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Abstract: The correct localization of brain tissue deformation 

and determination of the tumor growth relies majorly on the 

accuracy of the process known by image registration. Poor 

registration may lead to misclassified diseases and highly affect 

image-guided surgery and radiation therapies. Voxel-based 

morphometry (VBM) is an image analytical technique 

encompassing accurate registration but suffers from intensive 

time computations, similar to most of image registration 

techniques. Achieving the compromise between accuracy and 

computations is a challenging mission. Field programmable gate 

arrays have fast-evolving and customizable hardware acceleration 

capabilities that promise to help speed up computational tasks. 

This paper presents a software/hardware co-design model for 

accelerating the implementation of the diffeomorphic image 

registration algorithm ‘DARTEL’ as a part of VBM that analyzes 

MRI images. An optimized and pipelined hardware architecture is 

proposed and integrated into the Statistical Parametric Mapping 

(SPM) software tool that runs the DARTEL.  Acceleration of the 

DARTEL registration algorithm resulted in a speedup factor of 

114x on function-level, compared to the CPU with a contribution 

of 8x faster for the overall performance in the registration process 

of the SPM. The proposed model is successfully validated for the 

identification of Alzheimer’s disease based on T1-weighted MRI. 

A proposed software/hardware co-design model for VBM achieves 

remarkable acceleration while maintaining classification 

accuracy and proving proficiency against other CPU and GPU 

implementations. 

Keywords: Alzheimer’s disease, Field programmable gate 

array, Image registration, Magnetic resonance imaging, 

Software/Hardware co-design, Voxel-based morphometry. 

I. INTRODUCTION 

Registration is considered an essential process in medical 

imaging analysis. Computerized Tomography (CT) scans 

used in many clinical routines are normally registered to 

screen the growth of a tumor over a period of time. Similarly, 

Magnetic resonance imaging (MRI) scans are registered for 

localizing the deformation of brain tissue to identify certain 

diseases such as Alzheimer’s disease (AD) or any other form 

of dementia. Neuroscientists also rely on accurate image 

registration of functional MRI (fMRI) for motion correction 

prior to the brain activation analysis. Additional, anatomical 

images, such as CT, and functional images, such as Positron 

Emission Tomography (PET), are both used in the 
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radiotherapy treatment planning in a process known as 

multi-modal registration and fusion. 

Image registration is the process of aligning two images; a 

‘source’ image and a ‘reference’ image. This alignment aims 

at finding a set of parameters that guarantees the optimal 

spatial transformation between the points in one image and 

those in the other. These parameters determine the relative 

shapes of the images. There are two broad categories of 

parameterization [1]; (a) Small deformation framework that 

commonly does not preserve topology and (b) Large 

deformation framework that generates deformations 

(diffeomorphisms) and enforces the preservation of topology. 

Diffeomorphic Anatomical Registration using Exponentiated 

Lie algebra (DARTEL) is a large-deformation registration 

framework that outperforms the small deformation setting by 

generating diffeomorphic deformations which can be inverted 

simply and measured fast. It has shown high accuracy relative 

to other non-linear spatial deformation registration algorithms 

[2]. The diffeomorphic framework in DARTEL registers 

images by computing a flow field and uses its corresponding 

exponential values to generate deformations. Its main 

advantage lies in the effective iterative approach used for 

computing the first and second derivatives generated for 

optimization and in solving equations by using a 

full-multi-grid method. Despite DARTEL’s good 

performance, its intensive iterative behavior is very 

time-consuming.  The large number of parameters involved to 

generate deformations needs computationally efficient 

methods for solving the equations. Efficient schemes are 

needed to handle such extremely large matrices. Many 

medical image processing software tools have been 

developed to assist scientists. A survey on their functionalities 

has been conducted by Lay-Khoon Lee in [3]. Statistical 

Parametric Mapping (SPM) is one of the most popular tools 

[4]. It has been designed for the analysis of different brain 

imaging data sequences such as MRI, fMRI, and PET. 

DARTEL toolbox is implemented in SPM for registration 

tasks based on John Ashburner work [1].  Moreover, SPM 

uses a voxel-based approach [5], Voxel-based Morphometry 

(VBM), where images are first segmented, then registered, 

then spatially normalized into a standard space and smoothed 

before finally applying the statistical analysis. VBM approach 

is widely used in medical image analysis domain [6-8]. 

