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Abstract: Face detection algorithms varies in speed and 

performance on GPUs. Different algorithms can report different 

speeds on different GPUs that are not governed by linear or near-

linear approximations. This is due to many factors such as 

register file size, occupancy rate of the GPU, speed of the 

memory, and speed of double precision processors. This paper 

studies the most common face detection algorithms LBP and 

Haar-like and study the bottlenecks associated with deploying 

both algorithms on different GPU architectures. The study 

focuses on the bottlenecks and the associated techniques to 

resolve them based on the different GPUs specifications. 

Keywords: Face Detection, GPU Performance, LBP, Haar-

Like. 

I. INTRODUCTION 

Graphics Processing Units (GPUs) are commonly used 

nowadays in almost any mobile device, laptop, and personal 

computer. GPUs are mainly used as accelerators for 

computer vision and AI applications because of the huge 

processing power they can provide for solving 

computationally intensive problems. However, GPU 

performance may be affected dramatically by the memory 

access patterns and floating-point operations. In case the 

algorithm you are targeting to deploy on GPU has such 

challenges then you will need to tune the performance of the 

GPU by modifying your algorithm to optimally exploit the 

GPU capabilities. One of the most common problems in 

computer vision is face detection, which requires a huge 

processing power to identify the location of the face(s) 

inside an image. The most common techniques for face 

detection are Local Binary Pattern (LBP), Haar-like 

Features, and Eigen faces. Many attempts to deploy those 

algorithms on GPU are made and will be discussed in 

Section II. Section III discusses the problem of face 

detection and the challenges associated with deploying the 

face detection algorithms on GPU. Section IV discusses the 

performance tuning techniques to optimize the LBP, and 

Haar-like detectors to optimally utilize the GPU capabilities. 

Section V presents the results of the optimization techniques 

proposed in Section III against different GPU architectures. 

Section VI shows the conclusion remarks of this work 
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II. RELATED WORK 

Face detection is an image scanning problem that requires 

the image to be scanned to find the location of the face(s) 

inside the image. The face detection algorithm must scan the 

image with different scanning widow sizes because the face 

size is variable, and its location is not predictable. This fact 

makes the face detection one of the best algorithms to be 

implemented on GPU because the GPU has many Scalar 

Processors (SP) that can handle those variable scanning 

windows in parallel and speed up the process of face 

detection. So, there are many attempts in the literature to use 

the GPUs for face detection.  

Previous attempts were made to parallelize LBP algorithm 

to reach real time face detection as proposed by Narmada et. 

al [1] using OpenCL reaching computation time of 20ms for 

a 640*480 image resolution. Also an attempt on non-

standard image resolutions was made by Marwa et al. [2] 

which we couldn’t consider as a benchmark to compare  

with. Attempts to evaluate the different performance on 

multiple architectures was introduced by Miguel et. al [3] 

introduced the different performance on general purpose 

processors, SIMD units, Multi-core architectures and GPUs  

reaching 30fps and measuring the energy needed along with 

the performance.  

P. Král et al [6] proposed a change to the algorithm under 

ELBP (Enhanced Linear Binary Pattern) where the 

enhanced algorithm reached 2% increase in the detection 

accuracy, but the authors did not mention the performance 

in terms of detection rate/ computation time. Fayez et al. [4] 

proposed viola-jones enhancement on GPU reaching 37fps 

for HD Images, which is considered as the base to our study 

along with a research proposed by Rafi et al. [5] and Fayez 

et al. in [6] which was based on introducing an 

implementation for LBP algorithm by both scaling feature 

scaling and image scaling and a comparison between both in 

terms of accuracy and performance time reaching up to 50 

Frame per second (fps) for feature scaling and 45 fps for 

image scaling. 

III. PROBLEM DEFINITION 

Scanning an image to find a face requires fixing the 

scanning windows size; then evaluate all sub-images that 

can fit in the scanning widow against a trained data set of 

features like LBP features or Haar-like features or project 

the sub-image into the eigenfaces domain and measure the 

distance between the projected sub-image and the faces 

domain. This work focus on LBP and Haar-like features 

because of the similarities between these two algorithms that 

makes it useful to compare them on different GPU 

architectures.  
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The scanning window size is then scaled up and the 

process is repeated with bigger sub-images till a face is 

detected. In case bigger sub-images size do not match the 

size of the feature set, then hawse may have two solutions 

which are: 

 Solution 1 is to scale down the sub-image to match 

the size of the feature set size. 

