Crazy RealTime Protocol (CRTP), which limits
the size of the packages sent from the Crazyflie to the Crazyradio in up to 30 bytes
(1-byte header, 29-bytes data payload).

The motion capture (MOCAP) system consists of ten Raptor-E cameras and the
Cortex software, both from Motion Analysis. It provides the 3D global position of
an IR-reflective marker placed on top of the Crazyflie (see Figure 5.7) at a frequency
of 100 Hz. The entire setup has an estimated RTT of 60 ms to be compensated.

5.5.2 Software interface
The control architecture hinges upon a ROS Kinetic framework and runs at 66.67
Hz. The CRTP is used in combination with our crazyflie_nmpc stack [3] – based on
the Crazyflie ROS interface [202] – to stream in runtime custom packages containing
the required data to reconstruct the part of the measurement vector that depends
on the IMU data. The logging subsystem is mapped into ROS messages, and, thus,
it is possible to recover the current Euler angles and angular velocities of the nano-
quadrotor. Likewise, the cortex_ros bridge streams the 3D global position of the
Crazyflie from which linear velocities are estimated using a numerical derivation
method.

Through the use of acados Python interface and CasADi automatic differenti-
ation and modeling language, we export a plain C-code that corresponds to NLP

1https://www.bitcraze.io

https://www.bitcraze.io
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Figure 5.7. Crazyflie with an IR-marker during one of the experiments.

(5.1). The exported code is linked against the precompiled acados core library and
then wrapped by the NMPC ROS node, written in C++. The QP subproblems aris-
ing in the SQP algorithm in acados are solved using the high-performance HPIPM
solver, which implements an interior-point method. It is written entirely in C and
is built on top of the high-performance linear algebra package BLASFEO. We use
the X64_INTEL_HASWELL target in BLASFEO, which explicitly employs the powerful
vector instructions provided by this computer architecture. In particular, the high-
performance routines provided by BLASFEO outperform other state-of-the-art dense
linear algebra libraries in the case of matrices of moderate size, as in the current
application. Regarding the condensing approach, we use the partial condensing
routines provided by HPIPM.

5.5.3 Implementation considerations
Although system (3.33) is used in our NMPC formulation, the standard input com-
mands for the actual Crazyflie (indicated by the red variables in Figure 5.8) are:

• the desired roll ϕd and pitch θd angles, in degrees

• the yaw rate ωd
z , in degrees per second

• the base PWM signal Ω̃d

It is important to clarify that Ω̃d is a 16-bit integer number ranging from 0 to
65535 and stands for the base value of PWM applied to all motors to maintain
altitude. Despite the name thrust in the official firmware2, Ω̃d does not directly
represent the net force applied along the z body-fixed axis but is related to it. In
principle, once the NMPC solution is obtained, the first element of the predicted
control trajectory u⋆(0|k) should be sent to the Crazyflie. However, there is an
incompatibility between Ω̃d and u⋆(0|k).

2https://github.com/bitcraze/crazyflie-firmware

https://github.com/bitcraze/crazyflie-firmware
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To translate the control inputs Ω⋆
i = u⋆(0|k), in krpm, to the base PWM signal

Ω̃d, an integer, we need to establish some mappings. To that end, we use the
following relations adapted from [161]:

Ωd =
1

4

4∑
i=1

Ω⋆
i [krpm], Ω̃d =

1000 · Ωd − 4070.3

0.2685
[int].

Similarly, at each new NMPC solution, we reconstruct the remaining input com-
mands ϕd, θd, ωd

z using part of the state solution ξ⋆(i|k) at stage i = 1, as denoted
in Figure 5.8. This approach, however, entails some distortions onto the onboard
controllers (attitude and rate controllers) since the NMPC does not take them into
account in its formulation. This effect will be described in the following subsection.

5.5.4 Onboard controller considerations
How the onboard controllers (PIDs) use the setpoints of the offboard controller
(NMPC) in our architecture is not entirely conventional and, thereby, deserves some
considerations. We must address two main points presented in Figure 5.8 must
be addressed. First, the reference signals that the PID loops track do not fully
correspond to the control inputs considered in the NMPC formulation. Instead, part
of the state solution ξ⋆(1|k) is used in conjunction with the control inputs u⋆(0|k)
to reconstruct the actual input commands passed as a setpoint to the Crazyflie.
Second, a part of the reconstructed input commands is sent as a setpoint to the
outer loop (attitude controller), and the other part is sent to the inner loop (rate
controller).

Furthermore, as the NMPC model does not include the PID loops, it does not
truly represent the real system, even in the case of perfect knowledge of the physical
parameters. As a consequence, the optimal feedback policy is distorted in the real
system by the PIDs. Note that intuitively reducing the NMPC discretization time
mitigates the distortion. Another solution is to implement a linear interpolation
onboard, considering the frequency of each loop. In this case, given a new input
command from the NMPC, data points are constructed and passed as reference
signals to the PIDs.

5.5.5 Experiments description
In every experiment, the Crazyflie takes off and hovers at pd = (0, 0, 0.4). This is
done to avoid the unmodeled ground effect during the tracking phase. When the
nano-quadrotor reaches the steady-state for hovering, the user triggers the tracking.
The nano-quadrotor is then asked to hold the last point of the reference trajectory
until the user triggers the landing command.

To validate the effectiveness of the control architecture, we ran two experiments.
For each of them, we generate a reference trajectory on a base computer and pass
it to the NMPC ROS node every τs = 15 ms. We explicitly address the feasibility
issue in the design process when generating the trajectories. In this spirit, two
references are created: one feasible and one infeasible. In addressing this issue,
we prove through experiments that the performance of the proposed NMPC is not
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Figure 5.9. Experimental results: output trajectory and input commands.

degraded even when the nano-quadrotor attempts to track an infeasible trajectory,
which could, in principle, make it deviate significantly or even crash. The reference
trajectories for each experiment are:

Smooth Step For the first experiment, the reference is a dynamically feasible
smooth step on (x, y, z) that drives the nano-quadrotor from the hover position to
the final one, defined as pd := (1,−1, 1). To generate it, we implemented NLP
(5.1) using CasADi with a time horizon of T = 6 s and N = 400 shooting intervals,
discretizing the dynamics (3.33) using an ERK4 integration method. The resulting
NLP is solved using the interior-point solver IPOPT, exploiting the just-in-time com-
piling function evaluations and alongside the linear solver MA57 [203]. Figure 5.9a
shows the closed-loop trajectory and input commands for this experiment.

Helical Reference For the second experiment, the reference is a cartesian helical
trajectory generated with MATLAB. We imposed a radius of r = 0.3 m, initial
height of h0 = 0.38 m, height increments of ∆h = 0.002 m per τs, and a duration
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Figure 5.10. Solution times over time.

of tf = 15 s, divided into m = 1000 intervals. Figure 5.9b presents the closed-loop
trajectory and input commands for this experiment.

5.5.6 Performance analysis

From Figure 5.9, we note that the PID distortion on the NMPC performance is
relatively small. As expected, the most challenging setpoints to be tracked are the
positions in which, given a change in the motion, the Crazyflie has to pitch/roll in
the opposite direction quickly. These are the setpoints where the distortion has the
most significant influence on the system, causing the small overshoots in position.

To assess our algorithm’s computational complexity, we gather the average and
maximum solution times of the tailored RTI scheme using acados. The results were
obtained on an Intel Core i5-8250U @ 3.4 GHz running Ubuntu. We had tavg = 7.4
ms and tmax = 22.1 ms, where the computational peak was during take-off (see
Figure 5.10). Throughout the tracking phase, the computational workload offered a
reasonable safety margin within the sampling time. These results show the efficiency
of the proposed scheme.

5.6 Chapter summary
This chapter presented the design and implementation of a novel position controller
based on NMPC for quadrotors. The control architecture incorporates a predictor
as a delay compensator for granting a delay-free model in the NMPC formulation,
which in turn enforces bounds on the actuators. It was experimentally validated on
the Crazyflie 2.1 nano-quadrotor in two different tracking tasks. The results prove
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that the efficient RTI-based scheme, exploiting the full nonlinear model, achieves a
high-accuracy tracking performance and is fast enough for real-time deployment.
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Chapter 6

Real-time NMPC for quadrotor
motion generation in dynamic
environments

6.1 Motivation and contribution
Autonomous navigation in dynamic environments still poses an important challenge
for robotics research. In contrast to static scenarios, where global path planning
strategies are well-suited, in dynamic environments, the decision about motion must
be based on the world’s online perception and the fast reaction-time behavior (see,
e.g., Figure 6.1). From a technical point of view, dynamic obstacles give rise to
new facets in motion planning problems. For instance, one may wish to find a path
where energy consumption is minimal, thus requiring extra care with the robot’s
velocity and acceleration. Also, clearance from obstacles is a critical issue in this
context. It becomes even more critical when dealing with cluttered environments. A
path with a high clearance, notably a safer route, turns out to be over-conservative.
Consequently, the robot ends up taking longer routes or suffering from the overly
constrained obstacle fields to the point where no viable paths remain.

