
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

128

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

Abstract: The correct localization of brain tissue deformation

and determination of the tumor growth relies majorly on the

accuracy of the process known by image registration. Poor

registration may lead to misclassified diseases and highly affect

image-guided surgery and radiation therapies. Voxel-based

morphometry (VBM) is an image analytical technique

encompassing accurate registration but suffers from intensive

time computations, similar to most of image registration

techniques. Achieving the compromise between accuracy and

computations is a challenging mission. Field programmable gate

arrays have fast-evolving and customizable hardware acceleration

capabilities that promise to help speed up computational tasks.

This paper presents a software/hardware co-design model for

accelerating the implementation of the diffeomorphic image

registration algorithm ‘DARTEL’ as a part of VBM that analyzes

MRI images. An optimized and pipelined hardware architecture is

proposed and integrated into the Statistical Parametric Mapping

(SPM) software tool that runs the DARTEL. Acceleration of the

DARTEL registration algorithm resulted in a speedup factor of

114x on function-level, compared to the CPU with a contribution

of 8x faster for the overall performance in the registration process

of the SPM. The proposed model is successfully validated for the

identification of Alzheimer’s disease based on T1-weighted MRI.

A proposed software/hardware co-design model for VBM achieves

remarkable acceleration while maintaining classification

accuracy and proving proficiency against other CPU and GPU

implementations.

Keywords: Alzheimer’s disease, Field programmable gate

array, Image registration, Magnetic resonance imaging,

Software/Hardware co-design, Voxel-based morphometry.

I. INTRODUCTION

Registration is considered an essential process in medical

imaging analysis. Computerized Tomography (CT) scans

used in many clinical routines are normally registered to

screen the growth of a tumor over a period of time. Similarly,

Magnetic resonance imaging (MRI) scans are registered for

localizing the deformation of brain tissue to identify certain

diseases such as Alzheimer’s disease (AD) or any other form

of dementia. Neuroscientists also rely on accurate image

registration of functional MRI (fMRI) for motion correction

prior to the brain activation analysis. Additional, anatomical

images, such as CT, and functional images, such as Positron

Emission Tomography (PET), are both used in the

Revised Manuscript Received on December 05, 2020.

* Correspondence Author

Yasmeen Farouk*, Department of Information Systems, Faculty of

Computer and Information Sciences, Ain Shams University, Cairo, Egypt.

Email: yasmin.farouk@cis.asu.edu.eg

Sherine Rady, Department of Information Systems, Faculty of Computer

and Information Sciences, Ain Shams University, Cairo, Egypt.. Email:

srady@cis.asu.edu.eg

radiotherapy treatment planning in a process known as

multi-modal registration and fusion.

Image registration is the process of aligning two images; a

‘source’ image and a ‘reference’ image. This alignment aims

at finding a set of parameters that guarantees the optimal

spatial transformation between the points in one image and

those in the other. These parameters determine the relative

shapes of the images. There are two broad categories of

parameterization [1]; (a) Small deformation framework that

commonly does not preserve topology and (b) Large

deformation framework that generates deformations

(diffeomorphisms) and enforces the preservation of topology.

Diffeomorphic Anatomical Registration using Exponentiated

Lie algebra (DARTEL) is a large-deformation registration

framework that outperforms the small deformation setting by

generating diffeomorphic deformations which can be inverted

simply and measured fast. It has shown high accuracy relative

to other non-linear spatial deformation registration algorithms

[2]. The diffeomorphic framework in DARTEL registers

images by computing a flow field and uses its corresponding

exponential values to generate deformations. Its main

advantage lies in the effective iterative approach used for

computing the first and second derivatives generated for

optimization and in solving equations by using a

full-multi-grid method. Despite DARTEL’s good

performance, its intensive iterative behavior is very

time-consuming. The large number of parameters involved to

generate deformations needs computationally efficient

methods for solving the equations. Efficient schemes are

needed to handle such extremely large matrices. Many

medical image processing software tools have been

developed to assist scientists. A survey on their functionalities

has been conducted by Lay-Khoon Lee in [3]. Statistical

Parametric Mapping (SPM) is one of the most popular tools

[4]. It has been designed for the analysis of different brain

imaging data sequences such as MRI, fMRI, and PET.

DARTEL toolbox is implemented in SPM for registration

tasks based on John Ashburner work [1]. Moreover, SPM

uses a voxel-based approach [5], Voxel-based Morphometry

(VBM), where images are first segmented, then registered,

then spatially normalized into a standard space and smoothed

before finally applying the statistical analysis. VBM approach

is widely used in medical image analysis domain [6-8].

Field-Programmable Gate Arrays (FPGA) and Graphics

Processing Units (GPU) are hardware accelerators with

intrinsic parallel processing powers. FPGA is a fast-evolving

technology.

Optimizing MRI Registration using

Software/Hardware Co-Design Model on

FPGA
Yasmeen Farouk, Sherine Rady

Optimizing MRI Registration using Software/Hardware Co-Design Model on FPGA

129

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

New FPGA models provide an on-chip RAM, embedded

Digital Signal Processing (DSP) blocks for realizing fixed

and floating-point arithmetic operations, and fast bandwidth

interfaces with efficient power consumption. Some models

come with an embedded processor core such as ARM. FPGAs

provide deterministic timing in the order of nanoseconds [9].

