
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

103
Retrieval Number: 100.1/ijitee.B82341210220

DOI: 10.35940/ijitee.B8234.1210220

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

Abstract: Face detection algorithms varies in speed and

performance on GPUs. Different algorithms can report different

speeds on different GPUs that are not governed by linear or near-

linear approximations. This is due to many factors such as

register file size, occupancy rate of the GPU, speed of the

memory, and speed of double precision processors. This paper

studies the most common face detection algorithms LBP and

Haar-like and study the bottlenecks associated with deploying

both algorithms on different GPU architectures. The study

focuses on the bottlenecks and the associated techniques to

resolve them based on the different GPUs specifications.

Keywords: Face Detection, GPU Performance, LBP, Haar-

Like.

I. INTRODUCTION

Graphics Processing Units (GPUs) are commonly used

nowadays in almost any mobile device, laptop, and personal

computer. GPUs are mainly used as accelerators for

computer vision and AI applications because of the huge

processing power they can provide for solving

computationally intensive problems. However, GPU

performance may be affected dramatically by the memory

access patterns and floating-point operations. In case the

algorithm you are targeting to deploy on GPU has such

challenges then you will need to tune the performance of the

GPU by modifying your algorithm to optimally exploit the

GPU capabilities. One of the most common problems in

computer vision is face detection, which requires a huge

processing power to identify the location of the face(s)

inside an image. The most common techniques for face

detection are Local Binary Pattern (LBP), Haar-like

Features, and Eigen faces. Many attempts to deploy those

algorithms on GPU are made and will be discussed in

Section II. Section III discusses the problem of face

detection and the challenges associated with deploying the

face detection algorithms on GPU. Section IV discusses the

performance tuning techniques to optimize the LBP, and

Haar-like detectors to optimally utilize the GPU capabilities.

Section V presents the results of the optimization techniques

proposed in Section III against different GPU architectures.

Section VI shows the conclusion remarks of this work

Revised Manuscript Received on December 05, 2020.

* Correspondence Author

Yara M. Abdelaal, Computer Systems, Ain Shams University, Cairo,

Egypt, Email: yara.medhat@cis.asu.edu.eg
M. Fayez*, Computer Systems, Ain Shams University, Cairo, Egypt,

Email: Mahmoud.fayez@cis.asu.edu.eg

Samy Ghoniemy, Computer Systems, British University in Cairo,
Cairo, Egypt, Email: samy.ghoniemy@bue.edu.eg

Ehab Abozinadah, Information Systems, King Abdelaziz University,

Jeddah, KSA, Email: eabozinadah@kau.edu.sa
H. M. Faheem, Computer Systems, Ain Shams University, Cairo,

Egypt, Email: hmfaheem@cis.asu.edu.eg

II. RELATED WORK

Face detection is an image scanning problem that requires

the image to be scanned to find the location of the face(s)

inside the image. The face detection algorithm must scan the

image with different scanning widow sizes because the face

size is variable, and its location is not predictable. This fact

makes the face detection one of the best algorithms to be

implemented on GPU because the GPU has many Scalar

Processors (SP) that can handle those variable scanning

windows in parallel and speed up the process of face

detection. So, there are many attempts in the literature to use

the GPUs for face detection.

Previous attempts were made to parallelize LBP algorithm

to reach real time face detection as proposed by Narmada et.

al [1] using OpenCL reaching computation time of 20ms for

a 640*480 image resolution. Also an attempt on non-

standard image resolutions was made by Marwa et al. [2]

which we couldn’t consider as a benchmark to compare

with. Attempts to evaluate the different performance on

multiple architectures was introduced by Miguel et. al [3]

introduced the different performance on general purpose

processors, SIMD units, Multi-core architectures and GPUs

reaching 30fps and measuring the energy needed along with

the performance.