There has been a wealth of research on algorithms for motion planning in dy-
namic environments. While they may differ in terms of the applied technique, they
all strive for the simultaneous computation of a collision-free path from start to goal
and a velocity profile along the path, which can satisfy both system dynamics and
actuator limits. These computations are also known as trajectory planning, which,
as seen before, is at the heart of all motion generation algorithms. Ensuring that
trajectories have these properties is difficult for several reasons: robots are typically

Figure 6.1. Examples of robots navigating autonomously in dynamic environments.
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described by nonlinear dynamics, and it may be hard for an algorithm to cope with
that; it is difficult to attest that an algorithm can achieve a tractable computation
time when considering a high-fidelity model and many arbitrary obstacles.

A prominent approach to generate kinodynamically feasible trajectories in dy-
namic environments is NMPC. Typically, this requires solving a (possibly) nonlinear
nonconvex NLP at each planning iteration, which may be intractable in principle.
Indeed, a great challenge associated with the employment of NMPC schemes for
motion generation has been the availability of fast and reliable algorithms for on-
line implementations. Among other approaches, the RTI scheme is proposed in
[119] to trade speed for accuracy while incorporating “globalization features”. Its
principle hinges upon approximate feedback policies to meet the required real-time
constraints. This attribute has led to NMPC gradually become a viable solution
for applications with high sampling rates, such as quadrotors.

Motivated by these observations, this chapter presents a novel approach for real-
time motion generation for quadrotors in dynamic environments (see an example
in Figure 6.2). More precisely, we exploit the algorithmic ideas of the RTI scheme
with inexact Hessian to formulate a least conservative linearized collision avoidance
constraint. We provide a theoretical analysis proving that the proposed constraint
formulation is less conservative for planners based on Newton-type method than
those based on a fully converged NMPC approach. This analysis is further lever-
aged to overcome the numerical difficulties associated with the (local) feasibility of
the optimization problem. The framework uses the RTI strategy implementation
through the high-performance software package acados. The QP solver is HPIPM,
which is based on BLASFEO. We use the Crazyflie nano-quadrotor as a relevant ex-
ample to assess the planner’s performance and implementability. Concerning the
challenges at hand, the main contributions of this chapter are twofold:

• An NMPC-based algorithmic framework for real-time motion generation that
is reliable and guarantees less conservative optimal trajectories for quadrotors.

• A numerical validation that shows the efficiency of the proposed approach.

6.2 Related works
Traditional motion planning methods typically rely on graph-search methods [204,
205], combinatorial methods [206], or sampling-based methods [207, 208]. Despite
the effectiveness of those algorithms in finding a path between two given points,
the quality of the path obtained may be far from optimal. Thus, the research to
improve the path refinement led to a common subdivision of the problem into a
global and local planner.

The local planner accounts for the dynamic constraints and generates sets of
feasible local trajectories. Popular algorithms used in this layer are dynamic win-
dow approach (DWA) [209] and timed elastic band (TEB) [210]. More recent motion
planning methods focus, instead, on optimization-based strategies. The authors in
[211] develop the concept of linear interval programming functions, which is based
on multi-objective optimization. In this case, the collision avoidance constraint is de-
fined as a shrinking convex polygon around the obstacle. As the optimization prob-
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goal

goal

Figure 6.2. Example trajectories found by our NMPC-based local planner: with proposed
constraint formulation (orange), with its counterpart (blue); reference is dashed; the red
lines (left) are the moving obstacles’ trajectories; the red spheres (right) are the static
obstacles. A video of the simulations is available at https://youtu.be/ZRbGyikvsxw.

lem seeks the set of so-called Pareto optimal solutions – which is rather demanding
– its application in systems with tight runtime requirements is usually not possible.
Another approach is risk-constrained model predictive control [212], where expec-
tation constraints are defined within a linearly constrained mixed-integer convex
program. However, the efficiency of this method highly depends on the tightness
of the continuous linear program relaxations. Other techniques involve manifold
trajectory optimization [213] and convex decomposition through interval allocation
[214], both exploiting the inflated ellipsoids concept to ensure collision-free trajecto-
ries. These approaches have obtained promising results, but the solutions achieved
for local replanning often lead to optimal trajectories that are far too conservative.

6.3 Control architecture
6.3.1 Collision avoidance constraint
To ensure kinodynamically feasible and collision-free trajectories, we consider a
constrained OCP. Having the dynamic model of the robot as a constraint provides
kinodynamically feasible state trajectories. On the other hand, collision avoidance
is granted by constraining the robot’s distance with respect to an obstacle o ∈ Rn in
the workspace W ∈ Rn to be larger than the clearance dC ∈ R+. The obstacles, here
considered dynamic, are described as point-mass models. Furthermore, we assume
a single-body robot, which can be well approximated by a point if one defines the
clearance to take into account: i) the actual size of the robot, ii) the actual size of
the obstacle, iii) a safety margin between them. When extending our approach to
a multi-body robot system, one needs to consider the enlargement of the clearance.
Ultimately, one must include an additional collision avoidance constraint in the
OCP for each obstacle present in the workspace.

To formulate the collision avoidance constraint, let us consider the distance func-
tion as the Euclidean distance between the robot and an obstacle in the workspace,

https://youtu.be/ZRbGyikvsxw
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i.e., dO : W −→ R. One can formally define it as the following:

Definition 12 (Distance Function). Let us define the distance function for an
arbitrary point p ∈ W with respect to an obstacle as

dO(p) = dO(p; o) = ‖p− o‖2,

and consider bounds, i.e. dC ≤ dO(p) and ∃ dM such that dO(p) ≤ dM∀p ∈ W.

Based on the above definition, the obstacle avoidance constraint can be concisely
written as

dC ≤ ‖p− o‖2. (6.1)
Note that (6.1) is not differentiable at p = o because we can get different limits by
choosing different paths to the origin. To tackle this problem, one can square both
sides of the inequality,

d2C ≤ ‖p− o‖22 (6.2)
and recover the desirable property of being continuously differentiable everywhere.
However, depending on the optimization algorithm behind the planner at hand, one
constraint formulation can be more advantageous than the other.

For a planner whose optimization algorithm is based on a Newton-type method,
e.g., with acados, note that only one system linearization and one QP solve are
performed per sampling time. Each QP corresponds to a linear approximation of the
original NLP along a time-varying trajectory. In this setting, squaring the Euclidean
norm, as in (6.2), provides local trajectories that are over-conservative. In a case
where linearization points are far away from the boundaries of the original NLP’s
linearized feasible set, the use of (6.1) leads to linear constraints that are “least”
conservative. We will formalize this statement in Proposition 1. In contrast, for a
planner whose optimization algorithm is based on a fully converged NMPC method,
e.g., with IPOPT, in general, no constraint formulation has a distinct advantage
over the other. As in this case, the iterations continue until convergence or certain
termination conditions are reached, the feasible sets for (6.1) and (6.2) are the same.

Thus, in view of the algorithmic ideas of the RTI scheme, our main theoreti-
cal result for the least conservative linearized (LCL) constraint formulation is the
following:

Proposition 1. Let H1(p̄) := {p : c1(p̄) +∇pc1(p̄)
T (p− p̄) ≥ 0} and H2(p̄) := {p :

c2(p̄)+∇pc2(p̄)
T (p− p̄) ≥ 0}, where c1(p) := ‖p−o‖2−d and c2(p) := ‖p−o‖22−d2,

denote the half-spaces defined by the linearization of the constraints c1(p) ≥ 0 and
c2(p) ≥ 0 at any feasible point p̄, respectively. Moreover, let S := {p : c1(p) ≥ 0}
denote the set defined by the original nonlinear constraints. Then, H1(p) ⊂ S and
H2(p) ⊂ S. Moreover, we have that H2(p) ⊆ H1(p).