Choosing the best accelerator between FPGA and GPU has

been always a difficult and confusing question for system

designers. From an architectural perspective, FPGAs are

re-configurable silicon chips that use pre-built logic blocks

and programmable routing resources, while GPUs are

specialized electronic circuit having thousands of small

microprocessor cores. Studies have been made comparing

their performance and their capabilities [10-13]. The

analysis in [9] shows that GPUs are cost-efficient with huge

floating-point processing capacity. They have less

development effort because many algorithms are designed

directly to run on them. On the other side, FPGAs are power

efficient accelerators with flexible interfaces. They can

connect to any other device via standard or custom interface,

contrary to GPUs that can only interface via PCIe. The work

recorded in the literature for accelerating medical image

analysis has focused only on the use of GPUs, while

neglecting the fact that FPGAs still poses attractive design

advantages. In this paper, the use and implementation of

FPGA are in-depth explored, evaluated, and compared to

GPUs while applied to image registration and analysis

processes. Specifically, this paper presents a

software/hardware co-design model for accelerating the

implementation of the diffeomorphic image registration

algorithm DARTEL. An optimized FPGA architecture is

proposed and integrated into the SPM software tool that holds

the DARTEL implementation. For evaluation, the accelerated

system is employed in an experimental study for the

identification of AD based on T1-weighted features MRI

[14]. The rest of the paper is organized as follows: section 2

gives an insight into the related work presented for

accelerating the medical image registration problem. Section

3 presents an overview of the DARTEL registration

algorithm. Section 4 describes the scientific approach and

methods used. Section 5 presents the experimental work and

discuses the achieved results. Finally, Section 6 concludes the

work presented in the paper and introduces the future work.

II. RELATED WORK

Many successful trials have been issued in the literature to

embed FPGA in the medical imaging analysis domain. In

classification problems, Vladimir Kasik et al. [15] utilized

FPGA in CT and MRI processing for the diagnosis and

evaluation of hydrocephalus. The study counts the ratio of

intracranial fluid in the skull. Their implementation used

Virtex-4 FPGA board. Jahyun J. Koo et al. [16] achieved

performance improvement for an FPGA-based PVE

algorithm by 5.1x over CPU in an MRI brain tissue

classification problem. The work used RASC RC100

FPGA-accelerators and the Mitrion-C HLL. Binay Chandra et

al. [17] proposed an FPGA implementation for extracting

features of MRI using wavelet transform for segmenting

images. Their implementation used Zedboard FPGA.

In the field of image filtering, S. Allin Christ et al. [18]

presented an FPGA architecture for image filtering algorithms

for tumor identification. Their work was implemented on

SPARTAN-3E starter kit and combined Xilinx System

Generator (XSG), MATLAB, and Simulink. S. Hasan et al.

[19] presented an FPGA prototyping for nine 2-D MRI image

filtering algorithms by using XSG. Their FPGA

implementation targeted two Virtex-6 FPGA boards and they

compared their frequency and power performances. For the

prediction of neural activity and brain connectivity, Will X. Li

et al. presented a prototype for the generalized

Laguerre-Volterra model (GLVM), which is a mathematical

abstraction for the description of neural processes [20]. The

presented work achieved more than 2K speedup factor using

Vitrex-6 FPGA board over an Intel Core i7 CPU. Ludovico

Minati et al. [21] analyzed resting-state functional MRI

(rs-fMRI) and presented a parallel implementation of

Dijkstra’s algorithm on FPGA to overcome intensive

computational needs of the high-resolution geodesic mapping

of brain connectivity analysis. An acceleration factor between

15 and 18 is recorded. Most of the software tools developed

for medical image processing are open source tools. ITK,

FSL, Elastix and SPM are examples [22]. Several works used

GPU to accelerate these tools. The study presented by

Hernández et al. [23] accelerated the estimation of fibre

orientations from diffusion-weighted magnetic resonance

images (DW-MRI) by the GPU parallelization of the Bedpost

tool within the FSL framework. Their work reported a

speedup of 85x compared to the sequential version. The work

presented in [24] accelerated SPM in conjunction with

Resting-State fMRI Data Analysis Toolkit (REST). Yan et al.

developed in this work a MATLAB toolbox called Data

Processing Assistant for Resting-State fMRI (DPARSF). In

[25] an accelerated version of elastix, an image registration

package is presented. Denis P. Shamonin et al. combined in

this work several parallelization techniques on CPU and GPU

extending the OpenCL framework from ITKv4 software

package. MRI registration in SPM is accelerated via GPU in

[26] and [27]. Teng-Yi Huang et al. in the work [28]

re-implemented the dynamic-link library responsible for the

image registration in SPM with a CUDA model and achieved

a 14x increase in speed using single-modality intra-subject

datasets. The image registration algorithm used in this work is

based on information theory. It uses collinear affine

transformation where DARTEL uses deformable B-spline

transformation. The study conducted by P. Valero-Lara in

[27] proposes a GPU implementation for DARTEL

parallelization that reduces the overhead caused by memory

transfers and achieved an overall speedup of 13x for a single

GPU implementation. The author explored as well the use of

multiple (2 and 4) GPUs. The latter study is considered a

relevant work for accelerating MRI registration using GPU.

