
International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-9 Issue-4 November 2020 

 

92 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

Discovering Periodic Patterns in Time Series from 
Twitter Data Set 

Elavarasi D  

 

Abstract: The important class of regularities that exist in a 
time series is nothing but the Partial periodic patterns. These 
patterns have key properties such as starting, stopping, and 
restartinganywhere− within  a  series.  Partial  periodic  
patterns    areclassifiedinto    two  types:  (i)  regular   
patterns− exhibiting periodic behavior throughout a series  
with  some  exceptions  and(  ii)  periodic  patterns exhibiting 
periodic  behavior  only  for  particular  time intervals  within  
a  series.  We have focused primarily on finding regular  
patterns  during  past  studies  on  partial  periodic search. 
The knowledge pertaining to  periodic  patterns  cannot  be  
ignored.  This  is  because useful information pertaining to  
seasonal  or  time-based  associations  between  events  is 
provided bythem. Because of the foll o wi n g two main reasons, 
finding periodic patterns is a non-trivial task. 
(i) Each periodic pattern is associated with time-based 
information pertaining to its durations of periodic appearances 
in a series. Since the information can vary within and across 
patterns, obtaining this information ischallenging. 
(ii) As they do not satisfy the anti-monotonic property, 
finding all periodic patterns is a computationally expensive 
process. In this paper, periodic pattern model is  proposed  by  
addressing the above issues. Periodic Pattern growth 
algorithm along with an efficient pruning technique is also 
proposed to  discover  these patterns.  The  results  through   
Experimentation have shown that Periodic patterns  canbe  
really useful and it has  also proven that our  algorithm  
isnoteworthy. 

Keywords: Categories and Subject Descriptors H.2.8 [Database 
Management]: Database Applications - Data Mining. General 
Terms Algorithms 

I. INTRODUCTION 

Time series is defined as a collection of events obtained 
from sequential measurements over time. Periodic pattern 
mining involves the finding of all patterns that unveil either 
complete or partial cyclic repetitions in a timeseries. 

Finding regular forms, i.e., patterns displaying either 
whole or unfinished cyclic repetitions throughout a series 
[1, 2, 3, 4, 5, 6, 7, 8,  9] are focused  in Past studies  and it  
also  dealtwith  partial periodicsearch. In regular pattern of 
milk and  groceries states that  customers  have been  
buying items  ‘milk’  and ‘groceries’ almost daily during 
the course of the year can be considered as a  classical  
example. 

 
 
 

 
Revised Manuscript Received on October 10, 2020.  
Manuscript Received On October 06, 2020 

Elavarasi D., HOD, Department of Computer Science & Engineering, 
Mount Zion College of Engineering and Technology, Pudukkottai (Tamil 
Nadu), India. 
    
© The Authors. Published by Blue Eyes Intelligence Engineering and 
Sciences Publication (BEIESP). This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
 

 Partial periodic pattern which is considered  as  a  
useful  related  type  is  nothingbut  the Periodic patterns, 
i.e., patterns that exhibits cyclic repetitions only for  
specific  time  intervals within aseries. In Periodic pattern  
of Jackets,  ttloves  states  that  customers  have often  
purchased ‘Jackets’ and ‘ttloves’ from 10-October-2012 
to 26-February-2013 and from 2-November-2013 to 2- 
March- 2014 is a perfect example. 

The main purpose of this paper is to determine 
repetitive patterns  by  addressing  mining 
tasks.Normally,Periodicpatternsarepervasiveinveryhuge
datasets.Usefulin-formation could be provided 
concerning to cyclical or time-based relations between 
items, in many real- world applications. In marketing, a 
user  may be  concerned in describing  periodic 
purchases  for remarkable inventory controlling. 
Correspondingly, a social network data analyst may be 
concerned in attaining sequential data relating to bursts 
of hashtags, such as #earthquakes, #radiation and 
#floods. And also, a proficient in the health-care sector 
may be concerned in finding seasonal diseases in a 
geographical location. An administrator may be 
engrossed in attaining  time-based information of  
profoundly  visited  web  pages  mainly to  improve web 
site design andadministration. A set of huge stocks 
indices that rise occasionally for a specific time interval 
may be of special interest to enterprises and persons, in 
the stock market. An administrator might be concerned in 
discovering high sternness events (e.g. tumbling failure 
against regular mundane events (e.g. data backup), in the 
field of computer network. 

Unfortunately, because of the following reasons, finding 
periodic patterns becomes a non- trivial task. 
1. Each and every periodic pattern is related with time-

based information  relating  to  its durations of 
periodic  appearances  within the data.  Becauseof  
theinformation  thatcan vary within and 
acrosspatterns, attaining this information becomes 
challenging. 

2. A symbolic sequence is taken into account a time 
series as in most current periodic pattern mining 
approaches; therefore, the actual time-based  are not  
taken  into account  information of events bythem. 

3. The anti-monotonic property is not satisfied by the 
Periodic patterns. That is, all filled subgroups of a 
periodic pattern might not  be  periodic patterns.  
Because  of  the increase in  the search space, there 
will be increase in the computational cost of finding 
thesepatterns. 

 
 
 
 

https://www.openaccess.nl/en/open-publications
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.A2014.119420&domain=www.ijrte.org


 
Discovering Periodic Patterns in Time Series from Twitter Data Set 

93 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

Therefore, the challenging factor is to develop efficient 
pruning techniques to reduce the search space. 

4. Since periodic behavior are exhibited by regular patterns 
through- out a series with some exceptions, time-
based information pertaining to the intervals of 
periodic appearances of a pattern within the sequence 
are not obtained by regular pattern  mining  
algorithms.  As  a result, these algorithms cannotbe 
stretched for finding periodic patterns. 