Proof. Define c1,lin(p̄, p) := c1(p̄) +
∂c1
∂p (p − p̄) and c2,lin(p̄, p) := c2(p̄) +

∂c2
∂p (p − p̄).

Due to convexity of c1(p) and c2(p), we have that, for any p̄ we have that

0 ≤ c1,lin(p̄, p) ≤ c1(p)

and
0 ≤ c2,lin(p̄, p) ≤ c2(p)



6.3 Control architecture 81

such that p ∈ H1(p̄) =⇒ p ∈ S and p ∈ H2(p̄) =⇒ p ∈ S, which proves
the first statement. In order to prove that H2(p) ⊆ H1(p), we proceed as follows.
Define the auxiliary functions ĉ2, ĉ1 : R → R as ĉ2(v) := v2 − d2 and ĉ1(v) := v − d.
Moreover, define their linearizations ĉ1,lin(v̄, v) = ĉ1(v̄)+

∂ĉ1
∂v (v− v̄) and ĉ2,lin(v̄, v) =

ĉ2(v̄) +
∂ĉ2
∂v (v − v̄). Due to convexity in v of ĉ1,lin and affinity in v of ĉ2,lin we have

that, for any d, and any v̄, the following holds:

min
v≥d

ĉ1,lin(v̄, v) = min
v≥d

ĉ1(v) = 0

and
min
v≥d

ĉ2,lin(v̄, v) ≤ min
v≥d

ĉ2(v) = 0.

Define r(p) := ‖p− o‖. Then, we can state the following:

min
p∈H1(p)

c2,lin(p̄, p) = min
p

c2,lin(p̄, p)
s.t c1,lin(p̄,p)≥0

= min
p
ĉ2,lin(r(p̄), r(p̄) +

∂r

∂p
(p− p̄))

s.t ĉ1,lin(r(p̄),r(p̄)+
∂r
∂p

(p−p̄))≥0

.

Introducing the change of variables v = r(p̄) + ∂r
∂p(p − p̄), and using the fact that

ĉ1,lin(r(p̄), r(p̄) +
∂r
∂p(p− p̄)) ≥ 0 if and only if v ≥ d, we obtain

min
p∈H1(p)

c2,lin(p̄, p) = min
v≥d

ĉ2,lin(r(p̄), v) ≤ min
v≥d

ĉ2(v) = 0.

This last inequality shows that H2(p̄) ⊆ H1(p̄) concluding the proof.

Figure 6.3 shows the boundaries of the linearized feasible set considering three
distinct regular points p⋆ for constraint formulations (6.1) and (6.2). Note that the
linearized constraint formulation defined by (6.1) provides solutions that are closer
to the lower bound dC .

6.3.2 Constraint violation

The constraint presented in (6.1) guarantees collision avoidance instantaneously
since its evaluation occurs only at ti and ti+1. This, however, does not ensure that
there are no collisions in-between shooting nodes, which may result in a constraint
violation. As a result, the predicted trajectory between time points may be seen
penetrating the obstacle.

One can address this issue by expanding the obstacle, in all directions, by the
maximum incursion distance [215], or by using the hyperplane separation theorem
as in [216]. This chapter does not use any particular method to ensure collision-free
trajectories in-between the robot’s successive positions, as it comes with a higher
computational burden. Accordingly, it relies on a reasonable choice for the size of
the discretization time step.
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Figure 6.3. Boundaries of the linearized feasible set – a comparison between constraint
formulations: linearization points p⋆ are represented as ⋆, in red the clearance around
an obstacle marked by ×, ‖·‖22 in dashed line, and ‖·‖2 in solid line. The contour lines
at zero are shown for half-spaces H1(p̄) and H2(p̄).

6.3.3 Feasibility and soft constraints

One major drawback regarding the use of hard constraints is that they may render
the optimization problem infeasible: this is especially true in the case of state
constraints [217], such as the one in (6.1). If the input constraints represent a
physical limitation, they have to be enforced all the time. State constraints, instead,
are only often desired – although they are not always physically necessary – and
hence should be satisfied whenever possible.

A more systematic approach for dealing with infeasibility is to modify the cost
function to include a penalization on the violation of the collision avoidance con-
straint. This strategy is usually achieved by introducing slack variables associated
with the soft constraint and heavily penalizing them. The optimization algorithm
searches for a solution that minimizes the original cost while keeping the slack vari-
ables equal to zero whenever possible.

The authors in [218] discuss the inclusion of an ℓ1-norm µ‖ϵ‖1 penalization
term of the slack in order to obtain an exact penalty function, i.e., the controller
violates the constraints only when necessary. A hazard with ℓ1 penalty functions
is their inherent non-smoothness at optimal points, which may degrade the final
solution accuracy. On the other hand, the ℓ22-norm µ‖ϵ‖22 benefits of being smooth
and having “simple” derivatives. A major drawback to the ℓ22 penalty function is
the uneven way that it penalizes constraints, such that µ has to be very large to
enforce asymptotic feasibility [219]. Given the potential benefits of an exact penalty
function, this work opts to use an ℓ1-norm.
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6.3.4 Problem formulation
The tailored soft-constrained problem with LCL constraint formulation reads as
follows:

min
ξ0,...,ξN ,

u0,...,uN−1,
ϵ0,...,ϵN

1

2

N−1∑
i=0

‖η(ξi, ui)‖2W +
1

2
‖ηN (ξN )‖2WN

+
µ

2

N∑
i=0

‖ϵi‖1 (6.3a)

s.t. ξ0 − ξ̄0 = 0, (6.3b)
ξi+1 − Fc(ξi, ui) = 0, i = 0, . . . , N − 1, (6.3c)
ui ∈ U , i = 0, . . . , N − 1, (6.3d)
ϵi + dO(pi) ≥ dC i = 0, . . . , N, (6.3e)
ϵi ≥ 0, i = 0, . . . , N, (6.3f)

where ξ := (ξ0, . . . , ξN ), u := (u0, . . . , uN−1), and ϵ := (ϵ0, . . . , ϵN ) denote the state,
input, and slack trajectories, respectively. The discrete-time quadrotor dynamics is
denoted by Fc : Rnξ × Rnu → Rξ. The residual functions η : Rnξ × Rnu → R and
ηN : Rnξ → R represent the stage and terminal cost, respectively. They are weighted
by the symmetric matrices W, WN � 0. Similarly, the slack penalty is weighted by
the real-valued vector µ ∈ Rnϵ . Eq. (6.3d) implements the input box constraints
U = {u ∈ Rnu : umin ≤ u ≤ umax}, representing the actuator limits. Finally, N and
ξ̄0 denote the horizon length and the current state estimate, respectively.

6.4 Simulation results
This section presents a motion generation benchmark to validate the local planner
related to NLP (6.3). It particularly uses the Crazyflie nano-quadrotor dynamic
model as an example and whose physical parameters are summarized in Table 3.2.

6.4.1 Quadrotor benchmark
We consider a sampling time of ts = 15 ms and N = 50 shooting intervals in the
simulations. We use an ERK4 integration scheme through the automatic differenti-
ation and modeling framework CasADi to discretize the dynamics (3.33). Moreover,
the least squares cost residuals are described as

η(ξ, u) :=

(
ξi − ξri
ui − uri

)
, ηN (ξN ) := ξN − ξrN , (6.4)

where the quantities in (6.4) with the r superscript stand for the precomputed
desired references.

In our approach, for each obstacle in the workspace, we explicitly add new
constraints (6.3e)–(6.3f) to the NLP (6.3). In this chapter, two dynamic obstacles
are considered, thus nϵ = 2. Therefore, the gradients with respect to the lower (µl)
and upper (µu) slack penalty values are

µl = (14.5 · 103, 14.5 · 103),
µu = (14.2 · 103, 14.2 · 103).

(6.5)
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The weighting matrices are

W = blkdiag(30 · I2, 60, 1 · 10−1 · I4, 2, 3, 5, 3 · I3, 5 · 10−2 · I4),

WN = blkdiag(30 · I2, 60, 1 · 10−1 · I4, 2, 3, 5, 3 · I3).
(6.6)

For the robotic system at hand, the input bounds are umin = 0, umax = 22 krpm,
while the bounds for the slack variables are ϵmin = 0, ϵmax = 100 · 103. Finally, the
bounds for the collision avoidance constraint are dC = 0.2 m, dM = 100 · 103 m.