 Solution 2 is to scale up the feature set to match the 

size of the sub-images’ size. 

Solution 1 cannot be calculated offline so it will be 

executed with every new input image. On the other hand, 

solution 2 can be calculated offline and it will be executed 

once at the startup of the algorithm. So solution 2 is the most 

proper way to solve this problem as shown in many trials as 

in [4], [7], [8]. 

 

 
 

Figure 1Scanning Window moving from top left to 

bottom right. (A) Scanning window of size 20x20, and 

(B) Scanning window of size 24x24 

The number of scanning windows’ sizes affects the number 

of total sub images to be evaluated against the feature set.  

Figure 1 shows two different scanning window sizes 20x20, 

and 24x24. The scanning windows is moving from left to 

right with step of 10% of the scanning window size. The 

number of sub-images resulted from the two scanning 

windows shown in Figure 1 are function of the image size, 

scanning window size, and the displacement of the 

windows. This is expressed in (1) where: 

 𝐶𝐹is the counting function that returns the number 

of sub-images. 

 𝑊is the input image width 

 𝐻is the input image height 

 𝑤is the scanning windows width 

 ℎis the scanning window height 

 𝑠is the windows displacement to find a new sub-

image 

𝑪𝑭 𝑾, 𝑯, 𝒘, 𝒉, 𝒔 =
𝑾 − 𝒘

𝒔
∗
𝑯 − 𝒉

𝒔
 (1) 

Scaling up the  scanning windows and applying (1) again 

and sum up all the results of 𝐶𝐹 function will result in the 

total number of sub-images that must be evaluated against 

the feature set. The scanning window sizes are predefined as 

shown in (2) which states that scanning window is scaled up 

by 20% till the scanning window size is approximately equal 

to 300x300 pixels. Table1 shows the number of sub-images 

with different window sizes and the total number of sub-

images for the most common images resolutions which are 

VGA (640x480), HD (1280x720) and 4K (1920x1080). 

Each sub-image will be processed on GPU to check if it has 

a face or not. The GPU has two options which are scaling up 

the feature set or loading the scaled feature set from its 

global memory. This decision must be justified based on the 

GPU memory bandwidth and the number of GPU Special 

Function Units (SFU).  Next section will discuss the 

complexity of each approach and the overhead on GPU 

architecture that is associated with each approach. Also, it 

will discuss two different feature sets which are LBP and 

Haar-Like.  

 

𝑺𝑾 = { 𝒘𝒊, 𝒉𝒊 : 𝒘𝒊 = 𝟐𝟎 ∗ 𝟏.𝟐𝒊, 𝒉𝒊 = 𝟐𝟎 ∗ 𝟏. 𝟐𝒊𝒘𝒉𝒆𝒓𝒆𝟎
≤ 𝒊 ≤ 𝟏𝟓} (2) 

Table1: Number of sub-images for 3 different image sizes 

Scanning 

Window  

𝑺𝑾𝒊 = (𝒘𝒊,𝒉𝒊) 

Counting Function 𝑪𝑭 

Image Size 

(640x480) 

Image Size 

(1280x720) 

Image Size 

(1920x1080) 

(20,20) 71300 220500 503500 

(24,24) 48767 151767 347600 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

(257,257) 130 718 2073 

(308,308) 61 423 1312 

Total sub-
images 

219510 693829 1601588 

IV. METHODOLOGY 

Processing thousands of sub-images that is shown in Table1 

means a small enhancement in the sub-image processing 

time will reflect by order of magnitude on the overall time 

of the input image processing time. This requires detailed 

study of the number of clock cycles required to scale up the 

feature set on GPU and the number of memory cycles to 

load it from the global memory. This is in order to select the 

best approach to be deployed with different feature sets such 

as LBP and Haar-Like feature sets. 

The number of clock cycles is a function of many factors 

which are: 

 Ratio between Load/Store (LD) units and Scaler 

Processors (SP) inside the Stream Multiprocessor 

(SM) 

 Ratio between Special Function Unit (SFU) and 

SP. 

