
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-10 Issue-2, December 2020 

83 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

Retrieval Number: 100.1/ijitee.B82711210220 

DOI: 10.35940/ijitee.B8271.1210220 
 

Maintainability Metrics for Object-Oriented 

Software System Modifiability 

Hanumantha Rao Battu, R.Satya Prasad, D.N.V.Syma Kumar 

Abstract: Modifiability of the Object-Oriented system with 

inheritance states that how much amount of information would 

be modified in the individual class level and total system level. 

Measuring the modifiability in the appropriate manner leads to 

improve the maintainability and also quality of the specified 

software system. Existed metrics for modifiability gives the more 

complexity values and typical to work with them. Here main 

concentration is on to consider the proper modifiability of the 

Object-Oriented system and reduce the complexity in judging the 

modifiability. The identified modifiability metrics of the class and 

system level are validated with the well known Weyker’s 

properties to strengthen the proposed metrics and which may 

utilized in their research work by researchers. 

Keywords: Maintainability metrics, Inheritance hierarchy, 

System Modifiability, Class Modifiability, System Maintenance, 

Weyker’s properties 

I. INTRODUCTION 

An Object-Oriented or traditional software system 

measure their functional or non-functional requirements 

with metrics and estimated models. A metric gives the 

accurate measurement for the functional requirements and 

appropriate measurement for the non functional 

requirements like quality and its parameters. In the issue of 

the improving software quality several studies were existed 

[1], [2]. The usage of existed Object-Oriented metrics in the 

several programming languages and programming fields [3] 

in suitable manner. .The ISO/IEC-9126-1 states that the 

Modifiability factor of Maintainability can be defined as 

―process of corrections, improvements or adoptions of the 

software to changes in environment and in requirements and 

functional specifications‖ [4]. Previously so many authors 

measure the modifiability [5], [6], [7], [8], [9], [10], [11], 

[12] to maintain the Object-Oriented software system with 

their metrics and models in proper manner. Inheritance is 

the specialized property of the Object-Oriented system to 

extend and modify the behaviors from one existed class to 

new derived classes. By considering the inheritance 

hierarchy of the software system several metrics [13], [14], 

[15], [16], [17], [18], [24], [28] were developed to measure 

the maintainability parameter. Several observations were 

done [27], [28], [29], [30], [31], [32] on the Inheritance 

based developed Object-Oriented techniques helps by 

reducing the redundancy and improving efficiency of the 

software system.    

 

Revised Manuscript Received on November 26, 2020. 

* Correspondence Author 

Mr. Hanumantha Rao Battu*, Research Scholar, Department of 

Computer Science and Engineering, Acharya Nagarjuna University, Guntur 

,Andhra Pradesh, India. E-mail: hanuma9999@yahoo.com 

Dr.R.Satya Prasad, Professor, Department of Computer Science and 
Engineering, Acharya Nagarjuna University, Guntur ,Andhra Pradesh, 

India.E-mail: prof.rsp@gmail.com 

Dr. D.N.V.Syma Kumar , Associate Professor, Department of 
Computer Science and Engineering, St. Ann’s College of Engineering & 

Technology, chirala, Andhra Pradesh, India. E-mail: 

prof.dnvsk@gmail.com 

Every proposed metric need to prove its theoretical and 

mathematical background by satisfying the well known 

properties like weyker’s for any software metrics. 

Weyker’s[19] developed total nine number of  properties 

which would help in judging the validity of the metrics. The 

developed object-Oriented metrics were validated against 

the weyker’s properties by the more number of researchers 

[14], [20], [21], [22], [23],[28],[33], [35]. In the developed 

weyker’s properties some of the properties applicable to 

inside data of Object-Oriented classes and traditional 

programs purpose. Hence those metrics which may 

developed based on the class based inheritance (not the 

inside data and functions) were may not applicable to less 

number of weyker’s properties [33].  The 

Organization of this paper is in the following manner. 

Literature survey covers the developed Object-Oriented 

inheritance based maintainability metrics like DIT, NAC, 

NOC, NDC, AM and AID. The proposed metrics discussed 

in the Section-3.Section-4 deals about the validity 

ofproposed metrics against the weyker’s properties. 

Comparison done between the existed and proposedmetrics 

was done in Section-5. The Conclusion and Future scope of 

this paper was presented at Section-6 & Section-7 

respectively. 