Field-Programmable Gate Arrays (FPGA) and Graphics 

Processing Units (GPU) are hardware accelerators with 

intrinsic parallel processing powers. FPGA is a fast-evolving 

technology.  
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New FPGA models provide an on-chip RAM, embedded 

Digital Signal Processing (DSP) blocks for realizing fixed 

and floating-point arithmetic operations, and fast bandwidth 

interfaces with efficient power consumption. Some models 

come with an embedded processor core such as ARM. FPGAs 

provide deterministic timing in the order of nanoseconds [9]. 

Choosing the best accelerator between FPGA and GPU has 

been always a difficult and confusing question for system 

designers. From an architectural perspective, FPGAs are 

re-configurable silicon chips that use pre-built logic blocks 

and programmable routing resources, while GPUs are 

specialized electronic circuit having thousands of small 

microprocessor cores. Studies have been made comparing 

their performance and their capabilities   [10-13]. The 

analysis in [9] shows that GPUs are cost-efficient with huge 

floating-point processing capacity. They have less 

development effort because many algorithms are designed 

directly to run on them. On the other side, FPGAs are power 

efficient accelerators with flexible interfaces. They can 

connect to any other device via standard or custom interface, 

contrary to GPUs that can only interface via PCIe. The work 

recorded in the literature for accelerating medical image 

analysis has focused only on the use of GPUs, while 

neglecting the fact that FPGAs still poses attractive design 

advantages. In this paper, the use and implementation of 

FPGA are in-depth explored, evaluated, and compared to 

GPUs while applied to image registration and analysis 

processes. Specifically, this paper presents a 

software/hardware co-design model for accelerating the 

implementation of the diffeomorphic image registration 

algorithm DARTEL. An optimized FPGA architecture is 

proposed and integrated into the SPM software tool that holds 

the DARTEL implementation. For evaluation, the accelerated 

system is employed in an experimental study for the 

identification of AD based on T1-weighted features MRI 

[14]. The rest of the paper is organized as follows: section 2 

gives an insight into the related work presented for 

accelerating the medical image registration problem. Section 

3 presents an overview of the DARTEL registration 

algorithm. Section 4 describes the scientific approach and 

methods used. Section 5 presents the experimental work and 

discuses the achieved results. Finally, Section 6 concludes the 

work presented in the paper and introduces the future work. 

II.  RELATED WORK 

Many successful trials have been issued in the literature to 

embed FPGA in the medical imaging analysis domain. In 

classification problems, Vladimir Kasik et al. [15] utilized 

FPGA in CT and MRI processing for the diagnosis and 

evaluation of hydrocephalus. The study counts the ratio of 

intracranial fluid in the skull. Their implementation used 

Virtex-4 FPGA board. Jahyun J. Koo et al. [16] achieved 

performance improvement for an FPGA-based PVE 

algorithm by 5.1x over CPU in an MRI brain tissue 

classification problem. The work used RASC RC100 

FPGA-accelerators and the Mitrion-C HLL. Binay Chandra et 

al. [17] proposed an FPGA implementation for extracting 

features of MRI using wavelet transform for segmenting 

images. Their implementation used Zedboard FPGA. 

In the field of image filtering, S. Allin Christ et al. [18] 

presented an FPGA architecture for image filtering algorithms 

for tumor identification. Their work was implemented on 

SPARTAN-3E starter kit and combined Xilinx System 

Generator (XSG), MATLAB, and Simulink. S. Hasan et al. 