This work is compared to the one presented in this paper with

respect to the commonly used DARTEL implementation. In

other words, both studies try to accelerate DARTEL using

parallelization on hardware chips; P. Valero-Lara uses GPU

while this work uses FPGA.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

130

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

III. DARTEL

DARTEL is an image registration algorithm that is composed

of two steps; template generation and warped images

generation [1].

In the template generation, all Gray Matter (GM), White

Matter (WM) images in the dataset contribute to form an

initial average which is called Template Zero. All images are

then registered to this Template. The resulted images are used

to create a new average image, Template One, to which all

images are again registered to. This procedure is repeated

several times, typically 6 iterations. The average template

generated becomes increasingly crisp as the registration

proceeds.

In the warped images generation step, all images are

registered to this final average template obtained from the

previous template generation step. For each image, a set of

deformation matrices is created that describes how the

deformation is obtained.

Fig. 1 shows how the DARTEL algorithm works by

illustrating the development of average image templates.

Intensity averages of GM and WM images are considered an

initial template as shown in Fig. 1a. Every brain MRI image is

registered with the template image using an inverse-consistent

formulation. Iterations follow to map the scans to their

average forming a new average. The initial template becomes

sharper each time it is re-generated as shown in Fig. 1b and in

Fig. 1c until it reaches its final form shown in Fig. 1d. Finally,

warped versions of the images can be generated.

(a)

(b)

(c)

(d)

Fig. 1: DARTEL Template Generation: Intensity averages of GM images (coronal, sagittal and axial views) after

multiple iterations a) average after initial rigid-body alignment b) average after two iterations c) average after four

iterations d) average after six iterations.

DARTEL is considered a diffeomorphic registration

algorithm. Assuming a flow field u that preserves constancy

over time, Φ is calculated by the differential equation (1) that

defines the deformation evolution:

 (1)

To obtain diffeomorphisms, an identity transform (Φ
(0)

 = x)

is first initialized and next integrated over time to produce

Φ
(1)

.
The small deformation mechanism can be seen as an Euler

integration that has simple time step of one. Accurate solution

is produced by a large number of these simple time steps.

Scaling and squaring are used to find the solution given that

the squared number of steps of time are used. Equation (2)

shows the Euler integration method with eight time steps.

 (2)

The derivatives of the deformations or the Jacobian

matrices marks the local changes in the deformation field such

as rotating and stretching. Given the composition of two

deformations ΦA and ΦB, the resultant deformation ΦC is

computed by equation (3):

Optimizing MRI Registration using Software/Hardware Co-Design Model on FPGA

131

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

 (3)

Finally, the Jacobian field is produced by equation (4):

 (4)

The composition of the deformations, or Jacobian

composition, obtained with the Jacobian matrices are very

intensive time consuming processes.

Storing deformation matrices with the high-dimensional

nature of this model is very difficult due to memory

limitations. DARTEL uses an FMG approach [37] to store

those matrices. The FMG method is a recursive approach and

was extended by [1] so that it can be applied on more complex

three dimensional images.

IV. PROPOSED MRI REGISTRATION

SOFTWARE/HARDWARE CO-DESIGN FRAMEWORK

A. Proposed Framework

The proposed FPGA software/hardware co-design framework

is illustrated in Fig. 2. VBM analysis is applied on an input

MRI dataset to extract significant features. This is used next

by a classifier to identify AD patients from normal controls

(NC). The core of the AD classification framework is the

VBM features analysis. Its registration block is the target for

the proposed FPGA acceleration framework.

VBM [29] involves different processing steps. The first is the

image segmentation that is carried out for the identification

of different tissue types within the images. Corresponding

segmented regions are GM, WM, and Cerebrospinal Fluid

(CSF). GM is a major component of the nervous system. It is

controlled by the nerve cells while WM is made of axons

connecting GM together. VBM measures the volume or shape

of GM structures such as the temporal cortex. GM is the

primary tissue involved in the framework for a later

classification stage. GM and WM are both used in the

registration which is the second processing step of VBM while

CSF is not used. The output of the segmentation is used by

registration for achieving accurate inter-subject alignment.

The registration algorithm used in VBM is called

DARTEL. Its primary goal is to best align images together.

This is achieved by continuous alignment of the images and

their average as described earlier in the previous section.

VBM contains two additional processing steps: Normalizing

and smoothing and statistical analysis. Images are

normalized in the former process in the MNI space and a set

of smoothed Jacobian scaled GM images are generated using

the shapes encoded by the deformations. The Final process,

statistical analysis, uses the statistical model GLM to infer

data about the concentration of GM. The final output of VBM

is a statistical parametric map that shows the regions where

GM tissue in MRI differs clearly in MRI images under

evaluation.

.

Fig. 2: Framework of the proposed FPGA acceleration of MRI registration used for AD classification.