II. LITERATURE SURVEY 

 This Literature survey gives detail the report on the 

existed maintainability metrics which were based on the 

Object-Oriented software class inheritance property.  Depth 

of Inheritance Tree (DIT) metric was developed by 

chidember-kerner [24], [25],[ 28] states that maximum depth 

from the root node to the current node. The problem of this 

metric is the occurrence of ambiguity in several situations in 

the measurement of maintainability. W.Li[16] proposes the 

new metric called Number of Ancestor Classes(NAC)  to 

give the solution to the DIT metric ambiguity problem. 

NAC metric measures the number of classes effect the class 

design with the inheritance property in the Object-Oriented 

inheritance hierarchy. Chidember-kerner [24], [25], 

[28] proposes another metric named Number of Childs 

(NOC) which gives the number of classes that are 

directly(immediate classes)  inherited from the individual 

class. W.Li [16] proposes new metric called Number 

Descendent Classes (NDC) to consider total number of sub 

classes affected with the inheritance. Henderson-

Sellers [15] developed Average Depth of Inheritance (AID) 

metric for applying the average complexity values in the 

DIT metric. Sheldon-jerath [18] proposed modifiability 

metric called Average Modifiability [AM] by considering 

the successors and understandability of the individual 

classes.  

 

file:///C:\Users\KVCS\Desktop\hanuma9999@yahoo.com
mailto:prof.rsp@gmail.com
mailto:prof.rsp@gmail.com


 

Maintainability Metrics for Object-Oriented Software System Modifiability 

84 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

Retrieval Number: 100.1/ijitee.B82711210220 

DOI: 10.35940/ijitee.B8271.1210220 
 

III. NEW INHERITANCE METRICS 

 The proposed metrics in this paper are named as 

Individual Class Modifiability (ICM) and System 

Modifiability (SM). In the process of identifying 

Modifiability metrics preferred the two different inheritance 

hierarchy based class diagrams which were placed at the end 

of this paper. In the two class diagrams first one is 

represented with Directed Acyclic Graph (DAG) with no 

loops [26] with the multiple inheritance property. Second 

class diagram with the normal tree hierarchies (Inheritance) 

having the simple relations. The Modifiability factor 

of the class diagram calculated based on two rules. The 

Rule-1 says that the variables of the class causes to the same 

class modifiability. Rule-2 says that the subclasses which 

are inherited by the specified class are to be modified. Based 

on this inheritance behavior of classes total inherited classed 

can effect in best case, half of the inherited classed to be 

modified in  average case and no on class need to be 

modified by preferring the worst case scenario. Generally 

average case should be followed for the most of the 

situations. Hence average case class modifiability was 

considered in this paper also for measuring the metrics. The 

Individual Class Modifiability (ICM) metric considers the 

specified class taken into account and the average number of 

inherited classes of the given class. The Total System 

Modifiability (SM) metric is the sum of all the individual 

classes modifiability values divisible by the total number of 

classes of the system.  

Individual Class Modifiability is 

ICM = (Number of Sub Classes/2)+1 

Total System Modifiability is 

SM =  𝐼𝐶𝑀𝑛
𝑖=1 i / n 

ICMi = Individual Class Modifiability of the Class i. 

n= Number of classes. 

Applying the above metrics on figure1  

ICM(H)=3.5   ICM(G)=4  

ICM(F)=3   ICM(E)=1.5        

ICM(D)=1   ICM(C) =2  

ICM(B ) = ICM(A) = 1 

SM of figure1 = 2.125 

Applying the above metrics on figure2  

ICM (P) =4   

ICM (Q) =ACM(R) =2  

ICM(S) =ICM (T) =ICM (U) =ICM (V)=1 

SM of figure2 = 1.714 

IV. PROPOSED METRICS VALIDATION 

The metric validation is the best way to strengthen 

the proposed metrics to use in future better way. The 

Weyker’s [19] developed nine properties give the 

mathematical and  functional proofs in the process of 

metrics validation.   

Property-1:- Non-Coarseness 

The class X and class Y are having the proposed 

metric M then the Non-Coarseness found that if M (X) ≠ M 

(Y) was satisfied. 