P. Král et al [6] proposed a change to the algorithm under

ELBP (Enhanced Linear Binary Pattern) where the

enhanced algorithm reached 2% increase in the detection

accuracy, but the authors did not mention the performance

in terms of detection rate/ computation time. Fayez et al. [4]

proposed viola-jones enhancement on GPU reaching 37fps

for HD Images, which is considered as the base to our study

along with a research proposed by Rafi et al. [5] and Fayez

et al. in [6] which was based on introducing an

implementation for LBP algorithm by both scaling feature

scaling and image scaling and a comparison between both in

terms of accuracy and performance time reaching up to 50

Frame per second (fps) for feature scaling and 45 fps for

image scaling.

III. PROBLEM DEFINITION

Scanning an image to find a face requires fixing the

scanning windows size; then evaluate all sub-images that

can fit in the scanning widow against a trained data set of

features like LBP features or Haar-like features or project

the sub-image into the eigenfaces domain and measure the

distance between the projected sub-image and the faces

domain. This work focus on LBP and Haar-like features

because of the similarities between these two algorithms that

makes it useful to compare them on different GPU

architectures.

Performance Tuning Techniques for Face

Detection Algorithms on GPGPU
Yara M. Abdelaal, M. Fayez, Samy Ghoniemy, Ehab Abozinadah, H.M. Faheem

Performance Tuning Techniques for Face Detection Algorithms on GPGPU

104
Retrieval Number: 100.1/ijitee.B82341210220

DOI: 10.35940/ijitee.B8234.1210220

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

The scanning window size is then scaled up and the

process is repeated with bigger sub-images till a face is

detected. In case bigger sub-images size do not match the

size of the feature set, then hawse may have two solutions

which are:

 Solution 1 is to scale down the sub-image to match

the size of the feature set size.

 Solution 2 is to scale up the feature set to match the

size of the sub-images’ size.

Solution 1 cannot be calculated offline so it will be

executed with every new input image. On the other hand,

solution 2 can be calculated offline and it will be executed

once at the startup of the algorithm. So solution 2 is the most

proper way to solve this problem as shown in many trials as

in [4], [7], [8].

Figure 1Scanning Window moving from top left to

bottom right. (A) Scanning window of size 20x20, and

(B) Scanning window of size 24x24

The number of scanning windows’ sizes affects the number

of total sub images to be evaluated against the feature set.

Figure 1 shows two different scanning window sizes 20x20,

and 24x24. The scanning windows is moving from left to

right with step of 10% of the scanning window size. The

number of sub-images resulted from the two scanning

windows shown in Figure 1 are function of the image size,

scanning window size, and the displacement of the

windows. This is expressed in (1) where:

 𝐶𝐹is the counting function that returns the number

of sub-images.

 𝑊is the input image width

 𝐻is the input image height

 𝑤is the scanning windows width

 ℎis the scanning window height

 𝑠is the windows displacement to find a new sub-

image

𝑪𝑭 𝑾, 𝑯, 𝒘, 𝒉, 𝒔 =
𝑾 − 𝒘

𝒔
∗
𝑯 − 𝒉

𝒔
 (1)

Scaling up the scanning windows and applying (1) again

and sum up all the results of 𝐶𝐹 function will result in the

total number of sub-images that must be evaluated against

the feature set. The scanning window sizes are predefined as

shown in (2) which states that scanning window is scaled up

by 20% till the scanning window size is approximately equal

to 300x300 pixels. Table1 shows the number of sub-images

with different window sizes and the total number of sub-

images for the most common images resolutions which are

VGA (640x480), HD (1280x720) and 4K (1920x1080).

Each sub-image will be processed on GPU to check if it has

a face or not. The GPU has two options which are scaling up

the feature set or loading the scaled feature set from its

global memory. This decision must be justified based on the

GPU memory bandwidth and the number of GPU Special

Function Units (SFU). Next section will discuss the

complexity of each approach and the overhead on GPU

architecture that is associated with each approach. Also, it

will discuss two different feature sets which are LBP and

Haar-Like.

