
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-4, November 2020

186

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

Abstract: Software testing is one of the vital steps in software

development life cycle. Test case generation is the first process in

software testing which takes a lot of time, cost and effort to build

an effective product from the start. Automatic test case generation

is the best way to address this issue and model-based test case

generation approach would be suitable for this automation

process. One way to generate test cases automatically is by

generating test cases from Unified Modeling Language (UML)

models. The challenge with the existing test case generation

techniques using UML models is that they provide a single view,

meaning that the techniques capture a single aspect of the system,

such as structural or behavioral but not both. In this paper, we

have successfully developed a technique that automatically

generates test cases which capture both structural and behavioral

views of the system. These test cases can help to discover software

faults early in the software development cycle. Finally, we

conducted an experiment by comparing our technique with a

manual process. The results show that the proposed technique can

produce same test cases as manually writing test cases of the same

system model but this technique saves a lot of time, effort and cost

as well.

Keywords: Behavioral models, Structural models, Test case

generation, UML.

I. INTRODUCTION

Software testing is one of the vital phases of Software

Development Life Cycle (SDLC) and about 50% of the time

taken to deliver a product is spent on testing. The important

objective of testing is failure detection and as the systems are

becoming huge and complex, the need to get an effective

testing mechanism has become an essential part of the SDLC

process [1]. In SDLC the testing process involves four steps

namely: test case generation, test case selection, test case

execution, and test case evaluation [1]. Test case generation is

a very vital step in software testing, as it plays a key role on

the efficiency and effectiveness of software test, however, it

takes most of the effort in testing process [2]. Test cases can

be produced automatically from source code or visual

software model such as Unified Modeling Language (UML),

Data Flow Diagram (DFD), or Entity Relationship Diagram

(ERD) [3]. Using UML approach, test cases are created

during analysis or design stage. Test case generation from

design specifications has the added advantage of allowing test

Revised Manuscript Received on October 20, 2020.

* Correspondence Author

James Maina Mburu*, Department of Information Technology,

Murang‟a University of Technology, Muranga, Kenya. Email:

jmburu48@gmail.com

Geoffrey Muchiri Muketha, Department of Computer Science,

Murang‟a University of Technology, Muranga, Kenya. Email:

gmuchiri@mut.ac.ke

Aaron Mogeni Oirere, Department of Computer Science, Murang‟a

University of Technology, Muranga, Kenya. Email: amogeni@mut.ac.ke

cases to be available before coding in the software

development cycle [4]. An automatic test case generation

from code is ineffective since some aspects of program

behavior like state behavior is very hard to test based on code

[5]. Even though each type of UML diagram offers a view of

the software, there is a limitation to each type of model in

generating test cases [1]. The limitation of each of the UML

model is that they offer a single view of the system, either

structural or behavioral [6]. For example, although the

sequence diagram effectively captures messages between

objects, it provides a behavioral view. On the other hand, the

class diagram captures information about relationship

between objects but only provides a structural view of the

system [6]. A number of studies show that, there exist

techniques for generation of test cases using UML structural

models [7], [8], [9] and behavioral models [10], [11], [12].

These techniques generate test cases that depend on either

structural or the behavioural view of the system based on

UML model. However, there is no proof of test case

generation technique that combines both behavioral and

structural view of the system. Test cases generated from an

individual UML diagram are not effective as the test case

generated depend on a single view of a system [13]. The study

also reveals that, there are existing test case generation

techniques that are integrated with more than one UML model

[3], [14], [15], but concentrate on combination of behavioral

models hence test case generated still depend on single view

of the system. There also techniques that use intermediate

forms during test case generation [9], [10], [11] this makes

automation difficult. Finally, there are test case generation

techniques that are not automated [14], [15] therefore, a lot of

effort, time and cost are taken to generate test cases. In this

paper, we propose the design and implementation of an

enhanced multiview test case generation technique

(MUTCASGenerator). The effectiveness of the

MUTCASGenerator was analysed through an experiment by

comparing the technique with a manual process. The rest of

the paper is organized as follows: section 2, describes the

UML basic concepts and model-based testing. Section 3

describes survey on object-oriented test case generation

techniques using UML structural models, behavioral models

and UML combinational models. Section 4 covers the

discussion of MUTCASGenerator requirements, procedure,

design, test case design and algorithm. Section 5 covers the

implementation of the MUTCASGenerator. Section 6 covers

the experimental evaluation and finally Section 7 describes

the conclusion and future work.

An Enhanced Multiview Test Case Generation

Technique for Object-oriented Software using

Class and Activity Diagrams
James Maina Mburu, Geoffrey Muchiri Muketha, Aaron Mogeni Oirere

An Enhanced Multiview Test Case Generation Technique for Object-oriented Software using Class and

Activity Diagrams

187

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

II. BASIC CONCEPTS AND MODEL-BASED TESTING

UML is a commonly accepted set of notations for modeling

object-oriented system and was released by Object

Management Group (OMG) in 1997 [16]. UML is used for

designing, modeling and documenting the object-oriented

software systems. UML offers numerous diagrams to describe

particular features of software artifacts. These diagrams can

be categorized depending on whether they are intended to

describe structural or behavioral aspects of systems [8].