In Figure-1, ICM of class H is different from ICM 

of class G.  ICM (H) =3.5 and ICM (G) =4 then ICM(H) 

≠ICM (G). In Figure-2 ICM of class P is different from ICM 

of class Q. Values of ICM (P) =4 and ICM (Q) =2 then 

ACM (P) ≠ACM (Q). Hence ICM metric satisfies the 

weyker’s property-1.TheFigure-1 and Figure-2 gives two 

different ISM values for the both class diagrams. SM value 

of Figure1 is 2.125 is different from the figure2 SM value is 

1.714. It means that SM metric satisfies the weyker’s 

property-1. 

Hence the proposed metrics ICM and SM are 

satisfies the weyker’s first property Non-Coarseness 

successfully. 

Property-2:- Granularity  

 Granularity property sates that the metric value 

must be applied on the finite number of programs. The 

proposed metric value is the non-negative complexity value. 

 The object-oriented metric class level 

metrics are automatically satisfied this property [4] because 

class levels are having by the every object-oriented 

inheritance hierarch. Here proposed metrics also has the 

inheritance hierarchy with class levels. So, the proposed 

ICM and SM are also satisfies the weyker’s second 

property. 

Property-3:- Non-Uniqueness 

The same metric value given by the two different classes X 

and Y. It means that M(X)=M(Y). The Figure-1 gives the 

ICM value of class D is same as ICM values of class B. So, 

ICM(D)=1 and ICM(B)=1. It means that ICM(D)=ICM(B). 

In Figure-2 ICM value of the class Q is same as the class R. 

Here ICM(Q)=2 and ICM(R)=2.So ICM(Q)=ICM(R). 

Hence proposed ICM metric satisfies this Non-Uniqueness 

property. At the system level by considering the various 

class diagrams the SM metric value of one class diagram is 

equal to another class diagram .Hence SM metric also 

satisfies the weyker’s third property Non-Uniqueness 

successfully. 

Property-4 :- Design Implementation 

 If two designers design the class diagrams with 

same number of classes it has to show the two different 

metric values. The designed class diagrams must be utilized 

the proposed metric. 

 The proposed metrics ICM and SM were satisfied 

this Design Implementation property because any two 

designers draw the number of class diagrams with the same 

number of classes of the same program but they would 

follow the different inheritance hierarchy and class levels. 

Hence the designs of the two systems would be different. 

The  proposed metrics ICM and SM also suitable for the 

different designs for different designers. Hence ICM and 

SM metrics were satisfies the weyker’s fourth property 

successfully. 

Property-5:- Monotonicity 

 This property states that metric value of the 

grouping of two different metric valued classes is greater 

than or equal to the individual classes. Suppose X and Y 

classes are having the two different metric values then the 

grouping of the both denoted as X+Y metric value is greater 

than or equal to the individual X and Y classes metric 

values. It means that M(X+Y) ≥ M(X) and M (X+Y) ≥ 

M(Y). 

  

 

 

 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-10 Issue-2, December 2020 

85 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

Retrieval Number: 100.1/ijitee.B82711210220 

DOI: 10.35940/ijitee.B8271.1210220 
 

Here the proposed metrics need fulfill the three possible sub 

situations for satisfying the weyker’s monotonicity property. 

1. If class X and class Y are siblings.  

The Figure-1(b) shows that ICM(X)=1 and 

ICM(Y)=1.The grouping of the both siblings as one class as 

X+Y then the  finalized value of the ICM(X+Y)=1, which is 

equal to the both the  metrics of X and Y. The Figure-2(b) 

shows that ICM(Q)=2 and ICM(R )=2. The grouping of both 

siblings as one class as Q+R, then the finalized result of the 

ICM(Q+R)=3 which is greater than both the metrics of 

classes Q and R individually. 

Hence case-1 was successfully satisfied by the ICM 

metric. 

2. If class X is the child of another class Y. 

The Figure-1(c) gives the ICM(C)=2 and ICM(B)=1.The 

Combination of the C and B classes gives metric value as 

ICM(C+B)= 1.5. The resultant ICM(C+B) metric value  is 

equal to class E and less than the values of class C. The 

Figure-2(c) gives the values of the metric ICM(Q)=2 and 

ICM(S)=1. The combination of the Q and S gives the metric 

value as ICM (Q+S)=1, which is less than the metric value 

of Q and  greater than Q. 