This study focusses on two GPU architectures which are 

K20m as a Tesla GPU architecture co-processor and 

RTX2080 Ti as GeForce architecture co-processors. Table 2 

shows the different hardware specifications for both GPUs. 

RTX2080 Ti is faster and has more processing power. 

However, this do not mean a tuned algorithm on K20m will 

scale up properly to RTX2080 Ti.  

Table 2 K20m and RTX2080 Ti architecture 

specifications 

Feature K20m RTX2080 Ti 

Double Precession Speed 1174 GFLOPs/s 444 GFLOPs/s 

Memory Speed 208 GB/s 616 GB/s 

LD:SP Ratio 1:4 1:2 

SFU:SP Ratio 1:2 1:2 
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The number of cycles requires to scale up a feature set or 

load it from GPU memory is the key for a successfully 

performance tuning. This number of cycles is different 

based on the feature set. Next sub section discusses the 

number of cycles required to scale up and load each feature 

set. This will make it clear and easy to take the right 

decision. 

A. Feature Set Scaling Vs Loading 

This section discusses the number of CPU cycles and 

Memory cycles needed to either scale the feature on GPU or 

load the pre-scaled feature from GPU. These numbers are 

feature type dependent. So, we will analyze LBP feature 

then Haar-Like feature. 

1) LBP Feature 

LBP feature is shown in Figure 2. It has 9 rectangles; the 

center rectangle and the 8 surrounding rectangles. Only one 

point, the width, and height are required to define the 9 

rectangles. The LBP feature has the following data structure: 

 Top left corner point (x,y), x and y are two integer 

numbers each has size of 8 bytes. 

 Width, and Height of the LBP cell, each has size of 8 

bytes. 

 Lookup table of 256 bits, stored as 8 integers, which 

means 64 bytes. 

 Left and right values, stored as double, each has size 

of 8 bytes. 

 

 
Figure 2LBP feature components 

Comparing the center rectangle with the 8 surrounding 

rectangles will result in 8-bit result that is used to index the 

lookup table and find the corresponding bit which will 

decide to either use left or right value for this feature. 

Scaling the LBP feature do not require to scale all the 

components of the LBP feature only the top left corner 

point, width, and height must be scaled. This means scaling 

up an LBP feature require 4 floating point multiplications. 

We can neglect the time to load it from memory given that 

the feature is cached in the SM cache and shared between all 

SPs. On the other hand, loading the pre-scaled feature set 

from GPU’s global memory means that the all the feature 

components must be loaded from the global memory. This 

means loading 104 bytes for each LBP feature only 32 bytes 

will have random access all other feature attributes are 

cached in SM cache. This means only 32 bytes must be 

loaded in case of pre-scaled feature set. 

2) Haar-Like Feature 

Haar-Like feature has different shapes and different number 

of rectangles. Figure 3 shows 4 different types of Haar-Like 

features. The dark rectangles are subtracted from the light 

rectangles to find out the feature value. Haar-Like feature 

has the following data structure: 

 Rectangle 1 (x,y,w,h), this rectangle is stored in 4 

integers which occupies 32 bytes. 

 Rectangle 2 (x,y,w,h), this rectangle is stored in 4 

integers which occupies 32 bytes. 

 Rectangle 3 (x,y,w,h), this rectangle is stored in 4 

integers which occupies 32 bytes. 

 This rectangle may not be used but it is stored in 

memory in order to keep the feature size fixed for ease of 

calculating feature set indices. 

 The weight of the 3 rectangles stored as double which 

occupies 24 bytes. 

 Threshold, this is stored as double number which 

occupies 8 bytes. 

 Left and right values, stored as double, each has size of 8 

bytes. 

After subtracting the dark area from the light area, the 

difference is compared to threshold based on the comparison 

result the left or right values are selected. 

 Scaling the feature means the area of each dark/light 

rectangle gets bigger. Consequently, the difference gets 

bigger. This means the difference must be normalized such 

that it is still comparable with the threshold value.  