[19] presented an FPGA prototyping for nine 2-D MRI image 

filtering algorithms by using XSG. Their FPGA 

implementation targeted two Virtex-6 FPGA boards and they 

compared their frequency and power performances. For the 

prediction of neural activity and brain connectivity, Will X. Li 

et al. presented a prototype for the generalized 

Laguerre-Volterra model (GLVM), which is a mathematical 

abstraction for the description of neural processes [20]. The 

presented work achieved more than 2K speedup factor using 

Vitrex-6 FPGA board over an Intel Core i7 CPU. Ludovico 

Minati et al. [21] analyzed resting-state functional MRI 

(rs-fMRI) and presented a parallel implementation of 

Dijkstra’s algorithm on FPGA to overcome intensive 

computational needs of the high-resolution geodesic mapping 

of brain connectivity analysis. An acceleration factor between 

15 and 18 is recorded. Most of the software tools developed 

for medical image processing are open source tools. ITK, 

FSL, Elastix and SPM are examples [22]. Several works used 

GPU to accelerate these tools. The study presented by 

Hernández et al. [23] accelerated the estimation of fibre 

orientations from diffusion-weighted magnetic resonance 

images (DW-MRI) by the GPU parallelization of the Bedpost 

tool within the FSL framework. Their work reported a 

speedup of 85x compared to the sequential version. The work 

presented in [24] accelerated SPM in conjunction with 

Resting-State fMRI Data Analysis Toolkit (REST). Yan et al. 

developed in this work a MATLAB toolbox called Data 

Processing Assistant for Resting-State fMRI (DPARSF). In 

[25] an accelerated version of elastix, an image registration 

package is presented. Denis P. Shamonin et al. combined in 

this work several parallelization techniques on CPU and GPU 

extending the OpenCL framework from ITKv4 software 

package. MRI registration in SPM is accelerated via GPU in 

[26] and [27]. Teng-Yi Huang et al. in the work [28] 

re-implemented the dynamic-link library responsible for the 

image registration in SPM with a CUDA model and achieved 

a 14x increase in speed using single-modality intra-subject 

datasets. The image registration algorithm used in this work is 

based on information theory. It uses collinear affine 

transformation where DARTEL uses deformable B-spline 

transformation. The study conducted by P. Valero-Lara in 

[27] proposes a GPU implementation for DARTEL 

parallelization that reduces the overhead caused by memory 

transfers and achieved an overall speedup of 13x for a single 

GPU implementation. The author explored as well the use of 

multiple (2 and 4) GPUs. The latter study is considered a 

relevant work for accelerating MRI registration using GPU. 

This work is compared to the one presented in this paper with 

respect to the commonly used DARTEL implementation. In 

other words, both studies try to accelerate DARTEL using 

parallelization on hardware chips; P. Valero-Lara uses GPU 

while this work uses FPGA. 
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III. DARTEL 

DARTEL is an image registration algorithm that is composed 

of two steps; template generation and warped images 

generation [1].  

In the template generation, all Gray Matter (GM), White 

Matter (WM) images in the dataset contribute to form an 

initial average which is called Template Zero. All images are 

then registered to this Template. The resulted images are used 

to create a new average image, Template One, to which all 

images are again registered to. This procedure is repeated 

several times, typically 6 iterations. The average template 

generated becomes increasingly crisp as the registration 

proceeds.  

In the warped images generation step, all images are 

registered to this final average template obtained from the 

previous template generation step. For each image, a set of 

deformation matrices is created that describes how the 

deformation is obtained. 

Fig. 1 shows how the DARTEL algorithm works by 

illustrating the development of average image templates. 

Intensity averages of GM and WM images are considered an 

initial template as shown in Fig. 1a. Every brain MRI image is 

registered with the template image using an inverse-consistent 

formulation.  Iterations follow to map the scans to their 

average forming a new average. The initial template becomes 

sharper each time it is re-generated as shown in Fig. 1b and in 

Fig. 1c until it reaches its final form shown in Fig. 1d. Finally, 

warped versions of the images can be generated. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1: DARTEL Template Generation: Intensity averages of GM images (coronal, sagittal and axial views) after 

multiple iterations a) average after initial rigid-body alignment b) average after two iterations c) average after four 

iterations d) average after six iterations. 

 

DARTEL is considered a diffeomorphic registration 

algorithm.  Assuming a flow field u that preserves constancy 

over time, Φ is calculated by the differential equation (1) that 

defines the deformation evolution: 

                                                     (1) 

To obtain diffeomorphisms, an identity transform (Φ
(0)

 = x) 

is first initialized and next integrated over time to produce 

Φ
(1)

.  
The small deformation mechanism can be seen as an Euler 

integration that has simple time step of one. Accurate solution 

is produced by a large number of these simple time steps. 

Scaling and squaring are used to find the solution given that 

the squared number of steps of time are used. Equation (2) 

shows the Euler integration method with eight time steps. 