So case-2 of Monotonicity property is not satisfied by the 

proposed metric ICM, because the combination of the two 

individual classes (one is child to another) break the 

structure and reduce the Object-Oriented Class Inheritance 

hierarchy. Oncethe structure of the class diagram was 

changed then the possibility of reducing the metric value is 

very much high. So ACM is not satisfied the monotonicity  

property (case-2). The existed inheritance hierarchy based  

metrics like DIT,NAC,NDC,AID and AM also not 

satisfying the weyker’s fifth property[23] because they were 

also focused on the class only not the inside matter of the 

class. 

3. If  class X and class Y are neither siblings nor children 

of each other. 

The Figure-1(d) shows that the ICM(C)=2 and ICM(E)=1.5. 

The combination of C and E classes gives the metric value 

ICM(C+E) =2, which is same  to class C metric value and 

greater value  than class E metric value. The Figure-2(d) 

shows that ICM (Q) =2 and ICM (V) =1. The combination 

of both the classes metric value is ICM (Q+V) =2, which is 

greater than the class V metric value and equal to the class 

Q metric value. 

Hence case-3 of Monotonicity property is satisfied 

by ICM metric successfully. 

The proposed ICM metric satisfies the weyker’s 

monotonicity property (two situations) but failed in the 

second situation. Hence the proposed ICM and SM metrics 

are not satisfies this property similar to the existed 

inheritance based metrics like DIT, NAC, NDC, AID and 

AM. 

Property-6:- Non-Equivalence of Interaction 

If class X and class Y shows the same metric values then  

individual combination of  these individual classes with 

another class Z the finalized metric values of X+Z  not equal 

to the metric values of Y+Z. 

In the Figure-1 the metric values of ICM(B)=ICM(D)=1. 

The combinations of two these classes  with another class C 

as displayed in Figure-1(e) and Figure-1(f) .The finalized 

metric values of ICM(B+C)=1.5 and ICM(D+C)=2 but both 

are not equal. So ICM(B+C)≠ICM(D+C).Consider the 

Figure-2 with the metric values of ICM (Q) = ICM (R) =2.  

 The individual combination of these two classes 

with class T as displayed as in Figure-2 (e) and Figure-

2(f).The finalized metric values of           ICM(Q+T)=1.5 

and ICM(R+T)=2, but the both values are not equal. So ICM 

(Q+T) ≠ ICM(R+T). Hence the proposed ICM metric 

satisfies the weyker’s sixth property. By considering the 

system level the proposed modifiability metric SM also 

satisfies the weyker’s sixth property.  

Property-7:- Significance of Permutation 

The proposed metric values not to be changed even 

permutations on the program statements are performed. This 

metric is not applicable to class diagram based metrics (not 

considering the inside data and functions).This property 

only applicable for traditional programming where the 

inside matter of the program taken major consideration for 

the selection of the metrics. This property is not suitable for 

most of the object-oriented metrics because these are 

considered the class as single unit not the inside data of the 

class.        The existed metrics like DIT, NAC, NOC, NDC, 

AID and AM also not satisfies this property [23]. Hence the  

proposed metrics ICM and ASM also not applicable to this 

property. 

Property-8:- No Change of Remaining 

 If the class name is renamed then the metric values 

of the given class need not to be changed. 

 This property can be applicable to all the object-

oriented class based metrics because rename the class not 

shown any effect on that class metric value. The proposed 

ICM and SM metrics are also based on the object-oriented 

class inheritance hierarchy. Hence the ICM and SM metrics 

are automatically satisfies the weyker’s eighth property 

successfully. 

Property-9:- Interaction complexity 

If two classes X and Y combination denoted by X+Y then 

the metric value of X+Y is greater than the summation of 

the individual classes X and Y.  

It means  M(X+Y)>M(X) +M(Y) 

Any developed metric based on the object-oriented class 

diagram is not applicable for this property [23]. The 

combination of two classes into single one takes lowest or 

equal metric values than the addition of two class’s 

individual metric values. So, this property can not feasible 

for classbased metrics. Here the proposed metrics are based 

on the Object-Oriented design. Hence the ICM and SM 

metrics are also not satisfies this Interaction complexity 

property-V.  

V. COMPARISION WITH EXISTED METRICS 

AND RESULTS 

Here the proposed ICM and SM metrics comparison was 

done with the existed metrics namely DIT, NOC, NAC, 

NDC, AID and AM.  