The view of the system can be either structural view or

behavioral view. The UML structural view describes the

kinds of objects (or classes), that are vital to understand the

working of a system and its implementation. Structural view

also captures the associations among the classes (objects).

The structural view includes object diagram, class diagram

and composite structure diagrams. The behavioral view

captures how objects intermingle with each other to realize

the system behavior. The system behavior captures the

dynamic behavior of the system. Behavioral view includes

different diagrams such as Activity Diagram, State Chart

Diagram, Sequence Diagram and Communication Diagram

[6]. Classification of UML diagrams is presented in fig.1 [6].

Fig. 1. Classification of UML diagrams

Model-based testing (MBT) is an automatic generation of

concrete test cases from abstract formal models and their

execution [17]. In MBT, test cases are created using the

models, which allow the tester to appreciate the software in a

better way and could acquire the test information with simple

processing of models [1]. Models reserve vital information

from requirement specifications and are the basis for final

implementation [18]. MBT is generally done at the design

phase and test cases derived helps in early detection of faults

in the software. Model-based testing approach is presented in

fig.2 [10].

Fig. 2. Model-based testing testing

III. EXISTING TEST CASE GENERA TECHNIQUES

USING UML MODELS

Test case generation is the process of creating test cases. It

is the first phase of testing and is vital in creating an effective

product [1]. The following section presents existing test case

generation techniques using UML structural models,

behavioral models and UML combinational models.

A. Test Case Generation Techniques using UML

Structural Models

Prasanna, Chandran and Suberi [7] presented the class

diagram by using data flow approach. Data variables and

member methods in this approach were retrieved from class

diagram and also used data flow technique to generate test

cases. A directed flow graph was created which assists in

expressing use pair approach. This approach is able to

generate test cases automatically. Shanthi [8] Proposed an

Automated test cases Generation for Object-oriented

Software. The test cases are generated automatically from

UML class diagram using Genetic algorithm and Binary

Search Techniques. Information is extracted from UML class

diagram and mapped to form a tree structure then genetic

algorithm is applied to discover all patterns and finally depth

first search technique is implemented to form a binary tree to

represent the knowledge i.e. test cases. This approach

generates novel automated test cases. Prasanna, Chandran and

Suberi [9] proposed Automated Test Case for Object-oriented

Systems using UML Object Diagrams. In their work, an

object diagram of a cell phone system is drawn using Rational

Rose software. Objects diagrams are stored as files for

reference and then parsed to derive the graph. This graph is

traversed to generate valid and invalid test cases. Test cases

are generated automatically hence saving time, cost and

effort.

B. Test Case Generation Techniques using UML

Behavioral Models

Monim and Nor [10] proposed an automated test Case

generation tool using UML activity diagram. The overall

development processes start from developing UML activity

diagram for the system under test. The model is converted to

an intermediate model form (activity graph). The Depth-First

Search algorithm is applied on the graph to produce test

sequences used to generate test cases. This approach is able to

generate test cases automatically hence saving, reducing

human intervention and error free output.

Package diagram

Behavioral diagram

Sequence diagram

Composite

Structure diagram

Deployment

diagram

Profile diagram

Structural diagram

Behavioral diagram

UML 2.2 diagram

Use case diagram

State Machine

diagram

Activity diagram

Interaction

diagram

Class diagram

Timing diagram

Object diagram

Component

diagram

Interaction

Overview diagram

Communication

diagram

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-4, November 2020

188

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

Singh and Preeti [11] proposed an automatic test

generation for object-oriented system using activity diagram.

In this approach activity graph is generated from the Activity

diagram. Then an algorithm is used to traverse activity graph

in order to extract all the possible test paths. This technique is

also automated.

Fernando and Glaucia [12] suggested an automatic

approach (EasyTest) to create test cases from UML activity

diagrams using gray-box techniques. In their work they used

activity dependency graph and activity dependency tree for

sequencing the test path. They developed tool provides

automatic support for the test case generation and applying

test cases phases.

C. Test Case Generation Techniques using UML

Combinational Models

Test case generation techniques using UML Combinational

Models involves generation of test cases from more than one

UML model or integration of several UML models.

Meiliana [3] proposed an approach for Automatic Test

Case Generation from Activity Diagram and Sequence

Diagram using Depth Search Algorithm. In this approach, the

activity diagram (AD) is converted into activity diagram

graph (ADG) and sequence diagram (SD) is converted into

sequence diagram graph (SDG). Then a graph called System

Testing Graph (SYTG) is formed from by combining the

activity diagram and sequence diagram graphs. The necessary

information to form the test cases is pre-stored in this graph.