The VBM analysis is implemented in the SPM software

tool that runs under MATLAB. Intensive time-consuming

routines are typically implemented in C language for fast

implementation and are called from MATLAB via MEX

interface. These routines include the DARTEL functions

responsible for registration and other functions such as

Bspline and Markov Random Field that are not used by the

DARTEL registration algorithm. The DARTEL function

itself includes three subroutines that are responsible for

obtaining small deformation, calculating the Jacobian

composition, solving differential equations using the full

multi-grid method (FMG) and some other auxiliary functions

such as the one that converts the velocity field to a momentum

field. In the proposed framework, those most time-consuming

functions are designed to run on FPGA for acceleration and

are hence called via a PCIe interface for execution. Profiling

these functions and describing the PCIe interface are

described in the upcoming subsections.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

132

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

On CPU, this processing forms a heavy computational and

very time-consuming task. It is quite remarkable to mention

that registering a total of 471 images of size 128x128x128

took 14 days on a standard 3 year relatively old desktop by

DARTEL’s author John Ashburner [1].

B. Profiling VBM Run Time

In the proposed software/hardware co-design, part of the

VBM analysis runs on CPU, while the rest runs on the

accelerating hardware FPGA. Referring to Fig. 2, the part that

runs on the CPU includes image segmentation, normalizing

and smoothing, and the statistical analysis. The registration is

the part that runs on the FPGA hardware for acceleration for

being the most complicated and iterative process in the

framework.

In VBM analysis, the DARTEL registration runs too slow.

Analyzing 275 MRI images consumed 34 hours for an image

size of 121x145x121 pixels. The memory usage and run time

duration of DARTEL subroutine calls are analyzed by a code

profiler to discover the performance bottlenecks. Hardware

specifications of the underlying machine are provided in the

upcoming section.

Fig. 3 illustrates the results of profiling VBM functions run

time. The VBM most time-consuming functions are

implemented in C programming language and are called from

MATLAB by MEX functions. This is shown in the block

diagram of the proposed framework in Fig. 2. These MEX

functions account for 81.4% of the total pre-processing time

of the VBM execution. Profiling these functions shows that

the DARTEL function which is responsible for registration

takes 65% from the total MEX functions time. The DARTEL

function includes four subroutines: obtaining small

deformation, calculating the Jacobian composition, solving

differential equations using FMG method, and other auxiliary

functions (such as the function that converts the velocity field

to momentum field). The percentage of the run time of each

function with respect to the DARTEL function run time is

given in Fig. 3. These former four functions are chosen for

their high computational time-consuming demands to run on

FPGA. The interface between these four functions and the

CPU is held via PCIe.

Fig. 3: Profiling VBM Functions Run Time.

C. Software/Hardware Co-design Interfacing

The used FPGA kit is interfaced with the workstation through

a PCIe interface as shown in the block diagram of the

proposed framework in Fig. 2. Data is transmitted from CPU

to FPGA and received back by CPU after computation. This

total round trip time per call τcall is calculated by equation (5)

where τPCIe is the transmission and reception latency taken by

PCIe to transmit and receive data. The communication

latency over the PCIe link is almost negligible when large

amounts of data are transferred from/to the PCIe card. It is

estimated by 2.3 μsec [30].

The payload is the amount of data that is

transmitted/received through PCIe. τtpayload is the

transmission payload calculated by equation (6). It depends

on the size of the MRI used. τrpayload is the reception payload

calculated by equation (7).

Throughput of the PCIe is given by [31] as 27Gbps. FPGA

Operation time τFPGA is the time taken by the FPGA to

calculate the DARTEL functions. Equation (5) shows that the

round trip time is dominated by the FPGA Operation time

τFPGA as it runs in the order of seconds while other equation

variables run is microseconds.

 (5)

 (6)

 (7)

D. FPGA Design Optimization

The original implementation of the four functions described

in the previous subsections is in the C language. It is written

with no restrictions on data type range, arithmetic operations,

or loop counts. The code achieved good accuracy but at the

expense of a long run time.

Optimizing MRI Registration using Software/Hardware Co-Design Model on FPGA

133

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

Several optimization techniques have been introduced to

the original C-code of these four functions to achieve high

operating frequency, low latency, and low power circuits.

These techniques include:

 Replacing floating-point data types with fixed-point

data types;

 Optimizing complex and/or non-linear arithmetic

functions;

 Exploiting the concurrent behavior of FPGAs by

parallel loop unrolling and function inlining;

 Pipelining.

1) Fixed-Point Data Type

In fixed-point data type, the number is represented with a

fixed number of digits after and before the radix point. The

fundamental advantage of using a fixed-point data type is

performance. Arithmetic operations performed on fixed-point

data type are orders of magnitude faster than floating-point

data type. The fixed-point conversion reduces the usage of

FPGA resources such as DSP48E2s, look-up tables (LUTs),

and flip-flops. It also reduces the amount of memory required

to store the data.

The downside of using a fixed-point data type is accuracy.

Its performance improvement comes at the expense of

accuracy due to the reduced range of values that the fixed

number of digits can represent. Arithmetic manipulation of

large numbers can produce a result that does not fit into the

fixed-point representation. Scaling the data becomes a

necessity to avoid problems such as overflow or underflow.