 
 
5. In real-life, periodic patterns including rare items 
can be  interesting  to users.  For  example, the knowledge 
pertaining to rare events, such as regular events is not as  
important  as cascading failures for a network 
administrator. Nevertheless, since rare items appear 
infrequently in the data, finding  such  patterns  is  
difficult.  Categorizing  things  into  common or 
uncommon  is  biasedand  depends  on  theuser  and/or  
application  requirements. 
In this paper, a model that addresses all the above-
mentioned issues while finding periodic patterns is 
proposed. In particular, time series is taken into account by 
our model as a time-based sequence and models it as a 
transactional database with connections ordered in respect to 
a particular times- tamp (without loss of generality). 
Our model comprises of three novel measures, periodic-
support, periodic-interval and recurrence, mainly to 
determine the lively periodic behavior of periodic patterns. 
The total times of consecutive 
recurring repetitions of a form in a subset of data is 
determined by Periodic-support. The time interval (or 
window) pertaining to the periodic appearances of a pattern 
within a series is determined by Periodic- interval. The 
number of interesting periodic intervals of a pattern is 
determined by Recurrence. At last, a pattern- development 
algorithm along with a notable pruning technique is 
proposed to discern periodic patterns effectively. Our 
algorithm is called as periodic pattern-growth (RP- 
progression). Investigational results show that RP- 
progression is noteworthy and useful information can be 
provided by periodic patterns in many real-life applications. 
The remaining section of the paper is systematized as 
follows: associated work on mining periodic patterns is 
described in Section 2. our model of periodic patterns is 
introduced in Section 3. RP-growth is presented in 4th 
Section. Investigational results are reported in 5th Section. 
Finally, in the 6th Section the paper concludes with future 
researchdirections. 

II. RELATEDWORK 

Since the overview of partial periodic patterns [5], the issue 
of discovering these patterns has acknowledged a great deal 
of consideration [6, 8, 10, 11, 12]. The model used in all 
these studies, nevertheless, remains the same. That is, a time 
series is taken into account as a symbolic sequence and 
discovers all patterns using the subsequent steps: 
1. Segregating symbolic sequence into distinct 
subdivisions (or period-segments) of a fixed length (or 
period). 

2. Determine all partial periodic patterns that gratify the 
user- described minimum support (minSup), which 
regulates the slightest number of period sections that a 
pattern must cover  though the sequence.  The foremost 
restriction of the above studies is that the actual time-based 
information of the events within a sequence is not taken into 
account. To address this issue, a time order as a time-based 
sequence was modeled b Ma and Hellerstein [7] and a 
model to discern a class of fractional periodic patterns 
known as p-patterns was proposed. A pattern is considered 
in this model as fractional periodic if its numberof 
episodic appearances all the way through the sequence 
pleases the user- defined minSup. It should be noted that the 
concept of minSup is not the same in both regular pattern 
mining and unfinished periodic pattern mining. 
The minimum number of appearances of a pattern 

throughout the data is organized and controlled by 
minsupowever in frequent pattern mining, the minimum 
number of periodic appearances (or cyclic repetitions) of a 
pattern throughout the data is controlled by minSup controls 
in fractional periodic pattern mining. Therefore, the 
incomplete periodic patterns discovered in all the above 
studies represent regular patterns. On the other hand, our 
study was focused on discovering periodic patterns in a 
time-based sequence. Moreover, Ma and Heller stein’s 

model cannot be extended for finding periodic patterns. The 
reasons are as follows: 
1. Their model fails to attain the time-based information 
relating to the durations of periodic appearances of a 
pattern within thedata. 
2. Finding p-patterns with a single minSup directs to the 
quandary known as the “sporadic itemproblem”. 
Those patterns that include rare items will not be found, if 
minSup is fixed excessively high. MinSup has to be set 
very low because to find forms comprising both recurrent 
and infrequent items. Nevertheless, this can lead to 
combinatorial blast producing too many patterns. In 
precise, many monotonous aperiodic patterns can be 
discovered as partial periodic patterns. For example, if we 
set a low minSup, sayminSup 
= 3%, then we will be discovering an uninteresting 
aperiodic pattern that has only 3% of its periodically 
appearances throughout the data as a partial periodic pattern. 
In recent past, researchers have been investigating the 
complete cyclic conduct of the recurrent patterns in a 
transactional database to determine a class of user-interest-
based patterns known as periodic- recurrent patterns. 
Nonchalantly, a recurrent pattern satisfying minSup is said 

to buy periodic-frequent if and only if all its inter-arrival 
times throughout the database satisfy the user-defined 
period thresh- old value. Thus, these studies were fixated on 
discovering regular patterns in a transactional databank. For 
our study, the partial cyclic behavior is investigated same the 
patterns to discover periodic  patterns;  consequently,  make 
a sweeping statement regarding the current model of 
periodic- recurrent patterns.  More  importantly, none of the 
approaches presented in model time series data as a 
transactional database.  
 
 
 



International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-9 Issue-4 November 2020 

 

94 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

Instead, they are based on the implicit assumption that there 
are transactional databases with a sequentially ordered set of 
transactions. This paper fills the gap by describing the 
procedure to model time sequences data as a transactional 
database without loss ofgenerality. Yang et al. examined the 
change in sporadic behavior of patterns due to the intrusion 
of random noise and introduced a class of user-interest 
based patterns called as asynchronous periodic patterns. 
Even though asynchronous- periodic pattern mining is 
narrowly related to our work, it cannot be prolonged for 
finding periodic patterns.  
The reason is asynchronous periodic pattern mining models 

a time series as a figurative sequence; as a result, it does not 
consider the actual time-based information of the events 
within a categorization. 
The issue of locating progressive patterns and frequent 
episodes has received a great deal of attention. Nevertheless, 
it should be recorded that periodicity is investigated the 
problem of finding cyclic association rules. Nevertheless, 
that study is quite obstructive in finding the patterns that are 
present at every cycle. 
Finding partial periodic designs motifs and periodic forms 
has also been calculated in time sequences; rather than 
figurative patterns. 
On the whole, the offered model of finding periodic patterns 
is unique and is separate from current models. In the next 
section, we introduce our model of periodicpatterns. 

III. PROPOSEDMODEL 

At first, time series is defined in this section. Then, these 
series is represented as a transactional database and 
familiarize measures to discover periodic patterns. 
DEFINITION 1.  Let  I  be  a  set  of  items  (or  event  
types). An event is a pair (i,ts), where i   I is an item and ts R 
is the timestamp of the event. Let X I be a pattern. An event 
sequence S isan 
ordered  collection  of   events,  i.e., (i1, ts1), (i2, ts2),   , (iN 
, tsN )  ,  where  ij   I  is  an  item at  the j-   th  event.   The  
term  tsj  represents  the  occurrence timestamp  of  the  
event,  and  tsh    tsj   for  1    h j  N[7]. 
DEFINITION 2. A point sequence is a well-organized 
collection of happening times. Given an event sequence S = 
{(i1, ts1), (i2, ts2), ·· · , (iN , tsN )}, there is an implied 
point sequence, S = ts1, ts2, , tsN . An event sequence can 
be noticed as a combination of multiple point 
categorizations of each item. 
Let TSD denote the time series data (or a set of events) 
being mined. 
EXAMPLE 1.  Figure  1  shows  a  TSD with  a  set  of  items 
I =  a, b, c, d, e, f, g  .   In this figure,   an  item of each event 
is labeled above its occurrence timestamp. We should note 
that no  item  appears  at  the timestamps of 8 and 13. The 
item ‘a’ appears at the timestamps of 1, 2, 3, 4, 7, 11, 12and 
14. Thus, the event sequence of ‘a’ is represented as Sa = 