 

 

 



 

Maintainability Metrics for Object-Oriented Software System Modifiability 

86 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

Retrieval Number: 100.1/ijitee.B82711210220 

DOI: 10.35940/ijitee.B8271.1210220 
 

For the DIT, NOC, NAC, NDC and AID metrics validation 

results are taken and against  weyker’s properties. Based on 

the Weyker’s properties applicability comparison has done 

between the proposed and existed metrics then results are 

place in below table format. 

Table-I: Inheritance based  Metrics validation with 

Weyker’s properties 

Property/ 

Metric 

 

DIT 

 

NOC 

 

NAC 

 

NDC 

 

AID 

 

AM 

 

ICM 

 

SM 

1 √ √ √ √ √ √ √ √ 

2 √ √ √ √ √ √ √ √ 

3 √ √ √ √ √ √ √ √ 

4 √ √ √ √ √ √ √ √ 

5 × √ × × × × × × 

6 √ √ √ √ √ √ √ √ 

7 × × × × × × × × 

8 √ √ √ √ √ √ √ √ 

9 × × × × × × × × 

. 

√ - weyker’s property satisfied by the metric. 

× - weyker’s property not satisfied by the metric. 

In the results comparison main task is to reduce the 

modifiability complexity value of the system. For this 

reason comparison done between the proposed SM and 

existed AM metrics.  In this comparison SM had given the 

much reduced results than the AM results. The finalized 

results of the Average system modifiability of the proposed 

SM and existed AM are placed in below table. 

Table-II: System level Modifiability metric values 

Figure AM SM 

1 4.37 2.125 

2 3.1 1.714 

VI. CONCLUSION 

 In this paper various existed inheritance metrics are 

discussed their validity with the weyker’s properties. Here 

main focus is on the reduction of   modifiability complexity 

value of the system level (SM) and measure the individual 

class modifiability (ICM) in simple manner. The proposed 

ICM and Sm metrics are validated with weyker’s properties 

was done and compared the previous existed inheritance 

based metrics validity also. The results of the system 

modifiability metric(SM) had given the lowest values 

compared with the existed AM values.  

FUTURE WORK 

Similar to many authors the proposed metrics in this paper 

also focused only the class as a unit not the inside details of 

the class. In future extend this work to the inside details of 

the class also. Here our concentration is on the modifiability 

factor of the maintainability. The other factors factor’s 

metrics also need to be consider for improving the 

maintainability and the quality of the Object-Oriented 

software system. 

REFERENCES 

1. Amjan Shaik,C. R. K. Reddy, Bala Manda, Prakashini. C, Deepthi. 

KMetrics for Object Oriented Design Software Systems: A Survey 

Journal of Emerging Trends in Engineering and Applied Sciences 

(JETEAS) 1 (2): 190-198. 
2. M.S.Ranwat,A.Mittal,S.K.Dubey Survey on impact of software 

metrics on software quality (IJACSA)International journal of 

Advanced Computer Science and Applications, Vol.3,No.1,2012. 
3. Darcy, D.P.—Kemerer, C. F.: OO Metrics in Practice. IEEE  

4. Softw. 22,6 November 2005, pp. 17–19. DOI:  

5. http://dx.doi.org/10.1109/MS.2005. 
6. ISO/IEC 9126-1 (2001) Institute of Electrical and Electronics 

Engineers, Part1: Quality Model. 

7. Dromey, G.R. (1995) A model for software product quality, IEEE 
Transaction on  Software  Engineering. 

8. Harrison W., Magel K., Kluczny R. and DeDock (1982), ―Applying 

software complexity metrics to program maintenance‖ , IEEE 
Computer, vol. 15, pp. 65-79. 

9. Kiewkanya M., Jindasawat N. and Muenchaisri P. (2004) ―A 

Methodology for Constructing Maintainability Model of Object-
Oriented Design,‖ Proc. 4th International Conference on Quality 

Software, pp. 206 – 213, IEEE Computer Society, 2004. 

10. Mattson M.K., Deursen A.V., Reiger R., Canfora G., Ihme  T., Engel 

T., Chiorean D., Lehman M.M. and Wernke J. (2006) A Model of 

Maintainability Suggestion for Future Research, In Proceedings of 

Software Engineering Research & Practice, pp. 436-441. 
11. Kiewkanya M. and Muenchaisri P. (2011) Constructing Modifiability 

Metrics by Considering the Different Relationships. Chiang Mai J. 