However, in many scientific areas, fixed-point

implementation achieves comparable performance in terms of

accuracy to the floating-point implementation. According to

[32], machine learning problems such as image classification

requires only INT8 fixed-point data type to reach an

acceptable accuracy. In this design, a good trade-off between

accuracy and hardware utilization, power consumption, and

run time is reached by using a fixed-point data type of 16

precision bits.

2) Complex and/or non-linear arithmetic functions

Complex arithmetic operations such as division and

IEEE-defined elementary operations (such as log(x) and e
x

functions) consume a very high number of clock cycles and

utilize a huge number of hardware resources such as LUTs

and DSP48E2 slices. These functions were excluded from the

code and replaced with faster-approximated implementations

that use simpler arithmetic operations such as addition,

subtraction, and multiplication.

Division and square root functions are implemented using

Newton Raphson iterative algorithm. The algorithm finds the

reciprocal of the denominator and multiplies that reciprocal

by the numerator to find the final quotient [33]. It computes

one multiplicative inverse in one iteration thus providing high

computation speed and throughput.

Log and exponential functions are implemented using

look-up table based algorithms. This approach is fast and

straightforward. However, it requires a large amount of

memory to avoid reducing the accuracy. This explains the

vast amount of LUTs used by the design.

3) Loop unrolling and function in-lining

In order to translate software C-code algorithms into

hardware circuits that match the same functionality,

High-Level Synthesis ‘HLS’ tools are used. Pragmas defined

by the Vivado HLS tool are embedded in the C-code to

fine-tune the synthesized output circuit resulting in a faster,

low-latency, and low-power circuit.

The design applied the INLINE pragma. This pragma

allows functions that are called from another function to be

dissolved into the calling function. This allows operations to

be optimized more efficiently. Loop unrolling is applied as

well in the design using the UNROLL pragma to insure

maximum operations concurrency. Unrolling loops create

multiple independent operations by generating multiple

copies of the loop body in the design allowing loop iterations

to occur in parallel.

4) Pipelining

Parallel execution of instructions by using pipelining allows

the design to take full advantage of FPGA. The initiation

interval is defined as the number of clock cycles between

successive instances of the loop. It is considered the inverse of

the throughput. Throughout the whole design all pipeline

stages are implemented with the lowest possible initiation

interval. Concurrent execution of operations is applied in the

design by using PIPELINE pragma to reduce the initiation

interval for loops. The default initiation interval for the

PIPELINE pragma is 1, which means processing a new input

every clock cycle.

FPGA design that applied these optimizations will be

referred to in the text as optimized FPGA fixed-point

implementation.

V. EXPERIMENTAL STUDY, RESULTS AND

DISCUSSION

A. Dataset

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [34] is

the dataset used for testing in this work. It contains various

study data that help in defining the progression of AD such as

MRI and PET images. T1 and T2, are two relaxation times

that are used to characterize MRI scans.

In this study, a total of 275 T1-weighted MR images are

considered, including 162 patients with AD and 113 NC.

Table-І clarifies the dataset demographics.

Table-І: Dataset Demographics

 Normal Control Alzheimer’s Disease

Patient
Total Number=113 Total Number=162

Gender: (M/F) 72/41 71/91
Age: (Mean/Std.) 77.49/5.88 73.82/7.63

MMSE: (Mean/Std.) 25.74/7.74 21.54/3.92

B. Experimental Results

The study compares three different implementations of

DARTEL registration algorithm:

1) Software (CPU) implementation;

2) FPGA floating point implementation;

3) Optimized FPGA fixed-point implementation.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

134

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

Comparing the software (CPU) implementation and the

optimized FPGA fixed-point implementation highlights the

impact of using FPGA accelerators on the registration

problem. While comparing the optimized FPGA fixed-point

implementation to the FPGA floating-point implementation

analyzes the trade-off between accuracy and hardware

utilization, power consumption, and run time. Finally, a

comparison between the three implementations is provided.

1) Acceleration of FPGA implementation over CPU

implementation

CPU run time of the DARTEL registration function running

on MATLAB is 10.9 seconds per call. The Small

Deformation function accounts for 28.7% of its time.

The accelerated version of the Small Deformation function

running on FPGA consumes 1.023 seconds. Thus, a speedup

factor of 2.75x is achieved over the CPU run time. Table П

summarizes the CPU run time, FPGA run time, and the

achieved speedup factors for the four implemented DARTEL

functions. The speedup factor for the whole DARTEL

registration process when combining the four accelerated

functions is 7.9x.

CPU results have been carried on a machine with an Intel

i5-4200M processor that has a 64-bit architecture and runs at

2.50GHz clock frequency under Ubuntu 18.04 operating

system.

The proposed FPGA design is synthesized on a Xilinx

Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit that

includes a ZU7EV FPGA device and runs at 2 nanoseconds

clock.

Table-П: Run Time Speedup Factors of different

DARTEL Functions

 CPU FPGA Speedup Factor

Small Deformation 3.14s 1.14s 2.75x
Jacobian

Composition
3.87s 0.05s 77.5x

FMG 2.28s 0.02s 114x
Auxiliary functions 1.6s

0.17s 9.4x

2) Acceleration of optimized FPGA fixed-point

implementation over FPGA floating-point implementation

Fig. 4 compares the floating-point implementation and the

optimized fixed-point implementation. The comparison

comes in terms of frequency, latency, BRAM, and dynamic

power. The maximum frequency of the optimized fixed-point

implementation is more than twice the frequency of the

floating-point implementation. The optimized fixed-point

implementation achieved reductions in Latency, BRAM, and

dynamic power as well.