Scaling the Haar-Like feature consists of 3 different steps 

which are scaling 3 rectangles, and the weight of each 

rectangle, then normalize the rectangles’ weights regarding 

the total area of the sub-image. This means calculating the 

area of sub-image and normalize the weight of the 

rectangles.  

 
Figure 3Haar-Like Features with different shapes. 

The number of cycles requires to achieve the scaling of 

Haar-Like feature is not clear unless the scaling function is 

presented as a pseudo code that is shown in Algorithm 1. 

Lines 2:8 would require 5 Floating point multiplication and 

repeated 3 times. Lines 9 to 15 would require 4 or 5 floating 

point multiplications. So, based on the worst-case scenario 

the total number of floating-point multiplications would be 

20 floating point multiplications. 
Algorithm 1 Scaling HAAR-Like Feature 
SHAAR(F, SF) 

Input: 

F: Input feature  
SF: Scaling Factor 

Output: 

FS: output scaled feature 

30

200 120 255
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0220
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1 1 1

1 
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0

1
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Lookup Table

Pass Feature
≤

Stage Threshold
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1

: 
BEGIN 

2

: 

Fori from 0 to F.RectangleCount 

3
: 

𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑋 = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑋 ∗ 𝑆𝐹 

4

: 
𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑌 = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑌 ∗ 𝑆𝐹 

5

: 
𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑙𝑔𝑒[𝑖]. 𝑊𝑖𝑑𝑡ℎ = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑊𝑖𝑑𝑡ℎ ∗ 𝑆𝐹 

6
: 

𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝐻𝑒𝑖𝑔ℎ𝑡 ∗ 𝑆𝐹 

7

: 
𝐹𝑆. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖]. 𝑆𝑖𝑔𝑛𝐴𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡 

= 𝐹. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒[𝑖].𝑆𝑖𝑔𝑛𝐴𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡 
∗ 𝑆𝐹 

8
: 

End For 

9

: 

If ( F.RectangleCount == 2 ) 

1

0: 

FS.rectangle[0].dSignAndWeight = -(F.rectangle[1].Width * 

F.rectangle[1].Height *  

1
1: 

F.rectangle[1].dSignAndWeight) /(F.rectangle[0].Width * 
F.rectangle[0].Height); 

1

2: 
Else 

1

2: 

FS.rectangle[0].dSignAndWeight = -(F.rectangle[1].Width * 

F.rectangle[1].Height *  

1
3: 

F.rectangle[1].dSignAndWeight + F.rectangle[2].Width * 
F.rectangle[2].Height *  

1

4: 
1

5: 

F.rectangle[2].dSignAndWeight) / (F.rectangle[0].Width * 

F.rectangle[0].Height); 

End If 

1
6: 

END 

 

On the other hand, loading the pre-scaled feature set from 

GPU’s global memory means that the all the feature 

components must be loaded from the global memory. This 

means loading 144 bytes for each Haar-like feature. 

3) Performance Tuning 

There are many decisions to be considered in order to find 

the best performance for LBP and Haar-Like detectors on 

both K20m and RTX2080 Ti. Table 3 shows the total cycles 

required for either scaling the feature set or loading it from 

global memory. 

Table 3 Number of cycles required to scale/load each 

feature set 

Feature Set Number of 

Features 

Number of 

Scaling 

Cycles 

Number of 

Loading 

Cycles 

Scale to 

Load Ratio 

LBP 129 516 4,128 1:8 

Haar-Like 2135 42,700 307,440 10:72 

 

It is clear that the number of cycles for scaling the feature 

set cannot be optimized, however the number of cycles to 

load the feature set can be optimized if the algorithm sorts 

the threads running on GPU in a way that makes each SM 

process a group of threads that requires the same scale. This 

in turn will lead to load the feature set only once for all 

threads that are running on the same SM. This is called 

memory coalescing. This feature is GPU dependent based 

on the maximum number of threads that can be deployed on 

single SM. For both K20m and RTX2080 Ti the maximum 

theoretical number of threads per SM is 1024, however due 

to the limited number of registers on both GPUs only 768 

threads were activated for both LBP and Haar-Like kernels 

as reported by Nvidia CUDA Profiler (nvvp). This would 

reflect  

back on Table 3 which has theoretical values and would 

result in an architectures based number of cycles that is 

shown in Table 4.  