                           (2) 

The derivatives of the deformations or the Jacobian 

matrices marks the local changes in the deformation field such 

as rotating and stretching. Given the composition of two 

deformations ΦA and ΦB, the resultant deformation ΦC is 

computed by equation (3): 
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                              (3) 

Finally, the Jacobian field is produced by equation (4): 

 

                               (4) 

 

The composition of the deformations, or Jacobian 

composition, obtained with the Jacobian matrices are very 

intensive time consuming processes.  

Storing deformation matrices with the high-dimensional 

nature of this model is very difficult due to memory 

limitations.  DARTEL uses an FMG approach [37] to store 

those matrices. The FMG method is a recursive approach and 

was extended by [1] so that it can be applied on more complex 

three dimensional images. 

IV. PROPOSED MRI REGISTRATION 

SOFTWARE/HARDWARE CO-DESIGN FRAMEWORK 

A. Proposed Framework 

The proposed FPGA software/hardware co-design framework 

is illustrated in Fig. 2. VBM analysis is applied on an input 

MRI dataset to extract significant features. This is used next 

by a classifier to identify AD patients from normal controls 

(NC). The core of the AD classification framework is the 

VBM features analysis. Its registration block is the target for 

the proposed FPGA acceleration framework.   

VBM [29] involves different processing steps. The first is the 

image segmentation that is carried out for the identification 

of different tissue types within the images. Corresponding 

segmented regions are GM, WM, and Cerebrospinal Fluid 

(CSF). GM is a major component of the nervous system. It is 

controlled by the nerve cells while WM is made of axons 

connecting GM together. VBM measures the volume or shape 

of GM structures such as the temporal cortex. GM is the 

primary tissue involved in the framework for a later 

classification stage. GM and WM are both used in the 

registration which is the second processing step of VBM while 

CSF is not used. The output of the segmentation is used by 

registration for achieving accurate inter-subject alignment.  

The registration algorithm used in VBM is called 

DARTEL. Its primary goal is to best align images together. 

This is achieved by continuous alignment of the images and 

their average as described earlier in the previous section.  

VBM contains two additional processing steps: Normalizing 

and smoothing and statistical analysis. Images are 

normalized in the former process in the MNI space and a set 

of smoothed Jacobian scaled GM images are generated using 

the shapes encoded by the deformations. The Final process, 

statistical analysis, uses the statistical model GLM to infer 

data about the concentration of GM. The final output of VBM 

is a statistical parametric map that shows the regions where 

GM tissue in MRI differs clearly in MRI images under 

evaluation. 

. 

 

 

 

Fig. 2: Framework of the proposed FPGA acceleration of MRI registration used for AD classification. 

The VBM analysis is implemented in the SPM software 

tool that runs under MATLAB. Intensive time-consuming 

routines are typically implemented in C language for fast 

implementation and are called from MATLAB via MEX 

interface. These routines include the DARTEL functions 

responsible for registration and other functions such as 

Bspline and Markov Random Field that are not used by the 

DARTEL registration algorithm. The DARTEL function 

itself includes three subroutines that are responsible for 

obtaining small deformation, calculating the Jacobian 

composition, solving differential equations using the full 

multi-grid method (FMG) and some other auxiliary functions 

such as the one that converts the velocity field to a momentum 

field. In the proposed framework, those most time-consuming 

functions are designed to run on FPGA for acceleration and 

are hence called via a PCIe interface for execution. Profiling 

these functions and describing the PCIe interface are 

described in the upcoming subsections.     
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On CPU, this processing forms a heavy computational and 

very time-consuming task. It is quite remarkable to mention 

that registering a total of 471 images of size 128x128x128 

took 14 days on a standard 3 year relatively old desktop by 

DARTEL’s author John Ashburner [1]. 

B. Profiling VBM Run Time  

In the proposed software/hardware co-design, part of the 

VBM analysis runs on CPU, while the rest runs on the 

accelerating hardware FPGA. Referring to Fig. 2, the part that 

runs on the CPU includes image segmentation, normalizing 

and smoothing, and the statistical analysis. The registration is 

the part that runs on the FPGA hardware for acceleration for 

being the most complicated and iterative process in the 

framework. 

In VBM analysis, the DARTEL registration runs too slow. 