Fig. 4: FPGA Performance Measurement of

Floating-Point Implementation and Optimized

Fixed-Point Implementation.

Fig. 5 and Fig. 6 compares the LUTs count and the

DSP48E slices count of the two FPGA implementations;

optimized fixed-point versus floating-point respectively. A

significant decline in both counts is obtained by the optimized

fixed-point implementation.

Fig. 5: LUTs Count of Floating-Point Implementation

and Optimized Fixed-Point Implementation.

Fig. 6: DSP48E Slices Count of Floating-Point

Implementation and Optimized Fixed-Point

Implementation.

Optimizing MRI Registration using Software/Hardware Co-Design Model on FPGA

135

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

Fig. 7 illustrates the improvement factors achieved by the

optimized fixed-point implementation over the floating-point

implementation. A Massive decrease in BRAM, 27x, LUTs,

58x, and in DSP48E slices, 33x is noticed. These resource

savings has led to a reduction in the dynamic power by 37x.

Fig. 7: Improvement Factors achieved by Optimized

Fixed-Point Implementation Over Floating-Point

Implementation.

Table- III shows a summary of the resources utilized by the

design versus the available resources on board. This indicates

utilization of about one third for DSP48E and one fourth for

LUTs and 1% for BRAM. The power consumption details of

the design are illustrated in Fig. 8. Small Deformation

function consumes most of the design power which is quite

predictable as it extensively uses the LOG and division

functions. FMG consumes far less power as it only uses

simple arithmetic operations. Auxiliary functions and

Jacobian Composition do not utilize BRAM in their circuits

and thus no power consumption is shown.

Table-III: FPGA utilization Vs Available resources.

 DSP48E LUTs BRAM

Total 612 55538 1600

Available 1728 230000 11

Utilization (%) 35.42% 24.15% 1%

Fig. 8: Power Consumption of different DARTEL

Functions

Fig. 9 illustrates the Root Mean Square Error (RMSE)

using different data types. RMSE is calculated with reference

to double (64-bit) floating-point datatype. Single (32-bit)

floating-point and (32-bit) fixed-point datatypes barely

affected the accuracy (i.e. their RMSE approaches zero). The

figure shows that the proposed design with its 16-bit

fixed-point datatype achieved less than 10% RMSE, while the

8-bit fixed-point datatype achieved more than 30% RMSE.

Hence, the choice of 16-bit fixed-point datatype is concluded

to achieve the best trade-off between accuracy and hardware

utilization, power consumption, and run time.

Fig. 9: RMSE using Different Data Types

The DARTEL run time on CPU, FPGA with floating-point

implementation, and FPGA with optimized fixed-point

implementation is illustrated in Fig. 10. The run time, which is

in nanoseconds, indicated that optimized FPGA fixed-point

implementation achieves a time acceleration of 7.9x over

CPU and 20.7x over FPGA floating-point implementation.

Fig. 10: DARTEL Run Time of CPU, Floating-Point

FPGA implementation (FPGA), and Optimized

Fixed-Point FPGA implementation (Opt FPGA)

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

136

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

C. Discussion

The proposed design, optimized fixed-point

implementation, consumed far fewer resources than the

available resources on board. It consumed 24% of LUTs, 35%

of DSP48E2 slices, and 1% of BRAM. This shows very good

resource utilization and allows for either one of the following:

 Adding more accelerated functions to the chip;

 Replicating the circuit for more acceleration rates.

The design can roughly be replicated three times leading to

tripling the acceleration rate.

The optimized fixed-point implementation design can be

compared to the GPU implementation of DARTEL

registration conducted by P. Valero-Lara in [27]. Though the

datasets are different, both designs can be compared in terms

of performance measures. The database used for evaluation in

the case of GPU implementation is only 30 images with the

size 60x60x72 pixels, accounting for a total of 259,200 pixels

per image. For a single GPU implementation, an overall

speedup of 13x is achieved and is promoted to 63x using four

GPUs according to the author.

The work presented here uses 275 images of size

121x145x121 pixels, accounting for a total of 2,122,945

pixels per image. Accordingly, the workload used in this work

exceeds the workload used in [27] by approximately 8.2x and

the database size is bigger by approximately 9.2x. Moreover,

the low resource utilization of the design allows it to be

replicated three times as discussed earlier. This can promote

the speedup by triple the value, leading to 23.7x speedup over

CPU. Thus, the FPGA implementation proposed here

presents competitive results to the single GPU

implementation conducted by [27] The GPU platform used by

P. Valero-Lara consists of four NVIDIA Tesla K20 graphic

card, Intel Xeon (E5-2650) runs at 2GHz and 64GB main

memory. Table-IV highlights the comparison between FPGA

optimized fixed-point implementation and GPU

implementation speedup factors on the three main DARTEL

functions: Small Deformation, Jacobian Composition, and

FMG. ‘Auxiliary functions’ refer to functions that implement

the rest of the DARTEL routine. It is accelerated in this work

only, and for the GPU implementation, their result is not

recorded by the author. The comparison as indicated by table

4 gives an insight into the powerful acceleration power of

FPGA over GPU.