{(a, 1), (a, 2), (a, 3), (a, 4), (a, 7), (a, 11), (a, 12), (a, 
14)}.The point sequence of ‘a’ is represented as Sa = {1, 2, 
3, 4, 7-, 11, 12, 14}. Likewise, the point sequences of ‘b’ 

and ‘ab’ are ^ˆTSab. Therefore, Sup(ab) = |{1, 3, 4, 7, 11, 
12,14}| 
An important role is played by the point sequence in 

measuring the periodic behavior of the patterns in a time 
series. The time-basedly ordered transactional database is 
described now which preserves the point sequence of items 
in the TSD. 
Figure 1: Running example: time-based sequence consisting 
of items from ‘a’ to ‘g’ 
A transaction, tr = (ts, Y ), is a tuple, where ts epitomizes 
the timestamp and Y is a pattern. A transactional  database 
TDB over I is a set of transactions, TDB = tr1,  , trm ,  m =   
T DB ,   where  TDB is the size of the TDB in total number 
of transactions. For a transaction tr = (ts, Y ), such that X Y , 
it is said that X oc- curs in tr and such a timestamp is 
denoted as tsX . Let TSX = {tsX , ··· , tsX }, where 1 ≤  k ≤ 

l ≤ m, denote an ordered set of timestamps at which X has 
occurred in the TDB. The TSX in theTDB 
is the same as the point sequence of X in the TSD. Thus, 
any information pertaining to the time-based appearances of 
a pattern in the data is not missed. 
Example 2. Table 1 shows the transactional database 
assembled by grouping the items appearing  together at a 
specific timestamp in Figure 1. Each transaction in this 
database is exceptionally recognizable with a timestamp. All 
transactions have been well-organized with respect to their 
timestamps. It can be observed that the constructed database 
does not contain the transactions with timestamps 8  and  
13.  The reason  is  that  no  item  appears  at  these  
timestamps  in  Fig- ure  1.  In   this database, the pattern 
‘ab’ appears at the timestamps of 1, 3, 4, 7, 11, 12, and 
14.Therefore, 
TSab = {1, 3, 4, 7, 11, 12, 14}. 
Table 1: Transactional database constructed from time-

based sequence shown in Figure 1. The term ‘ts’ is an 

acronym for timestamp 

  
Definition 3. (Support of pattern X) The number of 
transactions containing X  in the TDB is defined as  the 
sup- port of X and denoted as Sup(X). That is, Sup(X) = 
|TS|. 
Example 3. The support of ‘ab’ in Table 1 is the size of 

TSab. Hence, Sup(ab) = |{1, 3, 4, 7, 11, 12, 14}| 
= 7. 
Definition 4. (Periodic appearance of pattern X) 

Let tsX , tsX ∈ TSX , 1 ≤ j < k ≤ m, signify any two 
succeeding timestamps in TSX . The time difference 
between tsX and tsX is referred to as an inter-arrival time of  
X, and denoted as iatX .  That is,  iatX =  tsX − tsX .  Let 
IAT X = {iatX , iatX, ··· , iatX }, k = Sup(X) − 1, be set  of 
all inter-arrival timesof X inT DB. An inter-arrival time of 
pattern X is said to be periodic (or interesting) if it is no 
more than the user- defined period threshold value. That is, 
a iatX ∈ IAT X is said to be periodic if iatX ≤ per, threshold 

value. Consequently, the following two definitions 
areintroduced. 
 
 
 

ts Items 
7 a, b, c, g 
9 c, d 
10 c, d, e ,f 
11 a, b, e, f 
12 a, b, c, d, e, f, g 
14 a, b, g 

 

ts Items 
1 a, b, g 
2 a, c, d 
3 a, b, e, f 
4 a, b, c, d 
5 c, d, e, f,g 
6 e, f, g 

 

https://www.openaccess.nl/en/open-publications


 
Discovering Periodic Patterns in Time Series from Twitter Data Set 

95 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

Figure 2: Inter-arrival times of ‘ab’, IAT ab 
Example 4. The pattern ‘ab’ has primarily appeared at the 

timestamps of 1 and 3. An inter-arrival time of ‘ab’ is given 

by the difference between these two time stamps. That is, 
iatab 1 = 2 (= 3 − 1). Similarly, other inter-arrival times of 
‘ab’ are iatab 2 = 1, iatab 3 = 3, iatab 4 = 4, iatab 5 = 1 and 

iatab 6 = 2. 
Therefore, the resultant IATab = {2, 1, 3, 4, 1, 2}. If the 
user-defined per = 2, then iatab 1 , iatab 2 , iatab 5 and iatab 
6 are considered the periodic occurrences of ‘ab’ in the data. 
On the other hand, iatab 3 and iatab 4 are considered the 
aperiodic occurrences of ‘ab’ as iatab 
3 per andiatab4 per. Figure 2 shows the set of all 
inter-arrival times forpattern 
 ‘ab’, i.e., IATab. The thick lines represent the inter-arrival 
times that satisfy the period, while the dotted lines represent 
the inter-arrival times that fail to satisfy the period. 
Most current partial periodic pattern mining approaches 
use minSup to measure the periodic interestingness of a 
form. This measure cannot be used for finding periodic 
patterns because it dictates the 
minimum number of cyclic repetitions a pattern must have 
in all the data. Therefore, we introduce the following 
measures to define the fractional periodic behavior of 
periodic patterns. 

Definition 5 
 (Periodic-interval of pattern X) Let TSX j = {tsXp, · · · , 
tsXq } ⊆ TSX, p ≤ q, be a set  of timestamps  such that 'tsXk 
∈ TSX j , p ≤ k <q, tsXk +1 – tsXk ≤ per. The TSX j is a 

maximal set if there exists no superset in which an inter-
arrival time between the two consecutive timestamps is no 
more than the period. A periodic-interval of X is presented 
by the range of timestamps in TSX j and is denoted aspiXj 

. That is, piXj = [tsXp , tsXq ]. 
Example 5. The maximal sets of timestamps in which ‘ab’ 

has appeared within the user-defined per = 2 are: TSab 1 = 
{1, 3, 4}, TSab 2 = {7}, and TSab 3 = {11, 12, 14}. So, the 
corresponding periodic- 
intervals for ‘ab’ are piab 1 = [1, 4], piab 2 = [7, 7], and piab 

3 = [11, 14]. Information pertaining to the duration (or 
window) of periodic appearances of a pattern in a database 
is obtained by the periodic- interval, as defined above. Most 
prominently, it can meritoriously determine the periodic 
durations that can vary within and across patterns. In very 
large databases, a pattern may have too many periodic- 
intervals. An efficient technique to reduce this number is to 
select only those periodic-intervals in which the number of 
cyclic repetitions of the corresponding pattern satisfies the 
user-defined threshold value. Thus, the following two 
definitions are introduced. 

