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Abstract—Due to the frequency constraints imposed by
the necessary coexistence of radar and communications, the
increasing range resolution requirements of modern radar
systems can only be achieved by fusing multiple frequency bands.
There are a variety of published approaches to solve this task.
In this paper we will present two algorithms, the first one based
on a high resolution spectral estimation method and the second
one based on a compressive sensing algorithm.
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I. INTRODUCTION

Improvement of range resolution in radars systems has
been a topic of interest for many years. Since the range
resolution is inversely proportional to radar bandwidth, a
wide-band radar allows for a good range resolution. However,
wide frequency bands necessary for close-spaced target
separation and high resolution imaging are not easily available
due to the congestion of the spectrum by radars and
communication systems [1], [2].

While one approach is the dual use of spectrum for
radar and communication, it is also possible to split the
spectrum for radar into small dedicated sub-bands. However,
the latter approach necessitates the fusion of sub-bands into
one. Therefore, the goal is to use the existing narrow-band
radars and estimate the gapped-band data from the available
sub-bands. A good estimate of the missing band would result
in the desired wide-frequency band, which could be used to
detect targets at a higher resolution.

The problem of band fusion has been investigated under
the topic of ‘spectral estimation’ in the past. Fusion of data
from disjoint sources has also been an active research topic
in the field of sensor networks [3]. The three important
factors of an ideal band fusion method are low computational
complexity, robustness at low signal-to-interference-plus-noise
ratio (SINR), and a near-ideal estimate of the missing band. In
practice, a trade-off must be achieved between these factors.

Traditional spectral estimation methods largely relied on
different minimization techniques and exploited the notion of
similarity between missing and known bands. However, this
resulted in inaccurate estimations and a large computational
load. Researchers have tried to counter these disadvantages by
moving to feature-based detection methods [4], [5]. Recent
work has heavily focused on using the natural sparsity of
targets to reduce the problem size.

This paper presents two band fusion methods. The first is
based on a high resolution spectrum estimation, the second on
a compressive sensing (CS) technique.

Section II introduces the problem with a basic signal
model. Section III presents an “lterative Adaptive Approach
(IAA)” and shows simulation results. Section IV presents
a compressive sensing fusion algorithm based on “Iterative
Shrinkage-Thresholding Algorithm (ISTA)” and also includes
simulation results. The paper ends with the summary in section
V.

II. SIGNAL MODEL
A. Motivation

In some radar situations, the scene is illuminated in two or
more separate frequency bands, e.g., because of disallowed
bands or with the goal of fusing two or more different
phase-coherent radar units to achieve finer range resolution.
In either case, the Tx signal(s) in the frequency domain may
be represented with gaps in the spectrum. The signals received
in the time domain can be converted to the frequency domain
via a DFT without loss of information. Conventional matched
filtering results in an unacceptable side lobe level.

Without additional information about the scattering
distribution, it is not possible to retrieve in the missing
frequency data. However, assuming that the distribution is
sparse in the range (equivalently, fast time), CS methods can
be applied to obtain an excellent estimate of this. As we will
see in the IV section, this is accompanied by an estimation
("interpolation”) of the missing frequency data.

B. Continuous formulation

The basic model can be formulated as follows:

We consider an (unknown) complex-valued time signal
consisting of a finite set of delta functions at the time points
t=ty,... tx

K
2(t) =Y ard(t — t). (1)
k=1

In the frequency domain the signal is

K
z2(f) = /x(t) exp{—j2n ft}dt = Zak exp{—j2n fti}.
k=1
2)

Suppose that the frequency signal is available only on a
subset Q € R and corrupted by noise n(f):



y(f) = 2(f) + n(f) for f € Q. 3)

Q2 may consist in the finite union of different frequency
intervals (frequency bands). The basic problem is to estimate
x - or equivalently K, aq,...ax,t1,...tx - from y.