Analyzing 275 MRI images consumed 34 hours for an image 

size of 121x145x121 pixels. The memory usage and run time 

duration of DARTEL subroutine calls are analyzed by a code 

profiler to discover the performance bottlenecks. Hardware 

specifications of the underlying machine are provided in the 

upcoming section. 

Fig. 3 illustrates the results of profiling VBM functions run 

time. The VBM most time-consuming functions are  

implemented in C programming language and are called from 

MATLAB by MEX functions. This is shown in the block 

diagram of the proposed framework in Fig. 2. These MEX 

functions account for 81.4% of the total pre-processing time 

of the VBM execution. Profiling these functions shows that 

the DARTEL function which is responsible for registration 

takes 65% from the total MEX functions time. The DARTEL 

function includes four subroutines: obtaining small 

deformation, calculating the Jacobian composition, solving 

differential equations using FMG method, and other auxiliary 

functions (such as the function that converts the velocity field 

to momentum field). The percentage of the run time of each 

function with respect to the DARTEL function run time is 

given in Fig. 3. These former four functions are chosen for 

their high computational time-consuming demands to run on 

FPGA. The interface between these four functions and the 

CPU is held via PCIe.  

            
Fig. 3: Profiling VBM Functions Run Time. 

C. Software/Hardware Co-design Interfacing 

The used FPGA kit is interfaced with the workstation through 

a PCIe interface as shown in the block diagram of the 

proposed framework in Fig. 2. Data is transmitted from CPU 

to FPGA and received back by CPU after computation. This 

total round trip time per call τcall  is calculated by equation (5) 

where τPCIe is the transmission and reception latency taken by 

PCIe to transmit and receive data. The communication 

latency over the PCIe link is almost negligible when large 

amounts of data are transferred from/to the PCIe card. It is 

estimated by 2.3 μsec [30].  

The payload is the amount of data that is 

transmitted/received through PCIe. τtpayload is the 

transmission payload calculated by equation (6). It depends 

on the size of the MRI used.  τrpayload is the reception payload 

calculated by equation (7).  

Throughput of the PCIe is given by [31] as 27Gbps. FPGA 

Operation time τFPGA is the time taken by the FPGA to 

calculate the DARTEL functions.  Equation (5) shows that the 

round trip time is dominated by the FPGA Operation time 

τFPGA as it runs in the order of seconds while other equation 

variables run is microseconds. 

 

     (5) 

      (6) 

 

                      (7) 

 

D. FPGA Design Optimization  

The original implementation of the four functions described 

in the previous subsections is in the C language. It is written 

with no restrictions on data type range, arithmetic operations, 

or loop counts. The code achieved good accuracy but at the 

expense of a long run time.  
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Several optimization techniques have been introduced to 

the original C-code of these four functions to achieve high 

operating frequency, low latency, and low power circuits. 

These techniques include: 

 Replacing floating-point data types with fixed-point 

data types; 

 Optimizing complex and/or non-linear arithmetic 

functions; 

 Exploiting the concurrent behavior of FPGAs by 

parallel loop unrolling and function inlining; 

 Pipelining. 

 

1) Fixed-Point Data Type 

In fixed-point data type, the number is represented with a 

fixed number of digits after and before the radix point. The 

fundamental advantage of using a fixed-point data type is 

performance. Arithmetic operations performed on fixed-point 

data type are orders of magnitude faster than floating-point 

data type. The fixed-point conversion reduces the usage of 

FPGA resources such as DSP48E2s, look-up tables (LUTs), 

and flip-flops. It also reduces the amount of memory required 

to store the data.  

The downside of using a fixed-point data type is accuracy. 

Its performance improvement comes at the expense of 

accuracy due to the reduced range of values that the fixed 

number of digits can represent. Arithmetic manipulation of 

large numbers can produce a result that does not fit into the 

fixed-point representation. Scaling the data becomes a 

necessity to avoid problems such as overflow or underflow.  

However, in many scientific areas, fixed-point 

implementation achieves comparable performance in terms of 

accuracy to the floating-point implementation. According to 

[32], machine learning problems such as image classification 

requires only INT8 fixed-point data type to reach an 

acceptable accuracy. In this design, a good trade-off between 

accuracy and hardware utilization, power consumption, and 

run time is reached by using a fixed-point data type of 16 

precision bits. 