Definition 6. (Periodic-support of pattern X) The size of 
TSX j is defined as the periodic-support of X, and 
denoted as psXj . That is, psXj = |TSX j|. 

Example 6. The periodic-support of ‘ab’ in piab 1 is the size 

of |TSab 1 |. Consequently, psab 1 = |TSab 1 | = 3. In the 
same way, the periodic-supports of ‘ab’ in piab 2 and piab 3 

are 1 and 3, respectively. 
In the real-world applications, some substances appear very 
recurrently in the data, while others rarely appear. Some rare 
items have been observed that it also exhibit periodic 
behavior in a portion of the data. The periodic-support, as 

defined above, facilitates the user to discover the knowledge 
concerning to those frequent and rare items that have 
unveiled adequate number of periodic repetitions in a 
portion of database. Each and every periodic-interval of a 
pattern will have only one periodic-support and vice- versa. 
In other words, there is one-to-one relationship between the 
periodic-intervals and periodic- supports of a pattern. 
Definition 7. (Stimulating periodic-interval of pattern X) Let 
PIX = {piX1, · · · , piXk} and PSX = {psX1 
,-· · · , psXk}, 1 ≤ k, be the complete set of periodic-
intervals and periodic-supports of pattern X in the TDB, 
respectively. A piXk ∈  PIX is said to be an interesting 
periodic-interval if it’s corresponding psXk 
∈  PSX has ps Xk≥ min PS. The user-defined minimum 
periodic-support is represented by the minPS. Example 7. If 
the user-defined min PS = 3, then piab1and piab3 are 
considered the interesting periodic- intervals of ‘ab’. This is 

because psab1 ≥ min PS and psab3 ≥ min PS. The piab2 is 
considered an unexciting periodic-interval of ‘ab’aspsab2

 min PS. Since very large databases are generally 
composed over a very long time frame, it has been sensed 
that some users may stipulate a constraint on  the minimum 
number of interesting periodic-intervals. As a result, the 
following definitions areintroduced. 
Definition 8. (Recurrence of pattern X) Its number of 
interesting periodic-intervals in a database is represented by 
the recurrence count of a pattern . Let IPIX ⊆ PIX be the set 
of periodic-intervals of  X such that for every piXk∈  
IPIX,its corresponding psXk≥ minPS. The recurrence of 
pattern X is denoted  as Rec(X) =|IPIX|. 
Example 8. Continuing with the previous example, PIab = 
{[1, 4], [11, 14]}. The recurrence of ‘ab’ is the sizeof IPIab. 

That is, Rec(ab) = |IPIab| = 2. 
Definition 9. (Periodic pattern X) Pattern X is a periodic 
pattern if Rec(X) ≥ min Rec, where min Rec is the user-
specified minimum recurrence count. Periodic pattern X is 
expressed as follows: 
X [Sup(X),Rec(X), {{piXk: psXk}|'piXk∈  IPIX}]. (1) 
Example 9. If the user-defined minRec = 2, then ‘ab’ isa 

periodic pattern and is expressed as follows: ab [support = 
7, recurrence = 2, {{[1, 4] : 3}, {[11, 14] : 3}}] 
The above pattern informs that ‘ab’ has occurred in 7 

transactions and its periodic occurrence behavior of once in 
every two transactions consecutively for at least three times 
has been observed at two distinct 
subsets of a database whose time stamps are in the range [1, 
4] and [11, 14]. Table 2 shows the complete set of periodic 
patterns revealed from Table 1. 
Table 2: Periodic patterns in Table 1. Terms ‘Sup,’ ‘Rec’ 

and ‘IPI’ respectively denote support, recurrence,   and  

interesting  periodic-intervals   along   with  their   periodic-
supports    Pattern  SupRec 
Definition 10. (Problem Definition:) Given a time based 
sequence (i.e., a TSD), the issue of discovering periodic 
patterns include determining all those patterns that satisfy 
the user-defined per, min PS and min Rec  constraints.  The 
measures,  support, period and periodic-support, can also be 
stated in percentage of |TDB|.  
 
 
 



International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-9 Issue-4 November 2020 

 

96 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

However, the former definitions for ease of explanation are 
used. Table 3 lists the taxonomy of different terms used in 
our model. Grouping the items appearing together at a 
particular timestamp and storing them in a linked hash table 
is involved in the construction of a transactional database 
from a time series. Since this process is simple and straight 
forward, it is not discussed in this paper.  
As an alternative, findingthe 
periodic patterns from the constructed database is focused 
focus. 

IV. PROPOSEDALGORITHM 

In this part, our pruning technique is introduced first to 
lessen the computational cost of defining periodic patterns. 
Next, our algorithm is presented to mine the whole set of 
periodic forms from the constructed database. 
Basic Idea: Candidate patterns 
The space of items in a database provides rise to a subset 
lattice. An item set lattice is a conceptualization of search 
space while searching user-interest-based patterns. The anti-
monotonic property has been 
widelyusedtoreducethesearchspace. Regrettably, this 
propertyis notsatisfiedbyperiodicpatterns. The 
explorationspace,whichinturnupturns 
thecomputationalcostofminingperiodicpatterns isincreased. 
Example 10. Consider the patterns ‘c’ and ‘cd’ in Table 
Given the user-defined per = 2, min PS = 3 and min Rec = 
2, the interesting periodic-intervals of ‘c’ and ‘cd’are {[2, 