The test cases generated present a behavioral view of the

system.

Jagtap et al. [14] proposed a technique for generating test

cases from UML use case and state chart diagrams. The

design model was constructed using ArgoUML tool which

support XMI file format. The shared model approach was

used for test case generation. The same model was used for

extracting artifacts as well as for test case generation. This

approach is not automated therefore much time, effort and

cost is spent to generate test cases.

Khurana and Chilla [15] proposed an approach for test case

generation and optimization using both sequence diagram and

state chart diagram. In this approach, a SUT is converted into

a graph called System Testing Graph (SYTG) which is

formed after integration of state chart graph and Sequence

graph. Genetic algorithm is applied on this graph to generate

and optimize the test cases automatically based on a coverage

criterion and a fault model. This technique is not automated

and requires to be integrated with one or more UML diagrams

in order to handle all types of errors.

IV. MUTCASGENERATOR

In this paper, a new technique (MUTCASGenerator) is

proposed in which an algorithm is applied to create all

possible test cases. The technique is applied on the

combination of class and activity diagrams. The section

discusses requirements, technique flow chart and design and

algorithm.

A. MUTCASGenerator Requirements

From the above review it has been observed that, existing

test case generation techniques for object-oriented software

using UML models reviewed in this paper were found to have

several limitations. Firstly, several techniques handle only

one UML diagram hence the test cases generated present

single view. Secondly, there are existing techniques that use

more than one UML diagram, but concentrate on the

combination of behavioral models only hence the test cases

generated still depend on one single view. Thirdly, these

techniques uses intermediate forms during test case

generation, this makes automation difficult. Finally, some of

the existing techniques are not automated. Therefore, a lot of

effort, time and cost are taken to generate test cases.

Therefore, future studies should focus on test case generation

techniques that capture both structural and behavioral view of

the system and should generate test cases automatically

without using any intermediate in order to increase the level of

automation in test case generation domain.

Existing object-oriented test case generation techniques

were compared on the basis of characteristics given below

which are considered as researchers view point while

developing a test case generation technique.

C1: UML diagrams used by the approach.

C2: Views provided by the test cases generated by the

approach.

C3: Use of intermediate forms during test case

generation

C4: Test case generation approach used i.e. manual or

automated

By analyzing the existing techniques, researchers have

instigated desired characteristics which need to be considered

while developing test case generation technique;

1. Selection of UML diagrams need to be considered

while developing test case generation technique in

order in order to capture both structural and behavioral

views of the system.

2. There is need to use less complex intermediate form or

no intermediate form so as not make test automation

difficult.

3. The process of generating test cases need to be

automated in order to increase effectiveness

B. Steps to be followed for the MUTCASGenerator

Following are the series of steps that should be followed in

order to generate the test cases.

1. Using visual paradigm tool construct a class diagram

of a system

2. From the class diagram created, derive an activity

diagram

3. Using visual paradigm tool convert diagram into

XML file

4. Input XML file to a Parser

5. Generate test cases

All the test case scenario and end of the application can be

attained using step 5.

C. MUTCASGenerator Procedure

Fig. 4 shows the flowchart for the technique showing steps

to be followed

An Enhanced Multiview Test Case Generation Technique for Object-oriented Software using Class and

Activity Diagrams

189

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

Fig. 3. Flowchart of MUTCASGenerator

D. Description of Methodology

The approach begins by creating a class diagram of a

system using visual Paradigm tool by defining class name,

attributes, methods and links between them. Then, activity

diagram is derived from class diagram by enriching it with

class attributes to name control flows of the activity diagram.

The developed diagrams are then converted into XML format

using visual Paradigm tool so as to store all information

related to generated diagrams in the form of tags. A parser

(MUTCASExtractor) is then used to read the XML file to

extract test cases. Finally, an experimental evaluation is

conducted to analyze the effectiveness of the proposed

technique.

E. MUTCASGenerator Technique Design

This section presents the design of MUTCASGenerator

using class and activity diagrams. While presenting this

approach, the researcher has taken care of all points discussed

above. This makes the proposed technique totally distinct

from the previous approaches.

Fig.5 shows the design of MUTCASGenerator technique

Fig. 4. Design of MUTCASGenerator

F. Test Case Design

Test cases are built using specifications and requirements

document, i.e., what the system needs to perform. A test case

is a triplet (I, S, O) where I is the data input to the system, S is

the state or the condition of the system to which the data is

input, and O is the expected output obtained from the system

[5].

Table-I: Showing desired test case output design

Test

Caseno

Test

Condition

Input Expected

Output

Test

Case

Status

1

2

3

In the table (I), test condition is the variable or the left

operand, input is the value or right operand, expected

outcome is the result after evaluating a condition, test case

status holds results after testing a variable i.e. returns either

pass or fail . The test caseno keeps track of number of test

cases evaluated.