Reference trajectory Two different global reference trajectories are regarded.
They have been generated offline by solving the following NLP:

min
ξ0,...,ξN ,

u0,...,uN−1

1

2

N−1∑
i=0

‖η(ξi, ui)‖2W +
1

2
‖ηN (ξN )‖2WN

(6.7a)

s.t. ξ0 − ξ̄0 = 0, (6.7b)
ξi+1 − Fc(ξi, ui) = 0, i = 0, . . . , N − 1, (6.7c)
ui ∈ U , i = 0, . . . , N − 1. (6.7d)

We assume a time horizon of T = 3 s, N = 200 shooting intervals, discretizing
the dynamics (3.33) via an ERK4 integration method. The NLP solution pro-
vides the optimal trajectories that drive the nano-quadrotor from the hovering
state at p = (0, 0, 0.4) to the final desired state at positions: pd1 = (1,−1, 1) and
pd2 = (0.5,−0.5, 1). We regulate for qd = (1, 0, 0, 0) so that a straight line can approx-
imate the geodesic arc without significant problems. Note that, as the obstacles are
dynamic, the global references are unaware of them. Finally, we use IPOPT and the
just-in-time compiling function evaluations to solve the NLP up to convergence.

6.4.2 Software interface
The NLP results were obtained on an Intel Core i5-4288U @ 2.6 GHz running macOS
Catalina. Similar to Chapter 5, we use the acados Python template-based interface
to generate the library that implements the tailored problem formulation (6.3). The
QPs arising in this NMPC formulation are solved using the solver HPIPM, built
upon BLASFEO. The X64_INTEL_HASWELL implementation of the BLASFEO package
has been used. We have also employed the partial condensing routines implemented
in HPIPM.

6.4.3 Performance analysis
To evaluate the trajectory conservativeness introduced by the constraint approxima-
tion, we perform simulations comparing our real-time planner with LCL constraint
formulation to its counterpart. The latter refers to a planner where constraint
(6.3e) is defined by ‖·‖22. Both use the parameterizations presented in Section 6.4.1,
including the slack penalties values (6.5) and weighting matrices (6.6).

We now test the proposed NMPC under two simulated scenarios. First, the
Crazyflie must travel from a hovering configuration to another while avoiding balls
thrown at it. In this case, we assume that the obstacle’s movement between two
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Figure 6.4. Generated trajectories among moving balls (red): real-time planner with
LCL constraint formulation (orange), real-time planner with ‖·‖22 constraint formulation
(blue); reference trajectory is dashed. The ⋆ is the final goal.

shooting nodes is ballistic. Second, the Crazyflie must perform a similar task but in
a cluttered environment with fixed obstacles. These scenarios will help to illustrate
the NMPC performance. The results are presented in Figures 6.4, 6.5, and 6.6.

As expected, the planner with LCL constraint formulation generates trajectories
significantly closer to the minimum clearance dC when compared to its counterpart.
Besides, we note that there is no constraint violation. However, the effort required to
tune the slack penalties directly impacts the amount of constraint violation. Much
of the difficulty exists because, in this particular problem, the optimal solution will
frequently lie on the boundary of the feasible set. Therefore, imposing stringent
penalties – in the case of soft constraints – increases the difficulty in driving the
solution towards the optimum while distancing the local trajectories from the lower
bound.

Conversely, if the penalty is not strict enough, then the search will tend to
stall outside the feasible region and thereby violate the constraint. Although the
tuning considered in this work has provided a suitable closed-loop performance for
both real-time planners – with no constraint violation – there is no guarantee that
the violation will not occur. This is especially true in a real-world scenario, where
the state estimation deals effectively with the uncertainty due to noisy sensor data
and, to some extent, with random external factors, i.e., wind. One way to avoid
this shortcoming and recover feasibility is to retune the slack penalties of the soft-
constrained problem.
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Figure 6.5. Generated trajectories among static obstacles (red): real-time planner with
LCL constraint formulation (orange), real-time planner with ‖·‖22 constraint formulation
(blue); reference trajectory is dashed. The ⋆ is the final goal.
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Figure 6.6. Distance between the Crazyflie and the balls bi with LCL constraint formu-
lation (orange) and ‖·‖22 constraint formulation (blue). Inset shows the time instant of
closest proximity to the minimum clearance.

Lastly, we gathered the average solution time in acados to assess the computa-
tional complexity of the planner’s algorithm. The values for final desired positions
pd1 and pd2 were 4.76 ms and 7.97 ms, respectively, while for the cluttered environ-
ment, it was 8.5 ms. These results show the computational efficiency of the proposed
scheme.

6.5 Chapter summary
This chapter presented a new real-time motion generation scheme for quadrotors in
dynamic environments. The key concepts contributing to the method’s effectiveness
stem from the algorithmic ideas tied to the RTI scheme to formulate a least conser-
vative linearized constraint. The chapter provided a reformulation that guarantees
less conservative trajectories for planners whose optimization algorithm is based on
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the Newton-type method. Strategies to ensure both constraint satisfaction and fea-
sibility of the optimization problem have also been discussed. Finally, the approach
was tested in simulation on a challenging example involving a high-dimensional
quadrotor system, showing efficient computational performance.
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Chapter 7

Mixed-initiative control via
real-time NMPC for safe
human-quadrotor interaction

7.1 Motivation and contribution

Quadrotors have been widely used across various applications, resulting in a signif-
icant market expected to grow exponentially. Due to this increasing demand, one
can envisage that, in the future, learning to fly a quadrotor will become a taken-
for-granted skill, just as learning to drive a car nowadays. A first step towards
making this idea a realistic prospect could be a mixed-initiative control approach
that guarantees the aerial system’s “working conditions” while the novice operator
learns to fly it. In other words, as long as some safety- and/or task-related rules
are met, the operator commands are obeyed. Once novices start working in the
context of complex tasks, it is essential to provide them with assistance that gradu-
ally decreases as their skill increases – here, skill refers to the knowledge and ability
that allow the use of the robot to accomplish a task. Conversely, one could think
of an experienced operator who already has the skill level that enables him/her to
fly a quadrotor. But as his/her cognitive load is primarily focused on the short-
term aspect of the task, he/she cannot consider other underlying factors in the long
run (e.g., safety). It is then essential to have a control approach that supervises
the long-term task to prevent the operator from being overwhelmed by (too) high
engagement.

To fill these gaps, this paper proposes an efficient mixed-initiative controller
based on NMPC to enforce safety in human-quadrotor interactions. The primary
objective of this study is to provide a “safety-layer” controller over which one may
define metrics to assess pilots’ learning curves. The technical difficulties associated
with the proposed controller are twofold: first, satisfy both the existing constraints
and the human intentions; second, solve the underlying optimization problems that
include a high-dimensional quadrotor system under the available computation time.
We demonstrate how to handle these difficulties using concepts of zone MPC [220]
and online weight adaptation within the RTI scheme. We exploit high-performance
numerical optimization algorithms to further speed up solution times, including a
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structure-exploiting convex solver and linear algebra kernels for small-to-midsize
matrices. The mixed-initiative controller is validated in simulation against a second
autonomous algorithm that emulates pilots with different skill levels. The main
contributions of this chapter are:

• A mixed-initiative control scheme for human-quadrotor systems based on
NMPC with safety guarantees.

• Numerical simulations that show the effectiveness and computational effi-
ciency of the proposed algorithm.

The proposed mixed-initiative (MI) control approach for human-quadrotor inter-
action leads to major advantages compared to existing methods if applied to our
scenario. Unlike [221, 222, 200, 223], our approach offers a rigorous predictive diag-
nosis of interaction degradation so that most of the control authority is allocated
to the most capable agent, ultimately yielding a time-varying synergy between the
human and the automatic controller. While the predictive behavior is relevant in
a highly nonlinear context (disregarded in previous works), the dynamic synergy is
particularly important to manage the control authority in conflict situations, i.e.,
when human and automatic controller commands are rather different. To the best
of our knowledge, this is the first work that subsumes the advantages of the RTI
scheme, zone MPC, and high-performance algorithms to synthesize a nonlinear MI
controller cognizant of how to mix control authority to enforce safety and with
real-time capabilities. For this reason, this work makes a significant contribution
to human-robot interaction literature.