12]} and {[2, 5], [9, 12]}, respectively. Therefore, the 
Rec(c) = |{[2, 12]}| = 1 and Rec(cd) = 
|{[2, 5], [9, 12]}| = 2. As the Rec(c) ! min Rec, ‘c’ is not a 

periodic pattern. Nevertheless, its superset ‘cd’ is a periodic 

pattern because Rec (cd) ≥ min Rec. Therefore, the anti-
monotonic property is not satisfied by the periodic patterns. 
The same can be observed in Table 2. 
The following pruning technique to reduce the 
computational cost of finding periodic patterns is 
introduced. 
If E rec (X) <min Rec, then neither X nor its supersets will 

be periodic patterns” The upper bound of recurrence is 

symbolized by the E rec(X) as a superset of X can have in 
the database. Thus, Erec (X) is called as the predictable 
maximum recurrence of a superset of X. The correctness of 
our snipping technique is straight forward to prove from 
Properties 1 and 2, and illustrated in Example 11. 
Property 1. For the pattern X, Erec(X) ≥ Rec(X). 
Property 2. If X ⊂ Y , then TSX ⊇ TSY and Erec(X) ≥ 

Erec(Y ). 
Example 11. In Table 1, the item ‘g’ occurs in timestamps 

of 1, 5, 6, 7, 12 and 14. Therefore, TSg = {1, 5, 
6, 7,-12, 14} and S(g) = 6. If per = 2, min PS = 3 and min 
Rec =2, then TSg1 = {1}, TSg2 = {5, 6, 7}, TSg 3 = {12, 
14}, psg1 =|TSg1 | = 1, psg2 = |TSg2 | = 3 and psg3 = |TSg3 
| = 2. For this item, Erec(g) = 1= 
$3i=1%psgi3&=%13&%33&+%23&(.That is, any superset 
of ‘g’ can at most have recurrence value equal to 1, which is 
less than the user-defined minRec.Henceforth, pruning ‘g’ 

will not result in missing of any periodicpattern.Based on 
our proposed pruning technique, we introducethe following 
definition. Definition 11. (Candidate pattern X.) Pattern X 
isa candidate pattern if Erec(X) ≥ minRec.A candidate 

pattern containing only one item is called acandidate item. 
The candidate patterns satisfy the antimonotonicproperty 
(Property 2). Therefore, we use candidate k-patterns to 
discover periodic (k + 1)- patterns. 
RP-growth: Structure, Construction andMining 
Traditional Frequent Pattern-growth algorithm [24] 
cannotbe used for finding periodic patterns. This is because 
the arrangement of FP-tree seizures only the frequency and 
neglects the periodic behavior of the patterns in a database. 
To address this issue, RP-growth introduces an alternative 
tree structure known as an Periodic Pattern-tree (RP-
tree).Our RP-growth algorithm comprises the following two 
steps: 
(i) construction of an RP-tree and (ii) recursive mining ofthe 
RP-tree to determine the complete set of periodic patterns. 
Before explaining the above two steps, the structure of an 
RP-tree is introduced.Structure of RP-tree 
A prefix-tree and a candidate item list, known as the RP-list. 
It is comprised in the structure of an RP-tree. 
The RP-list involvesof each distinct item (i) with support 
(s), expected maximum recurrence (Erec), and  a pointer 
pointing to the first node in the prefix-tree carrying the item. 
The prefix-tree in an RP-tree bear a resemblance to the 
prefix-tree in FP-tree. Nevertheless, to attain both frequency 
and periodic behaviorof 
the patterns, the nodes in an RP-tree obviously retain the 
existence information for each transaction by keeping an 
existence timestamp list, called as ts-list. To accomplish 
memory efficiency, the ts-list is sustained by only the last 
node of every transaction. Henceforth, two types of nodes 
are sustained in a RP- tree: ordinary node and tail-node. 
The previous is a type of node alike to that used in an FP-
tree, whereas the latter represents the last item of any 
organized transaction. For that reason, the arrangement of a 
tail-node is i[tsp, tsq, ..., tsr], 1 ≤ p ≤q 
≤ r ≤ m, where i is the node’s item name and tsi, i ∈  [1,m], 
is the timestamp of a  transaction containing  the items from 
root up to the node i. The conceptual structure of an RP-tree 
is shown in Figure3. Like an FP-tree, each node in an RP-
tree maintains parent, children, and node traversal pointers. 
Please note that no node in an RP-tree maintains the support 
count as in an FP-tree. To assist a high degree of 
compactness, items in the prefix-tree are arranged in 
support-descendingorder. 

 
Figure 3: Theoretical structure of prefix-tree in RP tree. 
Dotted ellipse symbolizes ordinary node, while tail-node of 
sorted transactions with timestamps tsi, tsj ∈  R is signified 
by other ellipse. 
 
 
 
 

https://www.openaccess.nl/en/open-publications


 
Discovering Periodic Patterns in Time Series from Twitter Data Set 

97 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

One can take responsibility that the structure of the prefix-
tree in an RP-tree may not be memory proficient since it 
unambiguously sustains timestamps of each transaction. On 
the contrary, it has been disputed that such a tree can attain 
memory efficiency by keeping transaction information only 
at the tail nodes and evading the support count field at each 
node.  
Additionally, the problematical combinatorial explosion 
problem of candidate generation as in Apriori-like 
algorithms is eluded by an RP-tree. Keeping the information 
relating to ttransactional-identifiers in a tree can also be 
found in resourceful frequent pattern mining [25]. 
Algorithm 1 RP-List(TDB: Transactional database, I:Set of 
items, per: period, minPS: minimum periodic 
support,minRec: minimum recurrence) 
1: Let idl be a temporary array that records the timestampof 
the last appearance of each item in the TDB. Let psbe 
another temporary array that records the periodicsupportof 
an item in a subset  of a database. Let  t ={tscur,X} denote 
the current transaction with tscur andX representing the 
timestamp of the current transactionand pattern, 
respectively. 
2: for each transaction t ∈  TDB do 
3: if an item i occurs for the first time then 4: Add i to the 
RP-list. 
5: Set si = 1, eirec = 0, idil= tscur and psi = 1. 6: else 
7: if (tscur − idil) ≤ per then 
8: Set si ++, psi + + and idil= tscur. 9: else 
10: eirec+ =%psiminPS&. 
11: Set si ++, psi = 1 and idil= tscur. {Beginning of a new 
subset of a database.} 12: endif 
13: endif 
14: end for 
15: To reflect the correct estimated recurrence value for 
each item in the RP-list, perform ei rec+ 
=[psi/minPS]. 
Algorithm 2 RP-Tree(TDB, RF-list) 
1: Create the root of an RP-tree, T, and label it “null”. 2: for 