G. Description of the Multiview Test Case Generation

Algorithm (MUTCSGA)

Input to the algorithm is the XML file while the output to

the algorithm is the set of test cases. The algorithm transverse

the decision node in sequential order and as the decision node

is transversed, the test variable is found which is an attribute

from class diagram plus assigned integer value (input). The

test variable is parsed into 3 constituents‟ i.e. the left operand,

operator and the right operand. In this study the researcher

considered the binary relational operators such as ==, !=, <, >,

<=,>=.

How MUTCSGA works

If the predicate has >= operator, the algorithm outputs two

test cases as (testcaseno, testcondtion, input, expectedoutput,

testcasestatus). The other one is; (testcaseno, testcondition,

input+1, expectedoutput, testcasestatus) and the testcaseno is

likewise increased with a value. If the predicate has <=

operator, the algorithm outputs two test cases as (testcaseno,

testcondition, input, expectedoutput, testcasestatus). The

other one is; (testcaseno, testcondtion, input-1, expected

output, testcasestatus) and the testcaseno is equally increased

with a value. If the predicate has >operator, the algorithm

display one test case as (testcaseno, testcondition, input+1,

expectedoutput, testcasestatus) and the testcaseno is

correspondingly increased with a value. If the predicate has <

operator, the algorithm output one test case as (testcaseno,

testcondition, input-1, expected output, testcasestatus) and the

testcaseno is also increased with a value. If predicate has !=

operator, the algorithm output one test case as (testcaseno,

testcondition, input-1, expected output, testcasestatus). The

testcaseno is equally incremented with a value. Other test

case is (testcaseno, testcondition, testinput+1, expected

output, testcasestatus). If the predicate has == operator, the

algorithm output test cases as (testcaseno, testcondition,

input, expectedoutput, testcasestatus). The test testcaseno is

equally increased with a value.

V. IMPLEMENTATION

The design models were constructed using visual paradigm

16.0 tool. Visual paradigm was also used to export the models

into an XML files format.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-4, November 2020

190

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

In this study, 50 models were designed. Javascript was used

to develop a parser to read the XML file, XSLT was used to

transform the xml to html file that contains generated test

cases. PHP programming language was used to develop the

interfaces and outputs of the technique. The following are

steps involved in this phase

A. Creating Class Diagram

Visual Paradigm (Standard Edition) tool was used to create

class diagrams. Class diagrams was first developed by

defining Class name, attributes, methods and links between

them. Fig.6 shows a case study of class diagram of Hotel

Booking System [19].

Fig. 5. Screenshot of Hotel Booking System class diagram

B. Creating Activity Diagram

The „new diagram option‟ from generated class diagram

was used to get a complete activity diagram. Class attributes

were extracted from Class diagram and then used in naming

control flows presented by activity diagram in a system. Fig.7

shows the activity diagram for Hotel booking system [19].

Fig. 6. Screenshot of Hotel Booking System Activity

Diagram

C. Exporting Diagrams into XML Format

The developed diagrams were then exported into XML

format using Visual Paradigm .Fig.8 shows a screen shot of

XML file generated for Hotel booking system model.

Fig. 7. Screenshot of generated XML file

D. Reading XML File

The XML file was parsed using a multiview test case

extractor (MUTCASExtractor). MUTCASExtractor was used

to extract the required information. Fig.9 below shows a

screen shot JavaScript code for MUTCASExractor.

Fig. 8. JavaScript code for MUTCASExtractor

The researcher developed an interface of the

MUTCASGenerator, using PHP programming language to

facilitate interaction with the users. Fig.10 shows a

screenshot of the interface of the MUTCASGenerator.

Fig. 9. Screenshot of interface of the MUTCASGenerator

An Enhanced Multiview Test Case Generation Technique for Object-oriented Software using Class and

Activity Diagrams

191

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

Fig.11 shows a screen shot of generated test cases after

parsing XML code of Hotel booking system model. There are

3 test scenarios i.e. the first test case shows test case precisely

at the extremes of input domain e.g. 8. The second shows test

case precisely just above limits of input domain e.g. 9.The

third shows the test case precisely just below the limits of

input domain e.g. 7. Test condition holds attribute, input

holds the value, expected outcome holds result after

evaluating a condition, and test case status holds results after

testing a variable i.e. returns either pass or fail. The test

caseno keeps track of number of test cases evaluated.

Fig. 10. Screenshot of generated test cases

VI. EXPERIMENTAL EVALUATION

The goal of this phase was to dynamically analyze

effectiveness of MUTCASGenerator by comparing it with a

manual process known as manual test case generation

technique (MATCASGenerator).The rationale was to find out

which technique is actually effective in terms of; number of

test cases generated, time taken to generate test cases, effort

and cost of test generating cases. The experiment was done

with the 4
th

 year Bsc Software Engineering, Bsc IT & Bsc

Computer Science students of various universities in Kenya.