7.2 Related works
One way robots and humans can interact is to put the human in the loop with some
blending scheme [221]: the human and the automatic controller have control over the
robot, and both systems must adapt to ensure task completion. Figure 7.1 illustrates
a couple of cases. For example, in exoskeleton systems, the interplay between robot
and human may be characterized as an interaction between teacher and student in
a learning process. The teacher (robot) tries to minimize the student (human) error,
applying a minimal effort [222, 224]. In the context of autonomous cars, the driver
interacts with the automatic controller that aims at reducing the driver’s workload
and, at the same time, taking prompt actions in case of human failure [200, 223].
For human-swarm systems, the interaction paradigm is less obvious. As the size of
the swarm increases, control should become more focused on the swarm as a whole
rather than on the individuals, given the human’s limited capacity to multitask.
In this case, the interaction is more concerned with the human-swarm ability to
accomplish a particular task than with the swarm spatial positioning [225, 226].

Other interactive approaches rely on methods designed from the human perspec-
tive, where, in general, the presence of haptic cues (e.g., force feedback) increases
situational awareness. These methods lean heavily in favor of perceiving the human
as the source of action and the robot as the passive collaborator. Figure 7.2 depicts
a pair of situations. For instance, virtual fixtures have been used to inform the
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Figure 7.1. (left) Cyberdyne lower-limb exoskeleton for assisting patients with brain
and mobility disabilities as well as non-medical purposes such as eldercare and worker
assistance device; (right) bimanual teleoperation of the Centauro robot in a scenario
with rough terrains and austere conditions, typical characteristics of disasters.

operator of the highest comfort position, distance from the target position, prox-
imity to unsafe kinematic configurations, or misalignment in contact-driven surface
conditioning tasks [227, 228, 229]. Obstacle avoidance is one of the most critical
requirements to be met in many robotics scenarios. In this matter, researchers
have been using haptic feedback to warn the operator about instantaneous col-
lisions [230, 231, 232, 233]. Several human-collaborative schemes are compared
in [234] where it is shown that haptic feedback is one of the main aspects. Among
other considerations, it should be noted that the method used to generate assistive
haptic cues strongly determines the usefulness of kinesthetic guidance to a large
extent. For this reason, considerable effort has been put into introducing new assis-
tive methods to improve task performance explicitly. The authors in [235] propose
a force-feedback telepresence method based on an external wrench estimation that
enables the operator to feel, e.g., wind and contact forces. In [236], a human-teacher
receives haptic feedbacks from a robot-learner through virtual fixtures that produce
assistive forces and torques toward the learned kinematic behavior. Analogously,
[237] use the gradient of an artificial potential field to generate repulse forces that
help humans to avoid touching adjacent vessels while operating surgical robots. In-
terested readers are referred to [238, 239, 240, 241] for the introduction of other
noteworthy methods.

Figure 7.2. (left) Mantis, a lightweight, affordable force feedback device; (right) BlueHap-
tics framework providing haptic feedback in a manipulator guidance task.
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7.3 Problem statement
The fundamental problem in mixed-initiative control is how to blend human inputs
and automatic controller commands to realize the former as much as possible while
always enforcing safety. In this context, the formulation of our problem hinges upon
the following given components:

• A robot represented by a certain nonlinear, time-varying dynamic system

ϑ̇ = f(ϑ, u), (7.1)

subject to a set of constraints, where states, control inputs, and dynamics
map are denoted by ϑ ∈ Rnϑ , u ∈ Rnu and f : Rnϑ ×Rnu → Rnϑ , respectively.

• A motion generator providing a reference trajectory ηr for the task variables
η = c(ϑ), which take values in Rnη . Typical examples of task variables are
a subset of the state variables or the position of some relevant point of the
robot. As for the motion generator, it can be either an offline planner (such
as a motion planner among obstacles) or an online controller.

• A human assigning reference values νr to some subset ν ∈ Rnν of the state vari-
ables through a control interface. These signals are henceforth called human
inputs and convey human intentions.

• A set of working conditions defining requirements on the state for the robot to
operate healthily. These can include both safety rules (e.g., maximum kinetic
energy, maximum dissipation) and task-related rules (e.g., the accuracy of
end-effector positioning). We assume that working conditions are such that
the associated feasible set is convex.

For this setting, we want to devise a mixed-initiative controller that will attempt
to execute human inputs as much as possible without compromising both working
conditions and constraints inherent to the robot’s physical limitations. As we will
see, in addition to the mixed-initiative controller itself, the control algorithm also
includes a blending mechanism that predicts the violation of working conditions and
lends most of the control authority to the most capable agent at any time.

7.4 Control architecture
The mixed-initiative controller considers the human operator and the motion gen-
erator as two different agents. The blending mechanism assesses the working condi-
tions’ violation and distributes control authority accordingly. For example, working
conditions may include a requirement of collision-free motion. If human inputs ig-
nore this, a violation will be predicted, and the blending mechanism will shift more
control authority to the motion generator. Overall, this controller can be seen as an
assistive scheme for novice and experienced pilots. For the former, it allows them
to learn to fly a quadrotor without crashing it. For the latter, it introduces some
level of disengagement from which they can profit to perform manual flights without
focusing on avoiding obstacles. In the following, we describe in detail the proposed
algorithm.
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Figure 7.3. A block diagram of the proposed mixed-initiative control algorithm.

7.4.1 Algorithm overview
Mixed control is accomplished through a mixed-initiative NMPC controller whose
cost function – the mixed-initiative cost – is a convex combination between the actual
robot cost and the human input cost. The latter is a cost term that penalizes the
deviation from the human inputs. The proposed blending mechanism is a continuous
function between 0 and 1, named predicted healthiness index, that drives the convex
combination. It is computed in this way: when the index tends to 0, the working
conditions’ violation is too close and, hence, the mixed-initiative cost tends to the
actual robot cost. When the index tends to 1, the violation is far enough and,
therefore, the mixed-initiative cost tends to the human input cost.

Based on the state solution of the NMPC controller, at each time instant, the
predicted healthiness index computes how far the robot is from violating these
conditions within a virtual horizon whose length is defined by the designer. It then
selects a value between 0 and 1 and blends the individual costs. The idea is that
the closer the index to 0, the more troublesome it will be to keep the system within
the working conditions in the next virtual horizon, even if full control is given to
the motion generator (and human inputs are heavily ignored from that moment on).
Vice-versa, the closer the index to 1, the easier the motion generator’s job will be if
it takes full control of the system. Figure 7.3 shows a block diagram of the proposed
algorithm.

7.4.2 Mixed-initiative controller
When using NMPC to control a system, a nonlinear nonconvex program is solved
using the current state as the initial value at each sampling instant. However,
as the computational burden associated with the solution can be rather long, the
employment of NMPC has only recently been extended to applications where shorter
sampling times are required [2]. Typically, a continuous-time, infinite-dimensional
OCP is tailored according to the problem at hand, discretized into N intervals
using a time step ∆t over a fixed time horizon tN , and then solved. In doing so,
the tailored OCP is transcribed into a discrete-time, finite-dimensional NLP, now
defined over a refined coarse grid [t0, tN ], for which the KKT conditions are set up
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and solved at each sampling interval [tk, tk+1]. In our approach, we cast the MI
controller as a constrained NLP with linear least-squares tracking cost, formulated
as follows:

Problem 1 (Mixed-Initiative Controller).

min
ϑ0,...,ϑN ,
u0,...,uN−1

N−1∑
i=0

L(ηi, νi, ei, ui) +M(ηN , νN , eN ) (7.2a)

s.t. ϑ0 − ϑ̄0 = 0, (7.2b)
ϑi+1 − F (ϑi, ui) = 0, i = 0, . . . , N − 1, (7.2c)
ϑi ∈ X , i = 1, . . . , N − 1, (7.2d)
ui ∈ U , i = 0, . . . , N − 1, (7.2e)

where

L(·) = 1

2
((1− λ)∆ηTi Qη∆ηi + λ∆νTi Qν∆νi + (1− λ)∆eTi Qe∆ei + (1− λ)uTi Rui)

M(·) = 1

2
((1− λ)∆ηTNQηN∆ηN + λ∆νTNQνN∆νN + (1− λ)∆eTNQeN∆eN ).

Here, the functions L and M represent the stage and terminal cost terms, re-
spectively, which are weighted by the positive-definite matrices Qη, QηN ∈ Rnη×nη ,
Qν , QνN ∈ Rnν×nν , Qe, QeN ∈ Rnh×nh , and R ∈ Rnu×nu . The convex polytopic
sets X and U implement the state and input constraints associated with the physical
limitations of the robot. The horizon length is denoted by N while ϑ̄0 denotes the
current state estimate.