𝑺𝑾 = { 𝒘𝒊, 𝒉𝒊 : 𝒘𝒊 = 𝟐𝟎 ∗ 𝟏.𝟐𝒊, 𝒉𝒊 = 𝟐𝟎 ∗ 𝟏. 𝟐𝒊𝒘𝒉𝒆𝒓𝒆𝟎
≤ 𝒊 ≤ 𝟏𝟓} (2)

Table1: Number of sub-images for 3 different image sizes

Scanning

Window

𝑺𝑾𝒊 = (𝒘𝒊,𝒉𝒊)

Counting Function 𝑪𝑭

Image Size

(640x480)

Image Size

(1280x720)

Image Size

(1920x1080)

(20,20) 71300 220500 503500

(24,24) 48767 151767 347600

.

.

.

.

.

.

.

.

.

.

.

.

(257,257) 130 718 2073

(308,308) 61 423 1312

Total sub-
images

219510 693829 1601588

IV. METHODOLOGY

Processing thousands of sub-images that is shown in Table1

means a small enhancement in the sub-image processing

time will reflect by order of magnitude on the overall time

of the input image processing time. This requires detailed

study of the number of clock cycles required to scale up the

feature set on GPU and the number of memory cycles to

load it from the global memory. This is in order to select the

best approach to be deployed with different feature sets such

as LBP and Haar-Like feature sets.

The number of clock cycles is a function of many factors

which are:

 Ratio between Load/Store (LD) units and Scaler

Processors (SP) inside the Stream Multiprocessor

(SM)

 Ratio between Special Function Unit (SFU) and

SP.

This study focusses on two GPU architectures which are

K20m as a Tesla GPU architecture co-processor and

RTX2080 Ti as GeForce architecture co-processors. Table 2

shows the different hardware specifications for both GPUs.

RTX2080 Ti is faster and has more processing power.

However, this do not mean a tuned algorithm on K20m will

scale up properly to RTX2080 Ti.

Table 2 K20m and RTX2080 Ti architecture

specifications

Feature K20m RTX2080 Ti

Double Precession Speed 1174 GFLOPs/s 444 GFLOPs/s

Memory Speed 208 GB/s 616 GB/s

LD:SP Ratio 1:4 1:2

SFU:SP Ratio 1:2 1:2

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

105
Retrieval Number: 100.1/ijitee.B82341210220

DOI: 10.35940/ijitee.B8234.1210220

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

The number of cycles requires to scale up a feature set or

load it from GPU memory is the key for a successfully

performance tuning. This number of cycles is different

based on the feature set. Next sub section discusses the

number of cycles required to scale up and load each feature

set. This will make it clear and easy to take the right

decision.

A. Feature Set Scaling Vs Loading

This section discusses the number of CPU cycles and

Memory cycles needed to either scale the feature on GPU or

load the pre-scaled feature from GPU. These numbers are

feature type dependent. So, we will analyze LBP feature

then Haar-Like feature.

1) LBP Feature

LBP feature is shown in Figure 2. It has 9 rectangles; the

center rectangle and the 8 surrounding rectangles. Only one

point, the width, and height are required to define the 9

rectangles. The LBP feature has the following data structure:

 Top left corner point (x,y), x and y are two integer

numbers each has size of 8 bytes.

 Width, and Height of the LBP cell, each has size of 8

bytes.

 Lookup table of 256 bits, stored as 8 integers, which

means 64 bytes.

 Left and right values, stored as double, each has size

of 8 bytes.

Figure 2LBP feature components

Comparing the center rectangle with the 8 surrounding

rectangles will result in 8-bit result that is used to index the

lookup table and find the corresponding bit which will

decide to either use left or right value for this feature.

Scaling the LBP feature do not require to scale all the

components of the LBP feature only the top left corner

point, width, and height must be scaled. This means scaling

up an LBP feature require 4 floating point multiplications.