A. Planning

The experiment subjects were selected on the basis that the

subject has a good background in system analysis and design,

coding and testing especially for object-oriented software.

Wohlin [20] suggest that there are two types of variable in a

controlled experiment i.e. dependent and independent

variables. In this experiment, there is only one independent

variable which is test case generation approach used to

generate test cases, with two treatments i.e.

MUTCASGenerator and MATCASGenerator. The

dependent variables were the test case generation effort (TE)

and cost.

Test case generation effort (TE) is given by;

The cost was calculated by giving each subject “x” value as

standard cost per second. For calculation, the researcher has

given a standard value which is 0.5 units / second [21].

The following shows measures collected in the experiment

by each approach;

- Number of test cases generated

- Time taken to generate test cases

The results obtained after the experiment will be compared

to the following hypothesis.

 Null hypothesis (H0TE) = There is no significant difference

in test case generation effort between

MUTCASGenerator and MATCASGenerator

 Alternative hypothesis (H1TE) = There is significant

difference in test case generation effort between

MUTCASGenerator and MATCASGenerator

 Null hypothesis (H0C) = There is no significant difference

in test case generation cost between MUTCASGenerator

and MATCASGenerator

 Alternative hypothesis (H1C) = There is significant

difference in test case generation cost between

MUTCASGenerator and MUTCASGenerator

B. Experimental design

The research followed empirical guidelines from Juristo

and Moreno [22]. The study used between subjects

experimental design and students were taken as the

experimental subjects. There were 40 subjects, where each

subject was randomly assigned to three different models.

C. Experiment execution

Preparations were made and training was conducted to the

subjects via YouTube link (https://youtu.be/mz4N5gHIOCo)

before actual execution. The subjects received models and

test case templates via the email. Test case templates were

used to document the test model. The experiment was

conducted on 9th and 10th June, 2020 in an individual room at

subjects‟ home.

D. Results

The data collected was first subjected to descriptive

statistics and then analyzed using inferential statistics which

included linear regression and Z-test (two-tailed test).The

results were presented by use of tables.

E. Results of test effort comparisons

The preliminary discussion of the results is based on the

two building blocks of test effort construction, which are the

number of test cases and time taken to produce those test

cases. Then, the analysis is completed by comparing the

results of test effort required by each test case generation

approach.

F. Analysis of number test cases generated

Table-II shows that both techniques (MUTCASGenerator and

MATCASGenerator) generated the same total number of test

cases i.e. each produced sum of 795 test cases from 50

models.

https://youtu.be/mz4N5gHIOCo

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-4, November 2020

192

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

Table -II: Showing results of total number of test cases

generated by each approach

Techniqu

e

Statistic Sum Mean Std.

Deviatio

n

Variance

Statisti

c

Statisti

c

Statistic Statistic

MUTCAS

Generator

No Of

Test

cases 795 15.9 5.726 32.786

MATCAS

Generator

No Of

Test

cases 795 15.9 5.726 32.786

G. Analysis of Time taken to generate test cases

The table-III shows that MUTCASGenerator is taking a

total of 216.05 seconds to generate 795 test cases while

MATCASGenerator is taking 23,760.00 seconds to generate

795 test cases, hence the MUTCASGenerator is faster in

generating test cases than MATCASGenerator.

Table-III: Time taken to generate test cases by each approach

Technique Statistic Sum Mean Std.

Deviatio

n

Variance

Statisti

c

Statisti

c

Statistic Statistic

MUTCAS

Generator

Time

taken(s) 216.05 4.32 0.77 0.6

MATCAS

Generator

Time

taken(s) 23760 475.2 173.91 30245.89

H. Linear regression test on effort against number of

test cases and time taken

Linear regression was applied to try to predict the values of

effort based on number of test cases and time consumed.

The results from table-IV shows that In

MUTCASGenerator, the variables have an Adjusted R Squire

of 0.803 while in MATCASGenerator, the variables have an

Adjusted R Squire of 0.815 .This means that in

MATCASGenerator, the two predicators offer better

explanation of about 82% of the variation in the dependent

variable, effort as compared to variables in

MUTCASGenerator which can explain about 80% of the

variation of dependent variable effort

Table-IV: Showing correlation between effort and time and

number of test cases

Model Summary

Technique R R Square Adjusted

R Square

Std.

Error of

the

Estimate

MUTCASGenerator 0.900a 0.811 0.803 0.2985

MATCASGenerator 0.907a 0.822 0.815 0.00407

a. Predictors: (Constant), Time taken(s), NoOfTest cases

I. Analysis of variance between effort and time and

number of test cases

Table-V is used to whether there is a statistically significant

relationship between the effort and the combination of

number of test cases and time taken i.e. The F-ratio in the

ANOVA (table-V) test whether the regression model is a

good fit of the data. The table shows that independent

variables (Number of test cases and time taken) statistically

significant predict the dependent variable (Effort), F (2, 47) =

100.765, p (0.000<.05) i.e. the regression model is a good fit

of the data in both approaches.