Moreover, we denote the task variables tracking error as ∆ηi = ηi − ηri , ∆ηN =
ηN − ηrN , and the human inputs’ tracking error as ∆νi = νi − νri , ∆νN = νN − νrN .
The cost function also includes other penalty terms that may be relevant to the
specific application. Their tracking errors are denoted as ∆ei = h(ϑi)− eri , ∆eN =
hN (ϑN )−erN , where the output functions h(ϑi), hN (ϑN ) ∈ Rnh and their respective
references eri , erN ∈ Rnh are defined by the relative complement Rnϑ \ (Rnη ∪ Rnν ).

The scaling factor λ ∈ (0, 1) is the output of the blending mechanism and is
used to determine how control authority should be mixed. Looking at the cost
function, one can observe that increasing the value of λ will give more weighting
to the human inputs than the motion generator commands. Note that we consider
an open interval because we are interested in strictly convex problems. Finally,
once the solution for interval [tk, tk+1] is computed, the first element of the input
trajectory u0 is applied to the system before shifting the horizon forward in time,
see Figure 7.3.

7.4.3 Working conditions
While the particular requirements that a robot has to obey may differ from one
system to another, a generic approach is to express these requirements through
suitable working conditions. Here, these conditions are designed to help pilots fly a
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quadrotor along a collision-free trajectory in an arena with obstacles. To this end,
we impose a maximum deviation r ∈ R>0 from the reference trajectory to enforce
safety. In terms of Euclidean norm, this condition reads as follows:

d(η) = ‖η − ηr‖ ≤ r. (7.3)

Any point η satisfying (7.3) describes a convex free region B, which we defined as

B = {η ∈ Rnη : ‖η − ηr‖ ≤ r}. (7.4)

Note that B is a norm ball fully described by its center point ηr. This observation
implies that the robot is softly constrained to move inside of a ball, where its actual
trajectory is just one of the possible trajectories that avoid collisions, and at best,
it is the reference trajectory itself. Although we rely on a map and a collision-
free trajectory, one can tailor the method in two ways to deal with unstructured
environments: (a) the motion generator can plan collision-free trajectories by taking
into account the nearby obstacles detected by the robot sensors; (b) the MPC itself
can do the same by incorporating an explicit collision avoidance constraint in the
formulation and using the robot sensors to set up this constraint, e.g., see [242, 243].

Unlike the constraints in the MI controller, i.e., Eq. (7.2b)–(7.2e), the working
conditions may be seen as “soft constraints” that facilitate the decoupled design of
the safety- and/or task-related rules through the task variables. By defining them
this way, we dovetail zone MPC ideas into our MI controller. Zone MPC is used
when the specific setpoint of an output variable is of low relevance compared to a
zone delimited by upper and lower bounds, typically read as a soft constraint [220].
This idea can be easily accommodated by choosing a suitable weighting matrix to
penalize the output deviation in the cost function. For a linear least-squares tracking
cost, an output deviation, which depends linearly on the states, causes the cost to
strictly increase as one moves away from the reference. This increase is acceptable as
long as the deviation rests inside the zone. As the deviation crosses or approaches
the zone’s boundary, large penalty weights are set. We revisit this concept by
making the weighting matrices of human and actual robot costs antagonist: when
the task variables’ prediction lies outside B, the human cost weighting gets closer
and closer to zero, while the actual robot cost weighting tends to a high value, which
brings back the prediction to the interior of B. The self-optimizing output variables
allow safety enforcement to the best possible degree. However, minor violations may
still occur due to the soft constraint nature of this approach. In principle, one can
enforce η ∈ B as a hard constraint (if deemed necessary) by defining a task-related
working condition. Nevertheless, such a constraint will inevitably be made soft in
a practical implementation.

7.4.4 Predicted healthiness index
As previously established, the robot must remain inside B to enforce safety. Based
on that, at each sampling instant tk, we use the state solution of Problem 1 at time
tk−1 to compute the predicted healthiness (PH) index λ : (0, r) 7→ (0, 1), i.e., the
blending mechanism. More precisely, we measure how far the robot is from violating
the ball’s boundary within a virtual horizon whose length is defined by Nb ≤ N .
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Figure 7.4. Left: pictorial description of the function (7.7). Dashed red lines indicate
the bounds on dmax. Particularly, when dmax = r then dsat = µ1r. Analogously, when
dmax = 0 then dsat = µ2r. Right: an illustration of the function defined in (7.8) showing
a profile relatively quadratic for penalizing residuals inside B.

Then, we select an index λ between 0 and 1 that is used to determine the weighting
in Problem 1. The fact that Nb may differ from N allows the designer to choose
the level of insight that the blending mechanism should have into the interaction.
In what follows, we formally define the PH index.

Given a virtual horizon with Nb intervals and the predicted ηi|k−1 from the state
solution of Problem 1 at time tk−1, let us first select the largest residual within B

dres = max
i=0,...,Nb

‖ηi|k−1 − ηri|k−1‖ (7.5)

and ensure that it does not outstrip the upper limit allowed

dmax = min(dres, r). (7.6)

Then, to make sure the PH index is a strictly positive function in the range of
interest, let us consider a saturation function dsat : [0, r] 7→ (0, r) defined by the
following Richards curve:

dsat(dmax,Λ) =
µ1r

(1 + ζ · exp{−θ2(dmax − µ2r)})1/ζ
∈ (0, r), (7.7)

where Λ = (µ1, µ2, θ2, ζ) is a quadruple that parameterizes the curve (see Figure 7.4-
left). In particular, µ1 is a constant related to the the upper asymptote and whose
value is close to 1 but strictly less than 1, µ2 is a positive real number related to
the lag phase, θ2 is the growth rate, and ζ is a positive real number known as the
shape parameter1.

Definition 13 (PH index). The PH index is defined as

λ(dsat) =

√
r2 − d2sat
r

∈ (0, 1). (7.8)
1The shape of the dsat curve depends on ζ. If ζ = 1, one has the logistic function. If ζ tends to

zero, the curve converges to the Gompertz function.
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An illustration of function (7.8) is provided in Figure 7.4-right. Its profile indicates
how the MI controller shapes human control authority. The outcome strongly de-
pends on the combination of the r value and Λ tuning. For instance, one shall
choose µ1 as close to 1 as possible so that the extrema of λ get as close as possible
to 0 and 1, expanding the range of human control authority. Factor µ2 shall be
selected relatively close to 0 as it influences the offset within B at which human
control authority starts to decrease. The rate of decrease θ2 is defined by the slope
at the inflection point. The parameter 0 < ζ ≤ 1 controls the sigmoid curvature.
An in-depth analysis has shown that this parameter has little effect on the blending
mechanism.

7.5 Simulation results

This section describes the numerical testbeds for studies on human-quadrotor inter-
action with emulated pilots. The results are discussed in terms of the effectiveness
and efficiency of the MI controller.

7.5.1 Human-quadrotor benchmark

Robot Let us denote with {I} the inertial frame, and with {B} the body frame
located at the quadrotor’s CoM. The quadrotor state is composed of its position
p = (x, y, z) ∈ R3 expressed in {I}, orientation γ = (ϕ, θ, ψ) ∈ R3, linear velocity
vb = (vx, vy, vz) ∈ R3 expressed in {B}, angular rate ω = (ωx, ωy, ωz) ∈ R3 expressed
in {B} and rotational speed of the propellers Ω = (Ω1,Ω2,Ω3,Ω4) ∈ R4, bounded
by X = {Ω ∈ R4 : Ω ≤ Ω ≤ Ω̄}. The system control inputs are the rotor torques,
defined by u := (τ1, τ2, τ3, τ4) ∈ R4 and constrained in magnitude U = {u ∈ R4 : u ≤
u ≤ ū}. Its nonlinear dynamics are then given by the first-order ODEs (3.35). As
an example, we report in Table 3.3 the values of the dynamic parameters appearing
in (3.35) corresponding to the MikroKopter quadrotor platform. Note that a more
intuitive tuning of the weights associated with the human and actual robot costs is
possible thanks to the model scaling.

Reference trajectory An offline planner provides a Cartesian helical trajectory
ηr that avoids collisions with existing obstacles. This means that task variables
are defined as η := p ∈ R3. Note that the reference trajectory implicitly enforces
safety.

Pilot inputs Usually, pilots provide the quadrotor with the desired roll, pitch, z
angular rate, and total thrust, i.e., g = (ϕh, θh, ωz, Fz,h) ∈ R4. For simplicity, we
assume that the desired z angular rate is zero throughout the task, and the total
thrust is mapped into the speed of the propellers, i.e., νr : g 7→ R6.