We can neglect the time to load it from memory given that

the feature is cached in the SM cache and shared between all

SPs. On the other hand, loading the pre-scaled feature set

from GPU’s global memory means that the all the feature

components must be loaded from the global memory. This

means loading 104 bytes for each LBP feature only 32 bytes

will have random access all other feature attributes are

cached in SM cache. This means only 32 bytes must be

loaded in case of pre-scaled feature set.

2) Haar-Like Feature

Haar-Like feature has different shapes and different number

of rectangles. Figure 3 shows 4 different types of Haar-Like

features. The dark rectangles are subtracted from the light

rectangles to find out the feature value. Haar-Like feature

has the following data structure:

 Rectangle 1 (x,y,w,h), this rectangle is stored in 4

integers which occupies 32 bytes.

 Rectangle 2 (x,y,w,h), this rectangle is stored in 4

integers which occupies 32 bytes.

 Rectangle 3 (x,y,w,h), this rectangle is stored in 4

integers which occupies 32 bytes.

 This rectangle may not be used but it is stored in

memory in order to keep the feature size fixed for ease of

calculating feature set indices.

 The weight of the 3 rectangles stored as double which

occupies 24 bytes.

 Threshold, this is stored as double number which

occupies 8 bytes.

 Left and right values, stored as double, each has size of 8

bytes.

After subtracting the dark area from the light area, the

difference is compared to threshold based on the comparison

result the left or right values are selected.

 Scaling the feature means the area of each dark/light

rectangle gets bigger. Consequently, the difference gets

bigger. This means the difference must be normalized such

that it is still comparable with the threshold value.

Scaling the Haar-Like feature consists of 3 different steps

which are scaling 3 rectangles, and the weight of each

rectangle, then normalize the rectangles’ weights regarding

the total area of the sub-image. This means calculating the

area of sub-image and normalize the weight of the

rectangles.

Figure 3Haar-Like Features with different shapes.

The number of cycles requires to achieve the scaling of

Haar-Like feature is not clear unless the scaling function is

presented as a pseudo code that is shown in Algorithm 1.

Lines 2:8 would require 5 Floating point multiplication and

repeated 3 times. Lines 9 to 15 would require 4 or 5 floating

point multiplications. So, based on the worst-case scenario

the total number of floating-point multiplications would be

20 floating point multiplications.
Algorithm 1 Scaling HAAR-Like Feature
SHAAR(F, SF)

Input:

F: Input feature
SF: Scaling Factor

Output:

FS: output scaled feature

30

200 120 255

230

0220

30

70

1 1 1

1

01

0

1

Binary : 11110110

Lookup Table

Pass Feature
≤

Stage Threshold

Σ

Performance Tuning Techniques for Face Detection Algorithms on GPGPU

106
Retrieval Number: 100.1/ijitee.B82341210220

DOI: 10.35940/ijitee.B8234.1210220

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

1

:
BEGIN

2

:

Fori from 0 to F.RectangleCount

3
:

𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑋 = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑋 ∗ 𝑆𝐹

4

:
𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑌 = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑌 ∗ 𝑆𝐹

5

:
𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑙𝑔𝑒[𝑖]. 𝑊𝑖𝑑𝑡ℎ = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑊𝑖𝑑𝑡ℎ ∗ 𝑆𝐹

6
:

𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝐻𝑒𝑖𝑔ℎ𝑡 ∗ 𝑆𝐹

7

:
𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑆𝑖𝑔𝑛𝐴𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡

= 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖].𝑆𝑖𝑔𝑛𝐴𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡
∗ 𝑆𝐹

8
:

End For

9

:

If (F.RectangleCount == 2)

1

0:

FS.rectangle[0].dSignAndWeight = -(F.rectangle[1].Width *

F.rectangle[1].Height *

1
1:

F.rectangle[1].dSignAndWeight) /(F.rectangle[0].Width *
F.rectangle[0].Height);