2) Complex and/or non-linear arithmetic functions 

Complex arithmetic operations such as division and 

IEEE-defined elementary operations (such as log(x) and e
x
 

functions) consume a very high number of clock cycles and 

utilize a huge number of hardware resources such as LUTs 

and DSP48E2 slices. These functions were excluded from the 

code and replaced with faster-approximated implementations 

that use simpler arithmetic operations such as addition, 

subtraction, and multiplication.  

Division and square root functions are implemented using 

Newton Raphson iterative algorithm. The algorithm finds the 

reciprocal of the denominator and multiplies that reciprocal 

by the numerator to find the final quotient [33]. It computes 

one multiplicative inverse in one iteration thus providing high 

computation speed and throughput.  

Log and exponential functions are implemented using 

look-up table based algorithms. This approach is fast and 

straightforward. However, it requires a large amount of 

memory to avoid reducing the accuracy. This explains the 

vast amount of LUTs used by the design. 

 

3) Loop unrolling and function in-lining 

In order to translate software C-code algorithms into 

hardware circuits that match the same functionality, 

High-Level Synthesis ‘HLS’ tools are used. Pragmas defined 

by the Vivado HLS tool are embedded in the C-code to 

fine-tune the synthesized output circuit resulting in a faster, 

low-latency, and low-power circuit. 

The design applied the INLINE pragma. This pragma 

allows functions that are called from another function to be 

dissolved into the calling function. This allows operations to 

be optimized more efficiently.  Loop unrolling is applied as 

well in the design using the UNROLL pragma to insure 

maximum operations concurrency. Unrolling loops create 

multiple independent operations by generating multiple 

copies of the loop body in the design allowing loop iterations 

to occur in parallel. 

4) Pipelining 

Parallel execution of instructions by using pipelining allows 

the design to take full advantage of FPGA. The initiation 

interval is defined as the number of clock cycles between 

successive instances of the loop. It is considered the inverse of 

the throughput.  Throughout the whole design all pipeline 

stages are implemented with the lowest possible initiation 

interval.  Concurrent execution of operations is applied in the 

design by using PIPELINE pragma to reduce the initiation 

interval for loops. The default initiation interval for the 

PIPELINE pragma is 1, which means processing a new input 

every clock cycle.  

FPGA design that applied these optimizations will be 

referred to in the text as optimized FPGA fixed-point 

implementation.  

V. EXPERIMENTAL STUDY, RESULTS AND 

DISCUSSION 

A. Dataset 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [34] is 

the dataset used for testing in this work. It contains various 

study data that help in defining the progression of AD such as 

MRI and PET images. T1 and T2, are two relaxation times 

that are used to characterize MRI scans.  

In this study, a total of 275 T1-weighted MR images are 

considered, including 162 patients with AD and 113 NC. 

Table-І clarifies the dataset demographics. 

Table-І: Dataset Demographics 

 Normal Control Alzheimer’s Disease 

Patient 
Total Number=113 Total Number=162 

Gender: (M/F) 72/41 71/91 
Age: (Mean/Std.) 77.49/5.88 73.82/7.63 

MMSE: (Mean/Std.) 25.74/7.74 21.54/3.92 

B. Experimental Results 

The study compares three different implementations of 

DARTEL registration algorithm: 

1)  Software (CPU) implementation; 

2) FPGA floating point implementation; 

3) Optimized FPGA fixed-point implementation. 
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Comparing the software (CPU) implementation and the 

optimized FPGA fixed-point implementation highlights the 

impact of using FPGA accelerators on the registration 

problem. While comparing the optimized FPGA fixed-point 

implementation to the FPGA floating-point implementation 

analyzes the trade-off between accuracy and hardware 

utilization, power consumption, and run time. Finally, a 

comparison between the three implementations is provided. 

1) Acceleration of FPGA implementation over CPU 

implementation 

CPU run time of the DARTEL registration function running 

on MATLAB is 10.9 seconds per call. The Small 

Deformation function accounts for 28.7% of its time.  

The accelerated version of the Small Deformation function 

running on FPGA consumes 1.023 seconds. Thus, a speedup 

factor of 2.75x is achieved over the CPU run time. Table П 

summarizes the CPU run time, FPGA run time, and the 

achieved speedup factors for the four implemented DARTEL 

functions. The speedup factor for the whole DARTEL 

registration process when combining the four accelerated 

functions is 7.9x.  