Literature suggests that MPC provides a favorable basis for shaping the human
decision-making process (see [244] and references therein). Supported by these
findings, we use a second NMPC controller to simulate the inputs of a human pilot.
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Its finite-time OCP reads as follows:

min
ϑ0,...,ϑN ,
u0,...,uN−1

N−1∑
i=0

Lh(ηi, γi, vb,i, ωi,Ωi, ui) +Mh(ηN , γN , vb,N , ωN ,ΩN ) (7.9)

s.t. (7.2b) − (7.2e),

where

Lh(·) =
1

2
(∆ηTi Q1∆ηi + γTi Q2γi + vTb,iQ3vb,i + ωT

i Q4ωi +∆ΩT
i Q5∆Ωi + uTi R1ui)

Mh(·) =
1

2
(∆ηTNQ1N∆ηN + γTNQ2NγN + vTb,NQ3Nvb,N + ωT

NQ4NωN +

∆ΩT
NQ5N∆ΩN ).

Therein, ∆Ωi = Ωi − Ωhov for i = 0, . . . , N represents the propeller speed errors,
with Ωhov =

√
mg/4CT . The weighting matrices are denoted by Qj , QjN � 0 for

j = 1, . . . , 5 and R1 � 0. In particular, constraint (7.2d) represents the control
interface’s real limitation.

At each sampling interval [tk, tk+1], the solution of (7.9) is computed and the
predicted state at stage i = 1 is used as pilot inputs, namely

ϕh = ϕ⋆1, θh = θ⋆1, Ωh = Ω⋆
1. (7.10)

Remark 3. In practice, the total thrust coming from the joystick can be easily
mapped into the propellers’ desired speed and passed to the MI controller if one uses
Eq. (3.20) assuming hovering condition, i.e., Ω1 = Ω2 = Ω3 = Ω4 = Ωss, yielding

Ωss =

√
Fz,h

4CT
, Ωh = Ωss·14.

Different skill levels are obtained by shaping the weighting matrices of the
NLP (7.9). Flying a quadrotor is less automated for novice pilots and, for this
reason, requires more of their attention span than experienced ones. Due to their
limited self-regulatory ability, their inputs tend to be oscillatory. On the contrary,
experienced pilots’ inputs tend to be more precise, presumably reflecting their abil-
ity to use sensory cues to support their actions. These behaviors were emulated
considering distinct tuning for matrices Qj , QjN . Experienced pilots are sketched
by an improved tracking performance with a heavily weighted sum of squares. Op-
positely, novice pilots underperform using relatively small weights that allow for
larger reference deviations.

Assumption 3. Since, in practice, we need to predict human inputs to solve Prob-
lem 1, we chose to use a zero-order hold (ZOH) method. This prediction method
assumes that future human inputs will all be the same as current ones, an assumption
that has proved effective in experimentation, [245].

Additional penalty terms As previously hypothesized, pilots would typically
perform continuous maneuvers by changing their inputs all the time. To preserve
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smoothness in the generated trajectory, we consider additional penalty terms in the
MI controller cost function. These terms rely on the following output functions:

h(ϑi) = hN (ϑN ) = (ψ; vb;ω) ∈ R7 (7.11)

and their corresponding references

eri = erN = 07. (7.12)

The vector of zeros implies two underlying assumptions: first, we are not dealing
with aerobatic maneuvers; second, we assume it is an educated guess to initialize
and, thereby, speed up the subsequent optimization algorithm.

NLPs parameterization Among several approaches available to discretize conti-
nuous-time OCPs, this work will use direct multiple shooting due to its convergence
and initialization properties. Assuming an equidistant grid and piecewise constant
control parameterization, the following initial value problem defines the state tra-
jectory ϑ(π) at each shooting interval:

ϑ̇(π) = fm(ϑ(π), ui), ϑ(ti) = ϑi, π ∈ [ti, ti+1]. (7.13)

Function (7.13) is evaluated numerically, i.e., ϑ(ti+1) ≈ Fm(ϑi, ui), using a single-
step ERK4 per ∆t. Additionally, we approximate the Hessian of the Lagrangian
using the GGN method so that structure-exploiting convex solvers can make the
most of the block structure of the resulting QP.

7.5.2 Software interface
In this chapter, we will be using the RTI method’s implementation in acados.
Through acados Python template-based interface, we generate the library that
implements Problem 1, which is then wrapped by our framework written in Python.
The QP subproblems arising in the SQP algorithm in acados are addressed using the
HPIPM solver, and BLASFEO, which is hardware-optimized for the moderately sized
matrices present in our mixed-initiative NMPC. We use the X64_INTEL_HASWELL
implementation in BLASFEO. Solution times are further reduced by reformulating
the QPs resulting from our NMPC using the efficient partial condensing algorithm
implemented in HPIPM.

7.5.3 Performance analysis
The parameters used for all the testbeds in the blending mechanism and the mixed-
initiative NMPC are in Table 7.1. In particular, we adopt a short virtual horizon
Nb to compensate for the fact that with a ZOH method, pilot inputs would have a
natural tendency to violate the norm ball’s boundary in the long run. The chosen
value is a compromise between the base level of “trust” in the human inputs and
the switching frequency of control authority. Another assumption is that λ = 0.5
during the first iterations, i.e., control authority is equally distributed. As previously
mentioned, the testbeds incorporate a second autonomous algorithm that emulates
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Figure 7.5. Generated trajectories among obstacles (purple) using our mixed-initiative
NMPC: novice pilot (blue); experienced pilot (red); reference trajectory is dashed; the
⋆ marks the final goal.

a novice and an experienced pilot. This will enable a comparative analysis of our
approach.

Figure 7.5 displays the trajectories generated by the MI control algorithm for
both pilots. The results show that the controller maintained the quadrotor inside B,
successfully avoiding all obstacles in all cases (see also Fig. 7.7-left). In Figure 7.6,
we observe that the mixed-initiative NMPC commands closely follow the pilot inputs
when the safety constraint is unlikely to be violated. This outcome is more evident
for the experienced pilot, where the lines overlap almost completely, implying that
the inputs issued kept the quadrotor closer to the reference trajectory. From Figure
7.7-right, it is obvious that the blending mechanism begins to drop off rapidly the
level of control authority for the novice. At the same time, it maintains a relatively
high level for the experienced pilot. Overall, note that the control algorithm assists
the novice through what is often a very challenging part of their learning journey,
the damping in pitching-rolling motions. The algorithm can keep up considerably
with the signals’ pattern (preserving the pilot’s primary intentions), but attenuates
their magnitude to cope with the safety constraint. Also, as the physical constraints
herein regarded are linear, they can be enforced very efficiently by the optimization
algorithm (see Figure 7.8).

Including maximum deviations provides versatility in the quadrotor motion gen-
eration. First, it gives a certain level of spatial freedom so that the quadrotor can
leverage the motion by exploiting its dynamics. Second, it similarly adds new de-
grees of freedom to the controller. From a theoretical point of view, the control
objective of the mixed-initiative NMPC can be seen as a target set (in the space of
the task variables) instead of a target point, since inside B there are no preferences
between one point and another.

The findings here indicate that the proposed algorithm provides pilots with more
control authority without sacrificing safety or even exceeding the robot’s physical

Table 7.1. Parameters used by the blending mechanism and the mixed-initiative NMPC

Ω 04 Ω̄ 0.09 ·14 kHz µ1 0.99
u −0.1285 ·14 Nm ū 0.1285 ·14 Nm µ2 0.3
tN 0.75 s N 50 θ2 55
r 0.175 m Nb 10 ζ 1·10−13

Qη = QηN = blkdiag(100 ·I2, 200), Qν = QνN = 800 ·I6,
Qe = QeN = blkdiag(10, 3 ·I5, 10), R = 70 ·I4
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limits. Therefore, it has the potential to pave the way to the definition of a standard
assistive scheme that can lead to a future improvement in pilot decision-making
performance.
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Figure 7.6. Pilot inputs generated by an autonomous algorithm and mixed-initiative
NMPC commands as a result of the blending mechanism.
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Figure 7.8. Generated propeller speeds; the upper bound Ω̄ is dashed.