1

2:
Else

1

2:

FS.rectangle[0].dSignAndWeight = -(F.rectangle[1].Width *

F.rectangle[1].Height *

1
3:

F.rectangle[1].dSignAndWeight + F.rectangle[2].Width *
F.rectangle[2].Height *

1

4:
1

5:

F.rectangle[2].dSignAndWeight) / (F.rectangle[0].Width *

F.rectangle[0].Height);

End If

1
6:

END

On the other hand, loading the pre-scaled feature set from

GPU’s global memory means that the all the feature

components must be loaded from the global memory. This

means loading 144 bytes for each Haar-like feature.

3) Performance Tuning

There are many decisions to be considered in order to find

the best performance for LBP and Haar-Like detectors on

both K20m and RTX2080 Ti. Table 3 shows the total cycles

required for either scaling the feature set or loading it from

global memory.

Table 3 Number of cycles required to scale/load each

feature set

Feature Set Number of

Features

Number of

Scaling

Cycles

Number of

Loading

Cycles

Scale to

Load Ratio

LBP 129 516 4,128 1:8

Haar-Like 2135 42,700 307,440 10:72

It is clear that the number of cycles for scaling the feature

set cannot be optimized, however the number of cycles to

load the feature set can be optimized if the algorithm sorts

the threads running on GPU in a way that makes each SM

process a group of threads that requires the same scale. This

in turn will lead to load the feature set only once for all

threads that are running on the same SM. This is called

memory coalescing. This feature is GPU dependent based

on the maximum number of threads that can be deployed on

single SM. For both K20m and RTX2080 Ti the maximum

theoretical number of threads per SM is 1024, however due

to the limited number of registers on both GPUs only 768

threads were activated for both LBP and Haar-Like kernels

as reported by Nvidia CUDA Profiler (nvvp). This would

reflect

back on Table 3 which has theoretical values and would

result in an architectures based number of cycles that is

shown in Table 4.

Table 4 Loading feature set based on memory coalescing

for different GPU architectures.

Ima
ge

Size

LBP Haar-Like

Num

ber of

block
s

Total

Number

of load
cycles

Total

Number

of
scaling

cycles

Num

ber of

block
s

Total

Number

of load
cycles

Total

Number of

scaling
cycles

VG

A
Ima

ge

285 903,536,6

40

112,942,

080

285 87,620,4

00

9,346,176,

000

HD
Ima

ge

904 2,865,954
,816

358,244,
352

904 277,925,
760

29,645,414
,400

4k

Ima
ge

2086 6,613,254

,144

826,656,

768

2086 641,319,

840

68,407,449

,600

Theoretical speed of K20m memory is 208 GB/s and

processing speed of double precision is 1174 GFLOPS.

RTX2080 ti has theoretical memory speed of 616 GB/s and

double precision processing speed of 444 GFLOPS.

All theoretical speeds are multiplied by factor 75% because

the occupation rate of SM is 75% due to limited register file

size.

The performance of the two approaches for any algorithm is

subject to the type of the GPU and hence we can predict the

appropriate approach that will optimally run on the target

GPU. Table 4 shows that the difference between the two

approaches for LBP is less than 40X which indicates that

RTX2080 Ti will perform better in case of pre-scaled

feature set as it has faster memory speed than double

precision speed.