Table-V: Showing ANOVA between effort and time and number

of test cases

Technique Sum of

Squares

Df Mean

Squa

re

F Sig.

MUTCASGener

ator

Regressi

on 17.957 2 8.978

100.76

5

0.000
b

Residual 4.188 47 0.089

Total 22.145 49

Regressi

on 0.004 2 0.002

108.84

2

0.000
b

MUTCASGener

ator Residual 0.001 47 0

 Total 0.004 49

a. Dependent Variable: Effort

b. Predictors: (Constant), Time taken(s), NoOfTest cases

In the coefficient table-VI, the t-values and corresponding

p-values are in the “t” and “sig” columns shows that number

of test cases p(0.000)<0.05 and time taken p (.000)<0.05 are

significant. In other words, number of test cases and time

taken variables adds a substantial contribution in explaining

dependent variable, effort in each approach.

Table-VI: Showing correlation coefficient between effort and

time and number of test case
 Coefficientsa

Model Statistics Unstandardized

Coefficients

Standardized

Coefficients

T Sig.

B Std.

Error

Beta

MUTCASGenerator

(Constant) 3.23 0.3

10.759 0

NoOfTest

cases 0.158 0.015 1.347 10.589 0

Time

taken(s) -0.494 0.111 -0.568 -4.462 0

 (Constant) 0.04 0.002

21.506 0

MATCASGenerator

NoOfTest

cases 0.002 0 0.96 11.922 0

Time

taken(s) -6.27E-05 0 -1.155 -14.338 0

a.Dependent Variable: Effor

J. Results of test effort

The table-VII shows that MUTCASGenerator is capable of

generating 3.609 test cases per second on average which is the

highest. Whereas MATCASGenerator is capable of

producing 0.035 test cases on average. The results might

indicate that MUTCASGenerator is more effective in terms of

effort. However, the statistical tests performed in the next

section statistically show the significant of the differences.
Table-VII: Showing Results of test effort

Technique Statisti

c Sum

Mea

n

Varianc

e (n) Std(n)

MUTCASGenerator

Effort

180.45

1 3.609 0.443 0.666

MUTCASGenerator
Effort 1.763 0.035 0 0.009

An Enhanced Multiview Test Case Generation Technique for Object-oriented Software using Class and

Activity Diagrams

193

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

K. Z-test/ Two-tailed test on test case generation effort

 In order to statistically demonstrate the test effort differences

between the test case generation approaches, z-test for two

independent samples was applied to the results to test the

formulated hypothesis (H0TE). The level of significance for

the hypothesis test was also set to α = 0.05. As can be

observed from Table-VIII, the results suggest rejecting H0TE

in favor of H1TE at the 0.05 significance level (since p-value <

α, that is 0.0001 < 0.05). The analysis led to a conclusion that

there is a statistically significant difference in test case

generation effort between MUTCASGenerator and

MATCASGenerator. This means that MUTCASGenerator

consumes less effort as compared to MATCASGenerator.

Table-VIII: Z-test for test case generation effort

z(Observed

value) 37.586

|z| (Critical

value) 1.96

p-value

(Two-tailed) < 0.0001

Alpha 0.05

L. Results of cost comparisons

The results from table-IX show that MUTCASGenerator

has a cost of 2.1605 units/seconds on average while

MATCASGenerator has a cost of 237.6 units/seconds. From

the observation MUTCASGenerator is less costly than

MATCASGenerator.

Table-IX: Results of test cost comparison

M. Hypothesis test on cost

In order to statistically demonstrate the cost differences

between the MUTCASGenerator and MATCASGenerator,

z-test for two independent samples was applied to the results

to test the formulated hypothesis (H0C). The level of

significance for the hypothesis test was also set to α = 0.05. As

can be observed from table-X, the results suggest rejecting 0C

in favor of H1C at the 0.05 significance level (since p-value <

α, that is 0.0001 < 0.05). The analysis led to a conclusion that

there is a statistically significant difference in cost between

MUTCASGenerator and MATCASGenerator.

This means that MUTCASGenerator is less costly as

compared to MATCASGenerator

Table-X: Z-test for test case generation cost

Difference -235.439

z (Observed

value) -19.145

|z| (Critical

value) 1.96

p-value

(Two-tailed) < 0.0001

Alpha 0.05

N. Linear regression test on cost against number of test

cases

The result from the table-XI shows the relationship

between variables in MUTCASGenerator has values of R

Squire of 0.751 while in MATCASGenerator has value of

0.418. This means that in MUTCASGenerator, the number of

test cases can explain about 75% of the variation in the

dependent variable, cost. In MATCASGenerator, the

predictor offer less explanation of about 42% of the variation

in the dependent variable, cost.
Table-XI: Showing correlation between cost and number of

test cases

Model Summary

Technique R R

Square

Adjusted

R Square

Std. Error

of the

Estimate

MUTCASGenerator .867a 0.751 0.746

0.194581

4

MUTCASGenerator .646a 0.418 0.406 4.415

Predictors: (Constant), NoOfTest cases

The F-ratio in the ANOVA (table-XII) test whether the

regression model is a good fit of the data. The table shows that

Number of test cases statistically significant predict the cost,

F (2, 48) = 144.980, p (.000<.05) i.e. the regression model is a

good fit of the data in both approaches.
Table-XII: Showing ANOVA between cost and number of

test cases

ANOVAa

Technique Sum of

Squares

Df Mean

Square

F Sig.