7.5.4 Computational burden
Solution times reported are from an Intel Core i5-4288U @ 2.6 GHz running macOS
Catalina. For a horizon of N = 50, the resulting QP has 1016 optimization vari-
ables. The testbeds showed that HPIPM is significantly faster in solving the partially
condensed QP than the corresponding dense QP. In this context, computational
efficiency is granted through partial condensing as it allows us to exploit hardware
throughput better. The average times per SQP-iteration in acados were 4.27 ms
for the novice and 3.87 ms for the experienced pilot. Interestingly, one can modify
Nb and potentially improve the blending mechanism performance without affecting
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solution times significantly. Figure 7.9 shows that changes in Nb affect marginally
the solution times. Note that cases in which solution time is larger than ∆t or the
solver fails are handled using the previous feasible solution at stage i = 1.
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Figure 7.9. Violin plot representations of solution times associated with the mixed-
initiative controller in simulations with a novice (left) and an experienced pilot (right).
Central bars represent the mean values for each virtual horizon Nb.

7.6 Chapter summary
This chapter presented a novel mixed-initiative control algorithm based on NMPC
to enforce safety in human-quadrotor interactions. The algorithm adopts a predict-
then-blend approach to mix human inputs and motion generator commands during
operation. It assesses whether safety rules are met to perform the control author-
ity blending through the quadrotor’s predicted positions. Then it uses an efficient
RTI-based scheme that iteratively refines the combined costs so that all NMPC
constraints are fulfilled within the available computation time. Simulations showed
that the approach allows safety enforcement with specific benefits for useful assis-
tance to pilots, especially novices, and low computational effort. Thanks to high-
performance software implementations, we could further speed up solution times
and achieve computational efficiency.
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Chapter 8

Conclusions and future research

This thesis has contributed with an assortment of tailored algorithms for real-time
motion generation in robotic systems capable of taking full advantage of NMPC
potentialities. For this purpose:

Chapter 2 first introduced the numerical optimization algorithms that form the
basis for implementing NMPC in real-time. Suitable parameterization of the op-
timization variables is an essential element when considering direct methods for
transcribing OCPs that typically arise in MPC. The chapter presented and dis-
cussed the choices made concerning the control and state parameterizations that
gave rise to a general multiple shooting-type NLP. These choices culminate into a
large NLP but with highly structured linear subsystems, where structure-exploiting
algorithms play a crucial role in meeting strict real-time limits. The chapter con-
tinued explaining SQP methods and their relation with Newton-type optimization,
motivated by the fact that many motion generation problems are formulated using
a quadratic interpretation of the resulting NLP. The chapter provided a broader
view of how Newton-type optimization algorithms approximate the Hessian matrix
in terms of convergence rate and computational complexity. In particular, it is
shown that the GGN method’s properties make it a suitable candidate when ad-
dressing the QPs resulting from the practical applications of interest in this thesis.
The fast solution of the QP subproblems inspires a follow-up outline on efficient
structure-exploiting algorithms. It is shown that one can condense the sparse QP
into a smaller but dense one and solve it using, e.g., an efficient active-set method
QP solver. Alternatively, one can introduce a new degree of freedom to the algo-
rithm to find the optimal level of sparsity for the QP of interest and directly use a
structure-exploiting QP solver. This outline is leveraged by showing the situations
in which these condensing approaches may be favorable. The chapter finally binds
together the various theoretical concepts on numerical optimization to present the
well-established RTI scheme, the algorithm used by the real-time NMPC controllers
in the thesis.

Chapter 3 provided the mathematical derivation of the nonlinear models of a
double inverted pendulum – also known as the Pendubot – and a quadrotor. Unlike
the Pendubot, whose most popular model already exposes existing rotor torque
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limitations, the quadrotor model requires proper conjectures that force the modeler
to state the system’s dynamic limitations explicitly. The chapter showed that the
chosen quadrotor model is a compromise between the amount of fidelity to the real
system and the simplicity that allows for feasible solutions in real-time on resource-
constrained hardware.

Chapter 4 described the design and implementation of a real-time NMPC con-
troller tailored to the Pendubot and with the aim of tracking its unstable equilib-
rium points. The controller considers the bounds on the rotor torque and some op-
erational constraints relevant to the task. However, because of model uncertainties
and sensor noise, the NMPC solution turned out infeasible in practice. To overcome
this shortcoming and, thereby, recover local feasibility, operational constraints were
softened by including slack variables into the optimization problem. Thereupon, ex-
perimental results showed that the robot successfully performed the swing-up task,
despite minor violations of operational constraints. Condensing proved favorable at
the consider horizon, i.e., N = 10, making any solver based on dense linear algebra
competitive in terms of fast solution times.

Future research: Exact penalty functions, such as ℓ1 and ℓ∞ norms, have a nat-
ural advantage that constraints are violated only when necessary. On the other
hand, ℓ22 penalty functions are known for placing extreme emphasis on constraint
violations in a jagged way, requiring sufficiently large penalization parameters to
enforce feasibility, which potentially leads to more steps and, hence, more func-
tion evaluations. Motivated by these problems, the reassessment of the controller’s
performance in terms of penalty functions could be a future study.

Chapter 5 presented an efficient position control architecture based on real-time
NMPC with time-delay compensation for quadrotors. The architecture consists of
predicting the state over the RTT using an ERK4 integration scheme during the esti-
mation phase and then passing it to the NMPC, which considers the propeller speed
limitations. Efficiency is attained through high-performance software implementa-
tion covering the RTI scheme, a tailored partial condensing algorithm, a structure-
exploiting QP solver, and a hardware-optimized LA library. The proposed control
architecture achieved high-accuracy tracking performance, computational efficiency,
and constraint satisfaction, as demonstrated by the experimental results.

Future research: Communication time-delay has a deep-seated relationship with
custom packages’ payload size, meaning that time-delay is naturally time-varying.
In this light, one can enhance the state predictor by considering an integrator where
the RTT is estimated online. Since with the current approach, no clock synchro-
nization is required, one can use the timer of the device in which all computations
are performed to measure the current RTT and use it as the integration step. In
this way, it is possible to take hold of time-varying delay cases and improve control
performance due to more accurate delay measurements. One can further improve
the performance by including two integration schemes onboard the Crazyflie. They
should run at the frequency of the attitude and rate controllers so that NMPC com-
mands are reachable within the respective sampling rates. This second enhancement
is expected to reduce the existing position overshoots considerably.



107

Chapter 6 proposed a novel real-time motion generation approach for quadrotors
in dynamic environments drawn upon the RTI scheme, where a least conservative
linearized constraint was dovetailed to reduce conservativeness in the generated
trajectories. The chapter included a theoretical analysis proving that the proposed
constraint formulation is less conservative for planners based on the Newton-type
method than those based on a fully converged NMPC approach. This was done by
showing that the affine outer function in the proposed original nonlinear constraint
formulation is identical to its linearization, while the outer strongly convex function
of the alternative baseline, when linearized, leads to an underestimator. The chapter
further leveraged this analysis to overcome the numerical difficulties associated with
the (local) feasibility of the optimization problem. Simulations considering the
Crazyflie nano-quadrotor dynamic model validated the approach and, at the same
time, reassured the claim of efficient computational performance.

Future research: Future developments involve real-world implementation and
investigation of the algorithm’s sensitivity to initialization. In practice, when a
high-quality initial guess (e.g., dynamically feasible, collision-free, etc.) is available,
one should use it. However, a global planner capable of providing such an initial
trajectory is often not available and may be expensive to design or time-consuming
to run. An investigation in this direction can reveal how challenging it is for the
proposed method to improve on, for instance, initial guesses going straight through
multiple obstacles.

Chapter 7 introduced a new control algorithm based on real-time NMPC to en-
force safety in human-quadrotor interactions. The algorithm uses the optimal state
solution to assess whether safety- and/or task-related rules are fulfilled to blend
human inputs and motion generator commands. The blending mechanism is a con-
tinuous function, named PH index, which is in charge of measuring how much the
rules are being violated and lending the most control authority to the most capable
agent at any time. The RTI-based mixed-initiative NMPC controller refines the
combined commands to fulfill all intrinsic constraints within the available computa-
tion time. Numerical testbeds considering simulated pilots with different skill levels
indicated that the algorithm could assist pilots, especially novices, and reduce the
risk of crashes. The results also underpinned the MI controller’s computational
efficiency, even under the challenge of finding a solution for an NLP that contains
a high-dimensional quadrotor system within restricted execution times.

Future research: One future development is the inclusion of an actual human
in the loop by integrating a joystick and a graphical user interface to the testbed
environment. A natural subsequent step is to upgrade the framework to integrate
a real quadrotor. It is desirable to develop metrics that help assess pilots’ learning
curves and provide real-world evidence of improved proficiency. Additionally, it
would be beneficial to investigate the stability of the MI controller.
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