V. RESULTS

Experiments are conducted on 2 workstations with XEON

processor and 64 GB RAM. Each workstation has only one

GPU card. The first workstation has K20m and the second

workstation has RTX2080 ti. The reported results of each

configuration are shown in Table 5 and

Table 5 Results of different approaches on K20m

Image Size HAAR-

Like

Features

Scaling

on GPU

HAAR-

Like

Pre-

Scaled

LBP

Features

Scaling

on GPU

LBP

Pre-

Scaled

640 x 480 59.989m

s

21.597m

s

4.2432m

s

4.8599m

s

1280 x 720 177.74m

s

61.246m

s

12.449m

s

14.480m

s

1920 x

1080

312.19m

s

108.37m

s

27.750m

s

31.933m

s

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-2, December 2020

107
Retrieval Number: 100.1/ijitee.B82341210220

DOI: 10.35940/ijitee.B8234.1210220

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

The results show that the pre-scaled feature set approach for

haar-like feature set is faster on both architectures. This is

expected because the number of loading cycles shown in

Table 4 for haar-like is less than the number of scale cycles

by 106X. This means the speed of the double precision

operations must be faster than the memory speed by 106X

which is not true for both GPUs as reported in Table 2.

On the other hand, LBP feature set reported different

performance on both GPUs as shown in Table 5 and Error!

Not a valid bookmark self-reference.. This is because the

ratio of the scaling cycles to loading cycles are 1:8. This

means that faster memory as in case of RTX2080 ti will

produce better results for pre-scaled approach for LBP. This

is shown in Table 6.

Table 6 Results of different approaches on RTX2080

Image

Size

HAAR-

Like

Features

Scaling

on GPU

HAAR-

Like Pre-

Scaled

LBP

Features

Scaling

on GPU

LBP Pre-

Scaled

640 x

480

17.475ms 8.1016ms 0.8263ms 0.4454ms

1280 x

720

40.464ms 17.420ms 2.8095ms 1.2373ms

1920 x

1080

61.842ms 27.328ms 6.6696ms 5.0450ms

VI. CONCLUSION

Studying the target architecture and comparing the speed

and size of SM components are the main factors that affect

the performance of the implementation of face detection

algorithms. SM register file limits the number of the threads

that run concurrently on the SM. Load and Store units limits

the memory speed when accessing the GPU global memory.

special function units affect the double precision floating

point speed. Also studying the algorithm and dividing it into

I/O and Double Precision operations to estimate the ratio

and find out the best performance tuning approach for the

target GPU is mandatory to exploit the capabilities of the

GPU

ACKNOWLEDGMENTS

This work was supported in part by the National

ScienceFoundation under Grant CNS-1113191, and in part

by the High-Performance Computing Project in King

Abdulaziz University.

REFERENCES

1. N. Naik and G. N. Rathna, “Real time face detection on GPU using
opencl,” Comput. Sci., 2014.

2. M. Chouchene, F. E. Sayadi, H. Bahri, J. Dubois, J. Miteran, and M.

Atri, “Optimized parallel implementation of face detection based on
GPU component,” Microprocess. Microsyst., vol. 39, no. 6, pp. 393–

404, 2015.

3. M. B. López, A. Nieto, J. Boutellier, J. Hannuksela, and O. Silvén,
“Evaluation of real-time LBP computing in multiple architectures,” J.

Real-Time Image Process., vol. 13, no. 2, pp. 375–396, 2017.

4. M. Fayez, H. M. Faheem, I. Katib, and N. R. Aljohani, “Real-time
Image Scanning Framework Using GPGPU-Face Detection Case

Study,” in Proceedings of the International Conference on Image

Processing, Computer Vision, and Pattern Recognition (IPCV), 2016,
p. 147.

5. M. R. Ikbal, M. Fayez, M. M. Fouad, and I. Katib, “Fast

Implementation of Face Detection Using LPB Classifier on
GPGPUs,” in Intelligent Computing, 2019, pp. 1036–1047.

6. Y. Abdelaal, M. Fayez, and H. Faheem, “PERFORMANCE

EVALUATION OF IMAGE SCANNING: FACE DETECTION
CASE STUDY,” Adv. Comput. Sci. Eng., vol. 18, pp. 1–15, 2019.

7. M. Chouchene, F. E. Sayadi, H. Bahri, J. Dubois, J. Miteran, and M.

Atri, “Optimized parallel implementation of face detection based on
GPU component,” Microprocess. Microsyst., vol. 39, no. 6, pp. 393–

404, 2015.