Sci.; 38 (Special Issue): pp. 82-98. 
12. D.N.V. Syma Kumar and R. Satya Prasad ―Maintainability Model 

with Object-Oriented Software Metrics‖ International Journal of 
Engineering & Technology IJET-IJENS Vol:15 No:04 , August 2015. 

13. D.N.V. Syma Kumar and R. Satya Prasad ―Object-Oriented Software 

Metrics for Maintanability‖  International journal  of Computer 
science  & Information  Security IJCSIS  Vol.13 , No.10, October 

2015. 

14. N.Nwe and Thu ―Measuring Modifiability in model development 
using object-oriented metrics‖ Advances in science, Technology and 

Engineering systems ASTESJ vol.3, No.1,244-251(2018) . 

15. Poels G. and Dedene G. (2001) ―Evaluating the Effect of Inheritance 

on the Modifiability of Object-Oriented Business Domain Models‖, 

5th European Conference on Software Maintenance and 

Reengineering (CSMR 2001), Lisbon, Portugal, pp. 20-29. 
16. Abreu, F.B.—Carapuca, R.: Candidate Metrics for Object-Oriented 

Software within a Taxonomy Framework. Journal of System 

Software, Vol. 26, 1994,pp.87–96  
17. Henderson-Sellers, B.: Object Oriented Metrics: Measures of 

Complexity. Pren-tice Hall PTR: Englewood Cliffs, NJ, 1996; pp. 

130–132. 
18. Li, W.: Another Metric Suite for Object-Oriented Programming. 

Journal of Systems and Software, Vol. 44, 1998, pp. 155–162. 

19. Lorenz, M.—Kidd, J.: Object-Oriented Software Metrics. Prentice 
Hall 1994,ISBN: 013179292X. 

20. Sheldon, F.T.—Jerath, K.—Chung, H.: Metrics for Maintainability of 

Class In-heritance Hierarchies. Journal of Software Maintenance 14, 3 
May 2002, pp. 147–160. 

21. Weyuker, E. J.: Evaluating Software Complexity Measures. IEEE 

Transactions on Software Engineering, Vol. 14, 1988, No. 9, pp. 
1357–1365. 

22. Cherniavsky, J.—Smith, C.: OnWeyukers Axioms for Software 

Complexity Mea-sures. IEEE Transaction on Software Engineering, 
Vol. 17, 1991, No. 6, pp. 636–638. 

23. Gursaran, G.R.: On the Applicability of Weyuker Property Nine to 

Object-Oriented Structural Inheritance Complexity Metrics. IEEE 
Transaction on Software Engineering, Vol. 27, 2001, No. 4, pp. 361–

364. 

24. Sharma, N.—Joshi, P.—Joshi, R.K.: Applicability of Weyuker’s 
Property 9 to Object-Oriented Metrics. IEEE Transaction on Software 

Engineering, Vol. 32, 2006, No. 3, pp. 209–211. 

25. Deepti Mishra: New Inheritance complexity metricsfor object – 
oriented software systems:An evaluation with weyker’s properties 

Computing and Informatics, Vol. 30, 2011, 267–293. 

26. Chidamber, S.R.—Kemerer, C.F.: To wards A Metrics Suite for 
Object Oriented Design,OOPSLA’91,pp. 197-211,1991. 

27. Chidamber, S.R.—Kemerer, C.F.: A Metrics Suite for Object 

Oriented Design, M.I.T.Solan School of  Management 1993. 
 

 

 
 

 
 

 

http://dx.doi.org/10.1109/MS.2005


International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-10 Issue-2, December 2020 

87 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

Retrieval Number: 100.1/ijitee.B82711210220 

DOI: 10.35940/ijitee.B8271.1210220 
 

28. wang CC, shih TK ,paiWC An automatic approach to object –oriented 

software testing and metrics for c++ inheritance hierarchies, 
proceedings International Conference on Automated Software 

Engineering (ASE’97), IEEE Computer Society press 1997;934-938 

29. Basili VR,Biand LC Melo WL A validation of object-oriented metrics 
as quality indicators, Technical Report,University of Maryland, 

Department of computer science,1995; 242-249. 

30. Chidamber, S.R.—Kemerer, C.F.: A Metrics Suite for Object 
Oriented Design.IEEE Transactions on Software Engineering, Vol. 

20, 1994, No. 6, pp. 476–493. 