CPU results have been carried on a machine with an Intel 

i5-4200M processor that has a 64-bit architecture and runs at 

2.50GHz clock frequency under Ubuntu 18.04 operating 

system.  

The proposed FPGA design is synthesized on a Xilinx 

Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit that 

includes a ZU7EV FPGA device and runs at 2 nanoseconds 

clock. 

Table-П: Run Time Speedup Factors of different 

DARTEL Functions 

 CPU FPGA Speedup Factor 

Small Deformation  3.14s 1.14s 2.75x 
Jacobian 

Composition  
3.87s 0.05s 77.5x 

FMG  2.28s 0.02s 114x 
Auxiliary functions  1.6s 

 

0.17s 9.4x 

2) Acceleration of optimized FPGA fixed-point 

implementation over FPGA floating-point implementation  

Fig. 4 compares the floating-point implementation and the 

optimized fixed-point implementation. The comparison 

comes in terms of frequency, latency, BRAM, and dynamic 

power. The maximum frequency of the optimized fixed-point 

implementation is more than twice the frequency of the 

floating-point implementation. The optimized fixed-point 

implementation achieved reductions in Latency, BRAM, and 

dynamic power as well. 

 
Fig. 4: FPGA Performance Measurement of 

Floating-Point Implementation and Optimized 

Fixed-Point Implementation. 

Fig. 5 and Fig. 6 compares the LUTs count and the 

DSP48E slices count of the two FPGA implementations; 

optimized fixed-point versus floating-point respectively. A 

significant decline in both counts is obtained by the optimized 

fixed-point implementation.  

 
Fig. 5: LUTs Count of Floating-Point Implementation 

and Optimized Fixed-Point Implementation. 

 
Fig. 6: DSP48E Slices Count of Floating-Point 

Implementation and Optimized Fixed-Point 

Implementation. 
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Fig. 7 illustrates the improvement factors achieved by the 

optimized fixed-point implementation over the floating-point 

implementation. A Massive decrease in BRAM, 27x, LUTs, 

58x, and in DSP48E slices, 33x is noticed. These resource 

savings has led to a reduction in the dynamic power by 37x. 

 
Fig. 7: Improvement Factors achieved by Optimized 

Fixed-Point Implementation Over Floating-Point 

Implementation. 

Table- III shows a summary of the resources utilized by the 

design versus the available resources on board. This indicates 

utilization of about one third for DSP48E and one fourth for 

LUTs and 1% for BRAM. The power consumption details of 

the design are illustrated in Fig. 8. Small Deformation 

function consumes most of the design power which is quite 

predictable as it extensively uses the LOG and division 

functions. FMG consumes far less power as it only uses 

simple arithmetic operations. Auxiliary functions and 

Jacobian Composition do not utilize BRAM in their circuits 

and thus no power consumption is shown. 

Table-III: FPGA utilization Vs Available resources. 

 DSP48E  LUTs  BRAM 

Total  612 55538 1600 

Available  1728 230000 11 

Utilization (%)  35.42% 24.15% 1% 

 

 
Fig. 8: Power Consumption of different DARTEL 

Functions 

 

 

 

Fig. 9 illustrates the Root Mean Square Error (RMSE) 

using different data types. RMSE is calculated with reference 

to double (64-bit) floating-point datatype. Single (32-bit) 

floating-point and (32-bit) fixed-point datatypes barely 

affected the accuracy (i.e. their RMSE approaches zero). The 

figure shows that the proposed design with its 16-bit 

fixed-point datatype achieved less than 10% RMSE, while the 

8-bit fixed-point datatype achieved more than 30% RMSE. 

Hence, the choice of 16-bit fixed-point datatype is concluded 

to achieve the best trade-off between accuracy and hardware 

utilization, power consumption, and run time.    

 

 
 

Fig. 9: RMSE using Different Data Types 

 

The DARTEL run time on CPU, FPGA with floating-point 

implementation, and FPGA with optimized fixed-point 

implementation is illustrated in Fig. 10. The run time, which is 

in nanoseconds, indicated that optimized FPGA fixed-point 

implementation achieves a time acceleration of 7.9x over 

CPU and 20.7x over FPGA floating-point implementation. 