8. M. R. Ikbal, M. Fayez, M. M. Fouad, and I. Katib, “Fast
Implementation of Face Detection Using LPB Classifier on

GPGPUs,” in Intelligent Computing-Proceedings of the Computing

Conference, 2019, pp. 1036–1047.

AUTHORS PROFILE

Yara Medhatis an associate lecturer at faculty of

computer and information sciences at Ain Shams
University. She received her MSc. in computer

science in 2014; her master was about face

detection optimization on GPU. She studied
different Face Detection algorithms and

benchmarked their performance on the GPU. She

proposed a new algorithm that can run faster on GPU under certain
conditions and assumptions. She is a PhD student working on optimizing

face detection and recognition pipelines on heterogeneous architectures

including GPUs and Xeon Phi Coprocessors. Her main research interested
are Computer Vision, Augmented reality, Parallel architectures, and

machine learning.

Mahmoud Fayezis a lecture at Ain Shams

University. He received the BSc. degree in

Computer Systems from the University of Ain
Shams, Egypt, in 2007, and the MSc in Computer

Science from Ain Shams University, Egypt, in

2014. In 2008, he joined the Department of
Computer Systems at Ain Shams university as a

Teaching Assistant. He became associate lecturer in 2014. His current

research interests include CUDA, MPI, OpenMP, Machine Learning,

Computer Vision and Elastic Optical Network. His main research work on

the master was focusing on face detection using graphic processing units

(GPUs) and how to enhance the performance of the face detection
algorithms on the GPU.

Samy Ghoniemyis a Professor of Computer
Systems while he is the Vicedean for postgraduate

studies and research, Faculty of Informatics and

computerscience, the British University in Egypt
(BUE). Dr. Samy obtained his B.Sc.

inCommunications and Computer Engineering, and

his M.Sc. and Ph.D. in Systems andComputer
Engineering from Carleton University, Canada. Dr. Ghoniemy also

hasextensive professional and consultancy experience in ICT. He worked

and now aconsultant for National and multinational ICT private companies
in Egypt. Dr.Ghoniemy’s methodological and applied research as well as a

considerable portion ofhis applied and collaborative work addresses

artificial intelligence, computer vision, realtime video tracking, medical

image processing. In due time, he is working in the area ofcognitive

science, semantic networks for cancer disease detection, dynamic graphs
forpredicting and controlling epidemic and endemic diseases.

Ehab Abouzinadahis an Assistant Professor at
Computing and Technology College and Director

of High performance computing (HPC) center –

King Abdul-Aziz University. He received his
graduate degrees from the United States of America

(USA) from Engineering School - George Mason

University. A Ph.D in smart cybersecurity, Master
degrees in Information Technology, and graduate

certificate degrees in Information Security. He is Supporting AI research

groups to recognize the benefit of the high-performance computer system
on speeding up the data processing for AI models. Also, working in many

researches that focus on Artificial intelligence – Cybersecurity and social

media mining for building smart detection systems that identify
cybercriminal accounts to improve security on Social media.

Performance Tuning Techniques for Face Detection Algorithms on GPGPU

108
Retrieval Number: 100.1/ijitee.B82341210220

DOI: 10.35940/ijitee.B8234.1210220

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

Hossam Faheem is a professor of computer systems

at the faculty of computer and information sciences –
Ain Shams University. He has a BSc of computer

engineering in 1992, MSc of computer engineering in

1995, and PhD of computer engineering in 2000. His
research interests include Parallel Processing, High

Performance Computing, Networking, and Multi Agent Based Systems. His

work focus on the hardware architecture optimization and system on chip
design. He designed FPGA based pattern matching chips, DNA pattern

matching co-processors, and other FPGA based algorithms for

bioinformatics and computer vision algorithms. His current interests are
about heterogenous architecture and meta scheduling strategies.