MUTCASGen

erator

Regression 5.489 1 5.489 144.980 0.000b

Residual 1.817 48 0.038

Total 7.307 49

MUTCASGen

erator

Regression 671.044 1 671.044 34.433 0.000b

Residual 935.456 48 19.489

Total 1606.500 49

In the coefficient table-XIII, the t-values and corresponding

p-values are in the “t” and “sig” columns shows that number

of test cases p(.000)<0.05, is significant. In other words,

number of test cases variable adds a substantial contribution

in explaining dependent variable, cost in each approach.

Techniq

ue
Statis

tic
Sum Mean

Varianc

e (n)

Standard

deviation

(n)

MUTCA

SGenerat

or Cost 108.027 2.161 0.146 0.382

MATCA

SGenerat

or Cost

11880.00

0

237.60

0

7410.24

0 86.083

a. Dependent Variable: NoOfTest cases

b. Predictors: (Constant), Cost

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-9 Issue-4, November 2020

194

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

Table-XIII: Showing correlation coefficient between cost and

number of test cases

Coefficientsa

Technique Statistic Unstandardized

Coefficients

Standardiz

ed

Coefficient

s

t Sig.

B Std. Error Beta

MUTCAS

Generator

(Constant) 1.231 0.082 15.023 0.000

NoOfTest

cases
0.058 .005 0.867 12.041 0.000

MUTCAS

Generator

(Constant) 81.539 28.235 2.888 0.006

NoOfTest

cases
9.815 1.673 0.646 5.868 0.000

a. Dependent Variable: Cost

VII. CONCLUSION

The paper firstly involved determination of

MUTCASGenerator requirements by analyzing existing test

case generation techniques. Secondly, the flowchart and

design of MUTCASGenerator are presented. On the same, an

algorithm to help in generation of test case is described.

Thirdly, the algorithm is implemented by developing a parser

(MUTCASExtractor) that analyzes XML file and extract the

required information (test cases). Finally, we conducted an

experiment by comparing our technique with a manual

process. The results show that the proposed technique can

produce same test cases as manually writing test cases of the

same system model but this technique saves a lot of time,

effort and cost as well. The technique show the result that, the

approach is useful to generate test case after completion of

design phase and these test cases can help to discover

software faults early in the software development cycle.

VIII. FUTURE WORK

The combination of class and activity diagram was

considered in designing the technique and models of various

systems. In future, there is need to add more diagrams like

sequence diagram that capture time dependent sequence of

interactions between objects, state machine diagram that

capture dynamic behavior of class instances. The parser is

unable to read other extension like (XMI). In future, the

researcher has intention to upgrade the parser so as to read

other file formats. Also the technique works with integer

variable hence there is need to further generalize the approach

by considering float, string data types..

REFERENCES

1. R.Abdul, N. A. J. Dayang, N. A .Ahmad, & , R..Abdullah , “Selecting

UML models for generation of test cases: An experiments of technique

to generate test cases,” 2017.

2. S. M. Mohi-Aldeen., S. Deris., & R. Mohamad, “Systematic mapping

study in automatic test case generation,” in New Trends in Software

Methodologies, Tools and Techniques. Fujita et al., eds. IOS Press,

703-720, 2014.

3. Meiliana, I. Septian, R.S. Alianto, Daniel & F.L. Gaol, Automated Test

Case Generation from UML Activity Diagram and Sequence Diagram

using Depth First Search Algorithm, 2nd International Conference on

Computer Science and Computational Intelligence, ICCSCI 2017, 13,

Bali, Indonesia..

4. Kaur & G. Gupta, Automated Model-Based Test Path Generation from

UML Diagrams via Graph Coverage Techniques, Research article,

ISSN 2320-088X, IJCSMC, Vol. 2, Issue. 7, 2013, pg. 302 – 311.

5. K. Swain, S. K. Pani, and D. P. Mohapatra, “Model based

object-oriented software testing.," Journal of Theoretical & Applied

Information Technology, vol. 14, 2010.

6. G. Booch, J. Rumbaugh, & I. Jacobson, The Unified Modeling

Language User W.-K. Chen, Linear Networks and Systems (Book

style). Belmont, CA: Wadsworth, 1993, pp. 123–135.