each transaction t ∈  TDB do 
3: Set the timestamp of the corresponding transaction as 
tcur. 
4: Select and sort the candidate items in t according tothe 
order of CI. Let the sorted candidate item list in t be [p|P], 
where p is the first item and P is theremaining list. 
5: Call insert tree([p|P], tcur, T). 
6: end for 
7: call RP-growth (Tree, null); 
Construction of RP-tree 
Since the anti-monotonic property is not contented by the 
periodic currents, candidate 1-patterns (or items) will play a 
substantial role in actual mining of these patterns. The set of 
candidate items CI in a database for the user-defined per, 
min PS, and min Rec can be revealed by populating -list 
with a scan on the database. Figure 4 displays the 
construction of an RP-list using Algorithm 1. Due to page 
limitation, the key steps are offered in the construction of 
the RP-list. Please note that the per, min PS, and min Rec 
values have been set to 2, 3 and 2, respectively. The scan on 
the first transaction, “1 : a, b, g”, with tscur 
= 1 sets items ‘a’, ‘b’, and ‘g’ in the RP-list and sets theirs, 
erec, idl, and ps values to 1, 0, 1, and 1, respectively (lines1 

to 5 in Algorithm 1). Figure 4(a) indicates the RP-list 
produced after  scanning the first transaction. The scan on 
the second transaction “2 : a, c, d” with tscur = 2 initializes 
the items ‘c’ and ‘d’ in the RP-list by setting their s, e rec, 
idl, 
Algorithm 3 insert tree([p|P], tcur, T) 
1: while P is non-empty do 
2: if T has a child N such that p.itemName N. item 
Namethen 
3: Create a new node N. Let its parent link be linked to T. 
Let its node -link be linked to nodes with the same item 
Name via the node-link structure. Remove p from P. 
4: end if 
5: end while 
6: Add tcur to the leaf node. 
Algorithm 4 RP-growth(Tree, α) 
1: for each ai in the header of Tree do 
2: Generate pattern β = ai ∪  α. Collect all of the a′is tslists 

into a temporary array, TSβ, and calculate Eβ rec. 
3: if Eβrec ≥ minRec then 
4: Construct β’s conditional pattern base then β’sconditional 

RP-tree Treeβ. Call getRecurrence(β, TSβ). 
5:ifTreeβ ∅ then 
6: call RP-growth(Treeβ, β); 7: endif 
8: endif 
9: Remove ai from the Tree and push the ai’s ts-list to its 
parent nodes. 
10: end for 
and ps values to 1, 0, 2, and 1, respectively. In addition, the 
s, erec, idl, and ps values of an already existing item ‘a’ are 
updated to 2, 0, 2, and 2, respectively (lines 7 to 9 in 
Algorithm 1). Figure 4(b) displays the RP-list made after 
scanning the second transaction. Figure 4(c) indicates the 
RP-list built after perusing the seventh transaction. It can be 
observed that the ‘erec’ of ‘a’ and ‘b’ have been restructured 

from 0 to 1. This is because their [ps/min PS]= 1. The ps 
value of ‘a’ and ‘b’ is set to 1 because they seemed 
periodically once again in the database (line 11 in Algorithm 
1). Figure 4(d) express the-list assembled after scanning 
every transaction in the database. The estimated recurrence 
(erec) value foralltheitemsintheRP-
listisonceagaincomputedtoreflectthecorrectness(line15inAlg
orithm1). 
Figure 4(e) demonstrates the updated erec value for all items 
in the RP-list. Using our pruning technique, ‘g’ is removed 
from the RP-list as its ecur < min Rec. The remaining items 
are organized in descending order of their support values 
(line 16 in Algorithm 1).Figure 4(f) illustrates the sorted list 
of candidate items in the RP-list. After finding candidate 
items, another scan on the database is conducted and it 
constructs the prefix-tree of the RPtree, as in Algorithms 2 
and 3. These techniques are the same as those for 
constructing an FP-tree. On the other hand, the major 
difference is that no node in an RF-tree sustains the support 
count, as in an FP-tree. The first transaction{1 : a, b, g} is 
skimmed and a branch is constructed in the RPtree with 
only the candidate items ‘b’ and ‘a.’ The tail node ‘b : 1’ 

transmits the timestamp of the 
transaction. The RP-tree formed 
after scanning the first 
transaction isshown in Figure 



International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-9 Issue-4 November 2020 

 

98 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

5(a). A similar process is repeated for the remaining 

 
Figure 4: Construction of RP-list: 

(a) after scanning first transaction, (b) after scanning 
second transaction,(c) after scanning seventh transaction, (d) 
after scanning every transaction, (e) after computing actual 
‘erec’ values, and (f) sorted  list of candidate items 
transactions and the tree is updated accordingly. Figure5(b) 
displays the RP-tree made after scanning the complete 
database. For ease, the node traversal pointers in trees is not 
shown; however, they are preserved like an FP treedoes. 

 
Figure 5: Construction of RP-tree: (a) after scanning first 

transaction and (b) after scanning entire transactional 
database 

The whole information of all periodic patterns in a database 
is sustained by the RP-tree. The precision is based on 
Property 3 and shown in Lemmas 1 and 2. For each 
transaction t ∈  the TDB, CI(t) is 
the set of all candidate items in t, i.e., CI(t) = item(t) ∩ CI, 

and is known as the candidate item projection of t. 
Property 3. a complete set of candidate item projections is 
preserved by an RP-tree for each transaction in a database 
only once. 
Lemma 1. Given a TDB and user-defined per, (minPS),and 
minRec values, the complete set of all periodic item 
projections of all transactions in the TDB can be derived 
from the RP-tree. 
Proof. Based on Property 3, each transaction t ∈  TDB is 
mapped to only one path in the tree, and any path from the 
root up to a tail node conserves the complete projection for 
exactly n transactions (where n is the total number of entries 
in the ts-list of the tail node). 
Lemma 2. The size of the RP-tree (without the root node) on 
a TDB for user-defined per, minPS, and min Rec is bounded 
by $t∈ TDB|CI(t)|. 
Proof. According to the RP-tree construction process and 
Lemma 1, each transaction t donates at most one path of size 
|CI(t)| to an RP-tree. As a result, the total size support of all 
transactions can be$ t∈ TDB|CI(t)| at best. On the other hand, 
since there are usually many  common  prefix  patterns 
amongthetransactions,thesizeofanRP-

treeisnormallymuchsmallerthan∑t∈ TDB|CI(t)|. 
Algorithm 5 get Recurrence(X: pattern, TSX: ts-list of 
pattern X) 
1: Let idl be a variable that records the timestamp of the last 
transaction containing X. Let sub DB be a  list of pairs of the 
form (start TS, end TS), where start TS and end TS 
respectively represent the starting and ending timestamps of 
periodic appearances of a pattern in a subset of data. It is 
used to record the periodic-intervals of a pattern. Let current 
PS be a variable to measure the periodic-support of X in a 
periodic-interval. 
2: for each timestamp tscur ∈ TSX do 3: if (tscur is X’s first 