Table-IV: FPGA Vs GPU speedup factors on different

DARTEL functions.

 FPGA GPU

Small Deformation 2.75x 32x

Jacobian

 Composition

77.5x 19x

FMG 114x 9x

Auxiliary functions 9.4x -

Pre-processing of data has been carried by MATLAB

R2014b [35] by SPM12 on the DARTEL toolbox. C to

VHDL code conversion and synthesis is done using Vivado

High-Level Synthesis (HLS) software [36] Profiling is done

using gprof and google performance tools.

VI. CONCLUSION AND FUTURE WORK

Image registration is an important highly computational

process in image analysis. This paper presents an optimized

software/hardware co-design model to accelerate the

implementation of the diffeomorphic image registration

algorithm DARTEL running under the SPM software tool. An

optimized and pipelined FPGA architecture is proposed,

where faster implementations of complex arithmetic

operations and fixed-point data types are exploited to ensure

minimum latency. The proposed fixed-point FPGA

implementation achieves more than 20x speedup in run time

when compared to the floating-point FPGA implementation.

Comparing to CPU performance, the speedup factor of 114x

is achieved on the function level with an overall speedup

factor of 8x of the DARTEL registration process. The low

resource utilization of the design on the FPGA board, which is

one third, makes it flexible to be replicated three times

promising to triple the acceleration rate. The acceleration

capabilities of FPGA versus GPU in registering medical

images are explored in this paper and evaluated. FPGA

proved proficiency by the powerful resource savings and high

speedups obtained.

FPGA can be further utilized by using multiple CPU cores

on the FPGA board. This can efficiently run the software

application with low latency to the hardware accelerator.

Moreover, the accuracy of the system can be enhanced by

applying the fixed-point word-length optimization

methodologies and techniques.

REFERENCES

1. Ashburner, John. "A fast diffeomorphic image registration

algorithm." Neuroimage 38.1 (2007): 95-113.

2. Klein, Arno, et al. "Evaluation of 14 nonlinear deformation algorithms

applied to human brain MRI registration." Neuroimage 46.3 (2009):

786-802.

3. Khoon, Lee Lay, and Liew Siau Chuin. "A survey of medical image

processing tools." International Journal of Software Engineering and

Computer Systems (IJSECS) 2.1 (2016): 10-27.

4. Penny, William D., et al., eds. Statistical parametric mapping: the

analysis of functional brain images. Elsevier, 2011.

5. Ashburner, John, and Karl J. Friston. "Voxel-based morphometry—the

methods." Neuroimage 11.6 (2000): 805-821..

6. Zhang, Feng, et al. "Voxel-based morphometry: improving the

diagnosis of Alzheimer’s disease based on an extreme learning

machine method from the ADNI cohort." Neuroscience 414 (2019):

273-279.

7. Zhang, Haifeng, et al. "Computerized multi-domain cognitive training

reduces brain atrophy in patients with amnestic mild cognitive

impairment." Translational psychiatry 9.1 (2019): 1-10.

8. Pergher, Valentina, et al. "Identifying brain changes related to

cognitive aging using VBM and visual rating scales." NeuroImage:

Clinical 22 (2019): 101697.

9. BERTEN, DSP. "GPU vs FPGA performance comparison."

Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays-FPGA’17. 2016.

10. Birk, Matthias, et al. "A comprehensive comparison of GPU-and

FPGA-based acceleration of reflection image reconstruction for 3D

ultrasound computer tomography." Journal of real-time image

processing 9.1 (2014): 159-170.

11. Chase, Jeff, et al. "Real-time optical flow calculations on FPGA and

GPU architectures: a comparison study." 2008 16th International

Symposium on Field-Programmable Custom Computing Machines.

IEEE, 2008.

Optimizing MRI Registration using Software/Hardware Co-Design Model on FPGA

137

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijitee.B83001210220

DOI: 10.35940/ijitee.B8300.1210220

12. Pauwels, Karl, et al. "A comparison of FPGA and GPU for real-time

phase-based optical flow, stereo, and local image features." IEEE

Transactions on Computers 61.7 (2011): 999-1012.

13. Nurvitadhi, Eriko, et al. "Can FPGAs beat GPUs in accelerating

next-generation deep neural networks?." Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. 2017.

14. Farouk, Yasmeen, Sherine Rady, and Hossam Faheem. "Statistical

features and voxel-based morphometry for alzheimer's disease

classification." 2018 9th International Conference on Information and

Communication Systems (ICICS). IEEE, 2018.

15. Kasik, Vladimir, et al. "Advanced CT and MR image processing with

FPGA." International Conference on Intelligent Data Engineering and

Automated Learning. Springer, Berlin, Heidelberg, 2012.

16. Koo, Jahyun J., Alan C. Evans, and Warren J. Gross. "3-D brain MRI

tissue classification on FPGAs." IEEE Transactions on Image

Processing 18.12 (2009): 2735-2746.

17. Chandra, Binay, and Manish Sharma. "Segmentatation based feature

extraction of MRI images using Wavelet and implementation on

FPGA." 2016 International Conference on Automatic Control and

Dynamic Optimization Techniques (ICACDOT). IEEE, 2016.