7. M. Prasanna,, K.R. Chandran, D.B. Suberi, Automatic test case

generation for UML class diagram using object diagram. Academia

Education., 2011, pg 1-7.

8. A.V.K. Shanthi, Automated Test Cases Generation for Object

Oriented Software Indian Journal of Computer Science and

Engineering (IJCSE). ISSN: 0976-5166 Vol. 2 No. 4, 2011.

9. M. Prasanna, K.R. Chandran, K.R., & D.B. Suberi, Automatic Test

Case Generation for UML Class Diagram using Data Flow Approach

.PSG College of Technology, Coimbatore, India, 2010.

10. A. Monim, & R.N.H. Nor, An Automated Test Case Generating tool

using UML Activity Diagram. International Journal of Engineering &

Technology, 7(4.31) 56 63, 2018.

11. R, Singh, & Preeti, Automating the test case generation for object

oriented system. International Journal of Engineering and Computer

Science, ISSN: 2319-7242, 2015.

12. A.Fernando, T. Diniz, B.S. Glaucia, “EasyTest: An approach for

automatic test cases generation from UML Activity Diagrams,” in

Information Technology: New Generations (ITNG 2017), 14th

International Conference on ITNG. Guide, 2017.

13. A. Verma, Automated Test Case generation using UML diagrams

based on behaviour. International Journal of Innovations in

Engineering and Technology (IJIET), Vol.4, ISSN: 2319-1058, 2014

14. S. Jagtap, V. Gawade, R. Pawar, S. Shendge, & P. Avhad, Generate

Test Cases From UML Use Case and State Chart Diagrams

.International Research Journal of Engineering and Technology

(IRJET) e-ISSN: 2395 -0056, 2016.

15. N. Khurana, & R.S, Test Case Generation and Optimization Using

UML Models and Genetic Algorithm.3rdInternational Conference on

Recent Trends in Computing 2015 (ICRTC-2015).

16. R. Mall, Fundamentals of software engineering, 2nd Ed. New Delhi:

Prentice-Hall of India Ltd, 2009.

17. M. Utting, A. Pretschner, & B. Legeard, “A taxonomy of model-based

testing approaches,” Software Testing, Verification & Reliability, vol.

22, no. 5, 2012, pp. 297-312.

18. K.J. Ajay, K.S. Santosh, P.M. Durga, A novel approach for test case

generation from uml activity diagram. Issues and Challenges in

Intelligent Computing Techniques (ICICT), International conference

on IEEE, 2014.

19. M. Babu, & R. Kumar, & R. Bhatia, Rajesh, Interaction Diagram

Based Test Case, 2012.

20. Wohlin, Experimentation in software engineering: an introduction.

Springer, 2000.

21. R.R. Polamreddy, & S.A. Irtaza, Software Testing: A Comparative

Study Model Based Testing VS Test Case Based Testing. School of

Computing, Blekinge, Institute of Technology, SE-371 79 Karlskrona,

Sweden, 2012. unpublished

22. N. Juristo, A.M. Moreno, Basics of software engineering

experimentation. Springer Netherlands, 2001.

AUTHORS PROFILE

James Maina Mburu is an ICT Trainer at the

Department of Information Communication

Technology at Baraka Vocational Training

Centre, Kenya. He is also a part time IT

Lecturer at Murang‟a University of

Technology. He earned his Bachelor of

Science in Information Technology from the

Murang‟a University of Technology, Kenya in

2016.. He is currently pursuing his MSc. in

Information Technology at Murang‟a University of Technology, Kenya. His

research interests include software Engineering, software Testing and

database management system

An Enhanced Multiview Test Case Generation Technique for Object-oriented Software using Class and

Activity Diagrams

195

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication

Retrieval Number: 100.1/ijrte.D4908119420

DOI:10.35940/ijrte.D4908.119420

Geoffrey Muchiri Muketha is a n Associate

Professor of Computer Science at Murang' a

University of Technology, Kenya. He received

his BSc. in Information Science from Moi

University, his MSc. in Computer Science

from Periyar University, and his Ph.D. in

Software Engineering from Universiti Putra

Malaysia. His research interests include

software and business process metrics,

software quality, verification and validation, empirical methods in software

engineering, and component-based software engineering. He is a

Professional Member of the ACM and a member of the International

Association of Engineers (IAENG).

Dr. Aaron Mogeni Oirere is a Lecturer and

CoD of Computer Science Department at

Murang‟a University. He obtained his BSc.

Degree in Computer Science from Periyar

University in 2007, and his MSc. Degree in

Computer Science from Bharathiar University

in 2010. He holds a Ph.D. in Computer

Science from Dr. Babasaheb Ambedkar

Marathwada University. His interests include:

Database Management Systems, Hardware &

Networking, Human Computer Interface,

Information Systems, Data Analytics and Automatic Speech Recognition.

He has presented papers in scientific conferences and has many publications

in refereed journals.