 
Fig. 10: DARTEL Run Time of CPU, Floating-Point 

FPGA implementation (FPGA), and Optimized 

Fixed-Point FPGA implementation (Opt FPGA) 
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C. Discussion  

The proposed design, optimized fixed-point 

implementation, consumed far fewer resources than the 

available resources on board. It consumed 24% of LUTs, 35% 

of DSP48E2 slices, and 1% of BRAM. This shows very good 

resource utilization and allows for either one of the following: 

  Adding more accelerated functions to the chip; 

 Replicating the circuit for more acceleration rates. 

The design can roughly be replicated three times leading to 

tripling the acceleration rate.  

The optimized fixed-point implementation design can be 

compared to the GPU implementation of DARTEL 

registration conducted by P. Valero-Lara in [27]. Though the 

datasets are different, both designs can be compared in terms 

of performance measures. The database used for evaluation in 

the case of GPU implementation is only 30 images with the 

size 60x60x72 pixels, accounting for a total of 259,200 pixels 

per image. For a single GPU implementation, an overall 

speedup of 13x is achieved and is promoted to 63x using four 

GPUs according to the author.  

The work presented here uses 275 images of size 

121x145x121 pixels, accounting for a total of 2,122,945 

pixels per image. Accordingly, the workload used in this work 

exceeds the workload used in [27] by approximately 8.2x and 

the database size is bigger by approximately 9.2x. Moreover, 

the low resource utilization of the design allows it to be 

replicated three times as discussed earlier. This can promote 

the speedup by triple the value, leading to 23.7x speedup over 

CPU. Thus, the FPGA implementation proposed here 

presents competitive results to the single GPU 

implementation conducted by [27] The GPU platform used by 

P. Valero-Lara consists of four NVIDIA Tesla K20 graphic 

card, Intel Xeon (E5-2650) runs at 2GHz and 64GB main 

memory. Table-IV highlights the comparison between FPGA 

optimized fixed-point implementation and GPU 

implementation speedup factors on the three main DARTEL 

functions: Small Deformation, Jacobian Composition, and 

FMG. ‘Auxiliary functions’ refer to functions that implement 

the rest of the DARTEL routine. It is accelerated in this work 

only, and for the GPU implementation, their result is not 

recorded by the author. The comparison as indicated by table 

4 gives an insight into the powerful acceleration power of 

FPGA over GPU. 

 

Table-IV: FPGA Vs GPU speedup factors on different 

DARTEL functions. 

 FPGA GPU 

Small Deformation  2.75x 32x 

Jacobian  

 Composition  

77.5x 19x 

FMG  114x 9x 

Auxiliary functions  9.4x - 

 

Pre-processing of data has been carried by MATLAB 

R2014b [35] by SPM12 on the DARTEL toolbox. C to 

VHDL code conversion and synthesis is done using Vivado 

High-Level Synthesis (HLS) software [36] Profiling is done 

using gprof and google performance tools. 

VI. CONCLUSION AND FUTURE WORK 

Image registration is an important highly computational 

process in image analysis. This paper presents an optimized 

software/hardware co-design model to accelerate the 

implementation of the diffeomorphic image registration 

algorithm DARTEL running under the SPM software tool. An 

optimized and pipelined FPGA architecture is proposed, 

where faster implementations of complex arithmetic 

operations and fixed-point data types are exploited to ensure 

minimum latency. The proposed fixed-point FPGA 

implementation achieves more than 20x speedup in run time 

when compared to the floating-point FPGA implementation. 

Comparing to CPU performance, the speedup factor of 114x 

is achieved on the function level with an overall speedup 

factor of 8x of the DARTEL registration process. The low 

resource utilization of the design on the FPGA board, which is 

one third, makes it flexible to be replicated three times 

promising to triple the acceleration rate. The acceleration 

capabilities of FPGA versus GPU in registering medical 

images are explored in this paper and evaluated. FPGA 

proved proficiency by the powerful resource savings and high 

speedups obtained. 

FPGA can be further utilized by using multiple CPU cores 

on the FPGA board. This can efficiently run the software 

application with low latency to the hardware accelerator.  

Moreover, the accuracy of the system can be enhanced by 

applying the fixed-point word-length optimization 

methodologies and techniques. 
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