C. Discrete formulation

We consider a time grid ¢, = nAt,n = 1,...,N
and a grid f,,,,m 1,...,M in the frequency domain
with a Nyquist spacin%] Af with respect to the time interval
MAt. Then, z, = Y _; @y exp{—j2n ft,} is the discrete
Fourier transform of the unknown time signal xq,...,%n.
Again, the frequency data can only be observed on a subset
Qe {l,..., M} and are corrupted by noise:

Ym = Zm + Ny, for m € Q. @)

In vector notation this can be written as

z = Fx,y = z|o +n, where F is the (generalized) Fourier
matrix with the coefficients exp{—;27 f,,t,} and z|q denotes
the restriction of z to indices contained in €.

Of course, the task of estimating x from z is in general
only possible if further assumptions are made about the signal
x. In the context of this paper, we assume that x is S-sparse,
i.e. it has not more then .S nonzero coefficients.

D. Consideration of the radar Tx signal

In the radar application, a signal s is transmitted and
reflected in the scene, which is characterized by the (unknown)
vector x of reflection amplitudes.

The deterministic part of the received signal is given by
z = s * x, where ’x’ stands for the convolution operator. To
achieve equal lengths of s and x, the missing coefficients are
filled with zeros.

If F denotes the ordinary Fourier matrix, then

Z=S0X+N (&)

where Z = Fz, S = Fs and X = Fx are the Fourier
transforms of the corresponding signals. This is exactly the
case if the convolution of the two signals is identical with the
cyclic convolution, i.e. , if x is equal to zero in the initial and
final sections.

We now consider the case where S is concentrated over a
set ) of indices with non-vanishing coefficients, representing
the frequency bands used. Then only the constraints on 2 are
meaningful: Z|g = S| © X|q.

Let D = diag(S|q) and © be the restriction operator,
i.e., the identity matrix whose rows are cancelled with indices
outside Q: Z|, = DOFx.

Since the diagonal elements of D are non-zero, this matrix
is invertible, such that

D 'Z[g+n (6)
= Ax+n @)

<
I

with A = OF.

y represents the measurements after preprocessing by
Fourier transform and inverse filter. The task is to estimate
x on the basis of y. Of course if we have an estimator X it is
possible to complete the missing frequency data by Z =Fx.

The model 6 is applicable not only to the case of a radar
with a transmitted signal whose spectrum is distributed over
two or more subbands, but also to multiple RF units that
are phase stable with each other. In this case, the baseband
signals of these units can be combined into a single signal
after compensating for the difference in LO frequencies in the
processor.

III.TAA

We consider that a part of the transmitted signal used
for scene detection is missing. The received echo after the
detection may be sampled in the time domain or frequency
domain. In order to estimate the missing samples in either
domain, compressed sensing techniques are used under the
assumption that the scene reflectivity is sparse.

The iterative adaptive approach (IAA) [6] is one such
non-parametric high resolution spectral estimation method that
uses an iterative weighted least square minimization based on
the reflectivity of the scattering centers in the region of interest.

The MIAA [7] is a variation of TAA used to estimate
missing data. It removes the requirement of having overlapping
data segments in the available band, resulting in higher
resolution and lower side-lobes. In [7], MIAA first uses IAA to
obtain a spectral estimate from the given samples. This spectral
estimate is then used to recover the missing time samples.
Since the direct implementation of MIAA is computationally
expensive, faster approaches have been studied in [8].

Our work addresses the frequency band fusion problem.
Therefore, we consider that a part of the frequency band is
missing and apply MIAA in order to estimate this missing
band. We assume sparsity in the time domain and first obtain
the time samples using IAA. Then these time samples are used
to recover the missing frequency band.
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Fig. 2. Time Sample Estimate

Fig. 1 shows the frequency band estimated using MIAA.
Fig. 2 shows the sparsity-based time sample estimation as a
part of MIAA.