occurrence) then 4: currentPS = 1, startTS = tscur; 
5: else 
6: if (tscur − idl ≤ per) then 
7: currentPS ++; 
8: else 
9: if (currentPS ≥ minPS) then 10: subDB.insert(startTS, 
idl); 
11: endif 
12: currentPS = 1, startTS =tscur; 13: endif 
14: endif 
15: idl = tscur; 16: end for 
17: // To reflect correct recurrence of X. 18: if (currentPS ≥ 

minPS) then 
19: subDB.insert(startTS, idl); 
20: end if 
21: return ((subDB.size() ≥ minRec)?true:false); 
Mining Periodic Patterns 
Despite the fact that, an RP-tree and FP-tree gather items in 
support descending order, FP-growth mining on an RP-tree 
is not directly applied. The reasons are as follows: (i) the 
support count at each node an RP tree does not sustain and 
the ts-lists is controlled at the tail nodes and (ii) periodic 
patterns do not gratify the anti-monotonic property. Another 
pattern growth-based bottom-up mining technique to mine 
the patterns is formulated. The basic operations in mining an 
RP-tree includes: (i) counting length-1  candidate items, (ii) 
constructing the prefix tree from each candidate pattern, and 
(iii) constructing the conditional tree from each prefix tree. 
The length-1 candidate items. I is given by the RP-list. 
Before the prefix-tree construction process, the following 
important property and lemma of an RP-tree are 
reconnoitered. 
Property 4. The occurrence information for all the nodes in 
the path (from the tail node to the root) at least 
in the transactions in its ts-list. 
Lemma 3. Let Z = {a1, a2, · · · , an} be a path in an RP tree 
where node an is the tail node carrying the ts- list of the path. 
If the ts-list is pushed-up to node an−1, then an−1 remains 

the occurrence information of the path Z′ = {a1, a2, · · · , 

an−1} for the same set of transactions in the ts-list without 
any loss. Proof. Based on Property 4, an maintains the 
occurrence information of path Z′ at least in the transactions 

in its ts-list. Therefore, the same ts-list at node an−1 

conserves the same transaction information for Z′ without 

any loss. 
 
 
 
 

https://www.openaccess.nl/en/open-publications


 
Discovering Periodic Patterns in Time Series from Twitter Data Set 

99 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

 The procedure to discern periodic patterns from RP-tree is 
displayed in Algorithm 4. The functioning of this algorithm 
is as follows.  
The prefix tree for each candidate item in the RP-list, starting 
from the  bottom most item, say I is to be made by 
proceeding. To build the prefix-tree for i, the prefix sub-
paths of nodes i are gathered in a tree-structure, PTi. As i is 
the bottom-most item in the RP-list, each node labeled i in 
the RP-tree must be a tail node. While building PTi, based on 
Property 4, the ts-listof every node of i to all items are 
deliberated  in the respective path explicitly in the temporary 
array (one  for each item). This temporary array assists the 
calculation of support and erec of each item in PTi (line 2 in 
Algorithm 4). If an item j in PTi has support ≥ minSup and 

erec ≥ minRec, then wemake 
its conditional tree and mine it recursively to learn the 
periodic patterns (lines 3 to 8 in Algorithm 4). Additionally, 
to allow the prefix-tree’s construction for the next item in the 

RP-list, based on Lemma 3, the ts-lists are pushed up to the 
respective parent nodes in the original RP-tree and in PTi as 
well. All nodes of i in the original RP-tree and i’s entry in 
the RP-list are erased thereafter (line 9 in Algorithm 4). 
Using Properties 1 and 2, the conditional tree CTi for PTi is 
constructed by removing all those items from PTi that have 

erec < minRec. If the deleted node is a tail node, its ts-list is 
pushed-up to its parent node. 
The contents of the temporary array for the bottom item j in 
the RP-list of CTi represent TSij (i.e., the set of all 
timestamps where items I and j have appeared together in the 
database). As a result, using Algorithm 5, the recurrence of 
“ij” is intended and it is determined whether “ij” is a periodic 

pattern. The same process of creating a prefix-tree and its 
corresponding conditional tree is repeated for further 
extensions of “ij”. The whole method of mining for each 
item is repeateduntilRP-list 
∅ . Consideritem 
 ‘f’, which is the last item in the RP-list in Figure 4(e). The 
prefix-tree for ‘f’, PTf , is built 
from the RP-tree, as shown in Figure 6(a). There are five 
items, ‘a, b, c, d’, and ‘e’ in PTf . Only item ‘e’ satisfies the 
condition Erec(e) ≥ minRec. Hence, the conditional tree CTf 

from PTf is constructed with only one item ‘e’, as displayed 

in 6(b). The ts-list of ‘e’ in CTf ’ produces TSef . The 

“recurrence” of ‘ef’ is measured using Algorithm 5. Since 

Rec(ef) ≥ minRec, ‘ef’ will be made as a periodic pattern. A 

similar process is repeated for the other items in the RP-list. 
Next, ‘f’ is pruned from the original RP-tree 

 

 
Figure 6: Finding RP-forms for suffix item ‘f’ in RP-tree: (a) prefix-tree for item ‘f’ (i.e., PTf ), 

 
(b) conditional tree for item ‘f’ (i.e., CTf ), and (c) RP-tree 
after pruning item ‘f’ and its ts-lists are pushed to its parent 
nodes, as shown in 6(c). All the above procedures are once 
again repeateduntil 
theRP-list ∅.The above bottom-up mining technique 
on a support descending RP -tree is efficient, because it 
reduces the search space radically as the mining 
processdevelops. 