Table 4 Loading feature set based on memory coalescing 

for different GPU architectures. 

Ima
ge 

Size 

LBP Haar-Like 

Num

ber of  

block
s 

Total 

Number 

of load 
cycles 

Total 

Number 

of 
scaling 

cycles 

Num

ber of  

block
s 

Total 

Number 

of load 
cycles 

Total 

Number of 

scaling 
cycles 

VG

A 
Ima

ge 

285 903,536,6

40 

112,942,

080 

285 87,620,4

00 

9,346,176,

000 

HD 
Ima

ge 

904 2,865,954
,816 

358,244,
352 

904 277,925,
760 

29,645,414
,400 

4k 

Ima
ge 

2086 6,613,254

,144 

826,656,

768 

2086 641,319,

840 

68,407,449

,600 

 

Theoretical speed of K20m memory is 208 GB/s and 

processing speed of double precision is 1174 GFLOPS. 

RTX2080 ti has theoretical memory speed of 616 GB/s and 

double precision processing speed of  444 GFLOPS. 

All theoretical speeds are multiplied by factor 75% because 

the occupation rate of SM is 75% due to limited register file 

size. 

The performance of the two approaches for any algorithm is 

subject to the type of the GPU and hence we can predict the 

appropriate approach that will optimally run on the target 

GPU. Table 4 shows that the difference between the two 

approaches for LBP is less than 40X which indicates that 

RTX2080 Ti will perform better in case of pre-scaled 

feature set as it has faster memory speed than double 

precision speed. 

V. RESULTS 

Experiments are conducted on 2 workstations with XEON 

processor and 64 GB RAM. Each workstation has only one 

GPU card. The first workstation has K20m and the second 

workstation has RTX2080 ti. The reported results of each 

configuration are shown in Table 5 and  

Table 5 Results of different approaches on K20m 

Image Size HAAR-

Like 

Features 

Scaling 

on GPU 

HAAR-

Like 

Pre-

Scaled 

LBP 

Features 

Scaling 

on GPU 

LBP 

Pre-

Scaled 

640 x 480 59.989m

s 

21.597m

s 

4.2432m

s 

4.8599m

s 

1280 x 720 177.74m

s 

61.246m

s 

12.449m

s 

14.480m

s 

1920 x 

1080 

312.19m

s 

108.37m

s 

27.750m

s 

31.933m

s 
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The results show that the pre-scaled feature set approach for 

haar-like feature set is faster on both architectures. This is 

expected because the number of loading cycles shown in 

Table 4 for haar-like is less than the number of scale cycles 

by 106X. This means the speed of the double precision 

operations must be faster than the memory speed by 106X 

which is not true for both GPUs as reported in Table 2. 

On the other hand, LBP feature set reported different 

performance on both GPUs as shown in Table 5 and Error! 

Not a valid bookmark self-reference.. This is because the 

ratio of the scaling cycles to loading cycles are 1:8. This 

means that faster memory as in case of RTX2080 ti will 

produce better results for pre-scaled approach for LBP. This 

is shown in Table 6. 

Table 6 Results of different approaches on RTX2080 

Image 

Size 

HAAR-

Like 

Features 

Scaling 

on GPU 

HAAR-

Like Pre-

Scaled 

LBP 

Features 

Scaling 

on GPU 

LBP Pre-

Scaled 

640 x 

480 

17.475ms 8.1016ms 0.8263ms 0.4454ms 

1280 x 

720 

40.464ms 17.420ms 2.8095ms 1.2373ms 

1920 x 

1080 

61.842ms 27.328ms 6.6696ms 5.0450ms 

VI. CONCLUSION 

Studying the target architecture and comparing the speed 

and size of SM components are the main factors that affect 

the performance of the implementation of face detection 

algorithms.  SM register file limits the number of the threads 

that run concurrently on the SM. Load and Store units limits 

the memory speed when accessing the GPU global memory. 

special function units affect the double precision floating 

point speed. Also studying the algorithm and dividing it into 

I/O and Double Precision operations to estimate the ratio 

and find out the best performance tuning approach for the 

target GPU is mandatory to exploit the capabilities of the 

GPU 
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