IV. AN APPROACH TO FUSION USING COMPRESSIVE
SENSING

In this section, we will discuss an approach to solving the
fusion problem using a compressive sensing algorithm called
”Approximated Observation”. In [9] this idea was presented
for a SAR stripmap mode with undersampled data, but we
will show that it also works with our band fusion problem. It
is based on the “Iterative Shrinkage-Thresholding Algorithm
(ISTA)” [10], which can be applied to the general CS problem
for estimating x from the underdetermined system of equations
Yy = Ax + n and consists of a relatively simple iteration:
Initialization: it = 0, initial estimate x(°), given numbers s
and 7
Iteration: repeat

x(it+1) T, (X(it) 4 MAH(y _ Ax(it))) 8)
it = dit+1
until a stopping criterion is met.
N ICEOEICEY
tn(2) { 0 else ©)

Here, t,, is the shrinkage-thresholding operator and T},(z) the
vector with ¢, applied to each coefficient of z.
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Fig. 3. The principal processing structure
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Fig. 4. The measured frequency bands

The advantage of this algorithm is that only matrix
multiplications with A and A are performed. In the
SAR environment, the application of A is a traditional
matched-filter SAR processor and that of A is the inverse
process, referred to in [9] as the “measurement simulator”
since Ax produces the expected measurements for a given
reflectance distribution x. In our case, A is the thinned Fourier
matrix and A corresponds to the inverse Fourier transform.
This allows for fast processing compared to other algorithms
since the FFT can be used.

The numbers 1 and g influence the sparsity of the result
and the convergence velocity. It is possible to adjust these
parameters in an optimum way, see [11] for i and [12] for u.

The proposed algorithm, illustrated in Fig. 3, can be vividly
described as follows: We distinguish a part, which we will
call 'real world’, with missing data, and a part ’ideal world’,
where the data are assumed to be completely available. In the
ideal world there exists a complete sensing matrix A, which
is related to the real matrix A by A = ®A. The application
of ® corresponds to removing rows from A and is called a
"down-sampler’.
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Fig. 5. Top: Real part of measured frequency data. Bottom: Real part of filled
frequency data

Suppose that in the iteration step if, the estimate x(it)
exists. The application of A serves as *measurement simulator’
without missing measurements. The downsampler restricts y
to the real usable part of the spectrum with the result y. This
is compared with the actual measurements y. The difference
is sent through the "up-sampler’ ©% . The unavailable parts
of the spectrum are filled with zeros. This is followed by an
application of A, which corresponds to a matched filter. The
result is the gradient of the data fidelity terms ||y — Ax]||3.
Multiplied by x4 and added to X, the renewal estimate is
obtained. This is passed through the thresholder and yields
the new estimator x(#*+1),



Incidentally, the filled spectrum y can be used as a starting
point for a Fourier analysis to provide an estimate for x in a
traditional way.

We have simulated the algorithms for a case of a large gap
in the center of the whole frequency band, see Fig. 4. Only
64 of the 256 frequency points are used. The sparsity of the
simulated signal was S = 10. Fig. 5 shows the measured (y)
and the filled spectrum (y), in Fig. 6 the sparse signal (x), the
matched filter response (Afy), the result of the algorithm
(%), and the application of the matched filter to the filled
spectrum (AHy) are depicted. Fig. 7 shows the results of
a Monte Carlo simulation for varying S and four different
filling ratios. The quality measure was the magnitude of the
correlation coefficient averaged over 5000 trials.
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Fig. 6. From top to bottom: The sparse signal. Matched filter response with
missing center frequencies. Sparse estimation. Matched filter response to filled
frequencies
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Fig. 7. Averaged magnitude of the correlation coefficient between the full
Fourier transform of x and the filled spectrum y as function of the sparsity
for four different sizes of the missing data. The percentages give the fraction
of measured data to the full size M. N = 512, M = 256

V. CONCLUSION

In this paper, two algorithms for radar band fusion
were presented. Simulation examples showed the principal
feasibility of these approaches. A performance analysis for
varying levels of sparsity and different sizes of missing data
was also performed.
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