31. Ghassan alkadi, Application of a revised DIT metric to Redesign an 
OO Design, Journal of Object technology , Vol. 2,Issue 3,pp 897-

910,2005. 

32. Basili, V.R.:Viewing Maintenance As Reuse Oriented Software 
Development. IEEE Software, Vol. 7, 1990, No. 1, pp. 19–25. 

33. Cartwright, M.—Shepperd, M.: An Empirical Analysis of Object 

Oriented Soft-ware in Industry. In: Bournemouth Metrics Workshop, 
April, Bournemouth, UK1996. 

34. Li, W.—Henry, S.: Object-Oriented Metrics That Predict 

Maintainability. Journal of Systems and Software, Vol. 23, 1994, No. 

2, pp. 111–122. 

35. Sanjay Misra and Ibrahim Akman :Applicability of weyuker’s 

Properties on OO Metrics: Some Misunderstandings ,ComSIS Vol. 5, 
No. 1, June 2008. 

36. K. Rajnish, A. K. Choudhary, A. M. Agrawal, ―Inheritance Metrics 

for Object-Oriented Design‖, IJCSIT, Vol. 2 No.6 , 
December2010,pp.13-26. 

37. K. Rajnish and V. Bhattacherjee, ―Class Inheritance Metrics-An 
Analytical and Empirical Approach‖, INFOCOMP-Journal of 

Computer Science, Federal University of Lavras, Brazil, Vol. 7 No.3, 

pp. 25-34, 2008. Brazil, Vol. 7 No.3, pp. 25-34, 2008.  

 

AUTHORS PROFILE 

Mr. Hanumantha Rao Battu, had  M.Tech 

Degree in Computer Science & Engineering from 
AAIDU University, Allahabad, U.P.. He is 

currently pursuing his Ph.D. in the Department of 

Computer Science & Engineering  from Acharya 
Nagarjuna University, Guntur, Andhra Pradesh. His 

Research Interest includes Software Engineering, 

Computer Networks, Operating Systems and ArtificialIntelligence. 
. 

Dr. R. Satya Prasad received Ph.D. Degree in 
computer science in the faculty of Engineering in 

2007 from Acharya Nagarjuna University, Andhra 

Pradesh. He received gold medal from Acharya 
Nagarjuna University for his outstanding performance 

in master’s degree. He is currently working as 

Professor & HOD in the department of Computer 
Science & Engineering., Acharya Nagarjuna 

University. His current research is focused on Software engineering. He has 

published several papers in National & International Journals. 

 
Dr.D. N.V.Syma Kumar, Presently working as an 

Associate Professor in the department of Computer 

Science & Engineering at St.Anns College of 
Engineering &Technology, Chirala. He had received 

his Ph.d. degree from Krishna University in the stream 

of Computer Science & Engineering in 2017.He had 
published more than 10 international publications in 

Scopus and various reputed journals. His research interests are Software 

Engineering, Data Mining, Artificial Intelligence and Machine learning. 

 

 

 

 

 

 

 

 

Fig 1(a) : Class Inheritance Hierarchy 

 

Fig 1(d) : Combined C+E Class Inheritance 

Hierarchy(case-3)property-5. 

 

Fig 2(a) : Class Inheritance Hierarchy 

 

Fig 2(d) : Combined Q+V  Class Inheritance Hierarchy 

(case-2) property-5. 

 

Fig 1(b) : Combined A+B  Class Inheritance 

Hierarchy(case-1)property-5. 



 

Maintainability Metrics for Object-Oriented Software System Modifiability 

88 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

Retrieval Number: 100.1/ijitee.B82711210220 

DOI: 10.35940/ijitee.B8271.1210220 
 

 

Fig 1(e) :Combined B+C Class Inheritance Hierarchy 

property-6. 

 

Fig .2(b) : Combined Q+R  Class Inheritance Hierarchy 

(case-1)property-5. 

 

Fig 2(E) : Combined Q+T Class Inheritance Hierarchy 

property-6. 

 

Fig 1(c) : Combined C+B Class Inheritance 

Hierarchy(case-2)property-5. 

 

Fig 1(f) : Combined D+C Class Inheritance Hierarchy 

property-6. 

 
Fig 2(c) : Combined Q+S Class Inheritance Hierarchy         

(case-2)property-5. 

 
Fig 2(F) : Combined R+T Class Inheritance Hierarchy 

property-6 

 