18. Christe, S. Allin, M. Vignesh, and A. Kandaswamy. "An efficient

FPGA implementation of MRI image filtering and tumor

characterization using Xilinx system generator." arXiv preprint

arXiv:1201.2542 (2012).

19. Hasan, Sami, Alex Yakovlev, and Said Boussakta. "Performance

efficient FPGA implementation of parallel 2-D MRI image filtering

algorithms using Xilinx system generator." 2010 7th International

Symposium on Communication Systems, Networks & Digital Signal

Processing (CSNDSP 2010). IEEE, 2010.

20. Li, Will XY, et al. "High-performance computing for neuroinformatics

using FPGA." High-Performance Computing Using FPGAs. Springer,

New York, NY, 2013. 177-207.

21. Minati, Ludovico, Mara Cercignani, and Dennis Chan. "Rapid

geodesic mapping of brain functional connectivity: Implementation of

a dedicated co-processor in a field-programmable gate array (FPGA)

and application to resting state functional MRI." Medical Engineering

& Physics 35.10 (2013): 1532-1539.

22. Lee, Lay-Khoon, and Siau-Chuin Liew. "A survey of medical image

processing tools." 2015 4th International Conference on Software

Engineering and Computer Systems (ICSECS). IEEE, 2015.

23. Hernández, Moisés, et al. "Accelerating fibre orientation estimation

from diffusion weighted magnetic resonance imaging using GPUs."

PloS one 8.4 (2013): e61892.

24. Yan, Chaogan, and Yufeng Zang. "DPARSF: a MATLAB toolbox for"

pipeline" data analysis of resting-state fMRI." Frontiers in systems

neuroscience 4 (2010): 13.

25. Shamonin, Denis P., et al. "Fast parallel image registration on CPU and

GPU for diagnostic classification of Alzheimer's disease." Frontiers in

neuroinformatics 7 (2014): 50.

26. Huang, Teng-Yi, Yu-Wei Tang, and Shiun-Ying Ju. "Accelerating

image registration of MRI by GPU-based parallel computation."

Magnetic resonance imaging 29.5 (2011): 712-716.

27. Valero-Lara, Pedro. "Multi-gpu acceleration of DARTEL (early

detection of alzheimer)." 2014 IEEE International Conference on

Cluster Computing (CLUSTER). IEEE, 2014.

28. Huang, Teng-Yi, Yu-Wei Tang, and Shiun-Ying Ju. "Accelerating

image registration of MRI by GPU-based parallel computation."

Magnetic resonance imaging 29.5 (2011): 712-716.

29. Mechelli, Andrea, et al. "Voxel-based morphometry of the human

brain: methods and applications." Current Medical Imaging 1.2

(2005): 105-113.

30. Fahmy, H. A., ElDeeb, T., Hassan, M. Y., Farouk, Y., & Eissa, R. R.

(2010, December). Decimal Floating Point for future processors.

In 2010 International Conference on Microelectronics (pp. 443-446).

IEEE.

31. Goldhammer, Alex, and John Ayer Jr. "Understanding performance of

PCI express systems." Xilinx WP350, Sept 4 (2008).

32. Finnerty, Ambrose, and Herve Ratigner. "Reduce power and cost by

converting from floating point to fixed point." WP491 (v1. 0) (2017).

33. Singh, Naginder, and Trailokya Nath Sasamal. "Design and synthesis

of single precision floating point division based on newton-raphson

algorithm on fpga." MATEC Web of Conferences. Vol. 57. EDP

Sciences, 2016.

34. Alzheimer’s Disease Neuroimaging Initiative (ADNI),

http://adni.loni.usc.edu/.

35. Matlab software. URL http://www.mathworks.com/products/matlab/

36. Vivado high-level synthesis, xilinx software.

https://www.xilinx.com/products/design-tools/vivado/integration/esld

esign.

37. Haber, Eldad, and Jan Modersitzki. "A multilevel method for image

registration." SIAM Journal on Scientific Computing 27.5 (2006):

1594-1607.

AUTHORS PROFILE

 Yasmeen Farouk is a PhD student at the Faculty

of Computer and Information Sciences of Ain Shams

University in Cairo, Egypt. She holds a B.Sc in

Computer and Information Sciences (Information

Systems Department), Ain Shams University. She got

her M.Sc. in Computer and Information Sciences from

Ain Shams University.

 Sherine Rady is an Associate Professor at the

Faculty of Computer and Information Sciences of Ain

Shams University in Cairo, Egypt. She holds a B.Sc in

Electrical Engineering (Computer and Systems), Ain

Shams University. She got her M.Sc. in Computer and

Information Sciences from Ain Shams University and

her Ph.D. from University of Mannheim in Germany. – Dr. Sherine Rady is a

DAAD and JICA Alumni and her current research interests are Data Mining,

Computer Vision, Robotics, and Big Data.

http://adni.loni.usc.edu/
http://www.mathworks.com/products/matlab/
https://www.xilinx.com/products/design-tools/vivado/integration/esldesign
https://www.xilinx.com/products/design-tools/vivado/integration/esldesign