V. EXPERIMENTALRESULTS 

The performance of RP growth is evaluated first in this 
section. Next, the usefulness of periodic patterns  is 
discussed by matching them against p-patterns and periodic 
frequent patterns. It should be noted that our periodic 
patterns are the generalization of periodic-frequent patterns, 
as the latter patterns reveal complete (rather than partial) 
cyclic repetitions in the entire database. There are only two 
Apriori-like algorithms, periodic-first and association first, to 
discern p-patterns. The periodic-first algorithm isused 
to notice p-patterns as it is comparatively faster than the 
association-first algorithm. The Periodic- Frequent pattern-

growth++ algorithm (PF-growth++) is used to determine 
periodic-frequent patterns. The performance of RP-growth 
against the periodic-first and PF-growth++ algorithms is not 
compared. The reason is that the other algorithms ascertain 
regular patterns; therefore, different measures are used to 
calculate the periodic interestingness of a form. 
Experimental setup 
The algorithms, RP-growth, periodic-first and PF-growth++, 
were written in GNU C++ and run with Ubuntu 14.4 on a 
2.66 GHz machine with 8 GB of memory. To the best of our 
knowledge, there are no publicly obtainable time-based 
sequences. And so, experiments are conducted using the 
following databases. • T10I4D100K database. This database 

is a synthetic transactional database produced using the 
procedure given by [23]. This database contains 100,000 
transactions and 941 distinct items. Shop-14 database. 
Clickstream data of seven online stores was provided by a 
Czech company in the ECML/PKDD 2005 Discovery 
challenge. The click stream data of product categories visited 
by the users in “Shop 14” was 

well-thought-out  
 
 



International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-9 Issue-4 November 2020 

 

100 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

(www.shop4.cz), and formed a transactional database with 
each transaction indicating the set of web pages visited by 
the people at a particular minute interval.  
The transactional database comprises 59,240 transactions 
(i.e., 41 days of page visits) and 138 distinct items (or 
productcategories). Twitter database. This database was 
formed by bearing in mind the top 1000 English hashtags 
appearing in 44 million tweets/re tweets from 1-May-2013 to 
31-August- 2013 (i.e., 123 days). The measure, term 
frequency inverse document frequency, is used to rank the 
hash tags. A minute starting from 00:00 hours of 1-May-
2013 to 24:00 hours of 31-August-2013 is demonstrated by 
the timestamp of each transaction. The resultant transactional 
database has 177,120 transactions with 1000 distinct items 
(or hashtags). More details on the collection of data process 
and the worth of this data in finding attention-grabbing 
events have beenpresented. To mine p-patterns and periodic 
patterns, all the above databases are converted into time-
based sequences using the timestamps of each transaction. 
As this conversion process is a rather simple and straight- 
forward approach, we do not discuss it for concision. 
Table 4 lists the different per, min PS and min Rec values 
used in above the databases. The periodic interval (i.e., per 
value) in both Shop-14 and Twitter databases varied from six 
hours to one day. Correspondingly, the min Rec in these 

databases varied from 1 to 3. In this paper, we do not present 
the results for min Rec values greater than 3 because very 
few periodic patterns were getting produced at min Rec > 3. 
The min PS values in T10I4D100K and Shop-14 databases 
varied from 0.1% to 0.3%. The reason for choosing low min 
PS values is to find out the forms comprising both common 
and uncommon items. In the Twitter database, we set min PS 
at 2%, 5% and 10%. The reason for choosing a 
comparatively high min PS values as compared with the 
other two databases is that very low min PS values are 
resulting in a combinatorial explosion producing too 
manypatterns. 
Generation of periodic forms 
Table 5 lists the numbers of periodic patterns discovered in 
T10I4D100K, Shop-14 and Twitter databases at different 
per, minPS and minRec values. The partial results of Table 5 
are shown in Figure 7. The following interpretations can be 
drawn from this figure: 
• At a stable per and minRec, the increase in minPS can 
decrease the number of periodic patterns. The purpose is that 
many forms were unsuccessful while appearing periodically 
for longer timeperiods. 
Table 5: Number of periodic patterns generated at different 
per, minPS and minRec threshold values Dataset minPS 
Number of periodic patterns 

 
Figure 7: Periodic patterns discovered in Twitter data 

• At a fixed min PS and per, the increase in min Rec can 
decrease the number of periodic patterns. This is for the 
reason that many patterns failed to fulfill the increased min 
Recvalues. 
• At a fixed min PS, the upsurge in per can have different 
impact on the generation of periodic patterns for the values 
min Rec = 1 and min Rec > 1. At min Rec = 1, increase in per 
can increase thenumber 
of periodic patterns. Because of the very reason that the inter 
arrival times of the patterns that were considered as aperiodic 
at low per values were considered as periodic with the 
increase in the per value. For minRec > 1, increase in per can 
either increase or decrease the number of periodic  patterns.  
The reason for decrease is due to the unification of exciting 
periodic-intervals discovered at low pervalues. 
Table 6 lists some of the periodic forms discovered from the 
Twitter database at per = 360, minPS = 2% and min Rec = 1. 

Figures 8 (a) and (b) show the frequencies of the terms 
present in patterns {yyc, uttarakhand} and {nuclear, hibaku} 
on a daily basis. It can be observed that “uttarakhand” is a 

relatively rare term as compared with other terms, and our 
model has meritoriously revealed the knowledge pertaining 
to this term. Another interesting observation from Table 5 is 
that even at low min PS  values, our ideal has generated only 
a limited number of periodic patterns in each database. 
Thisobviously displays that the knowledge pertaining to rare 
terms can be discovered by our model without producing too 
many uninteresting patterns. In other words, our model is 
tolerant of the “rare item problem”. 
Performance of RP-growth 
Table 7 lists the runtime required 
using RP-growth to discover 
periodic patterns in 
T10I4D100K, Shop- 

https://www.openaccess.nl/en/open-publications


 
Discovering Periodic Patterns in Time Series from Twitter Data Set 

101 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

 
Figure 8: Frequency of hashtags at different days in 

database. Date is of form ‘dd-mm’. Year of this date is 

2013 
Twitter databases. The time taken to transform the time-
based sequence into a transactional database and mining of 
periodic patterns is involved in the runtime. 
Figure 9 illustrations the runtime required by RP-growth 

while mining the periodic patterns in Twitter database. The 
deviations in the per, minPS and minRec inception values 
displays an akin effect  on runtime ingesting as in the 
generation of periodic patterns. The complete set of periodic 
patterns at a equitable runtime even at low minPS thresholds 
was discovered by the proposedalgorithm. 
Comparison of p-patterns, periodic patterns and 
periodic-frequentpatterns 
P-patterns, periodic patterns and periodic frequent patterns at 
different per and minPS values are compared. For brevity, the 
results discovered when period is set to 1 day, i.e., per = 1440 
is presented.  The minSup and minPS values are set to 0.1% 
and 2% respectively for Shop-14 and Twitterdatabases. 
The p-pattern mining requires another parameter known as 
window length (w). We set w = 1 for our experiment. 

Table 6: Some of the interesting periodic patterns discovered in Twitter database 

 
 

 
 
The numbers of periodic-frequent patterns, periodic patterns 
and p-patterns is listed in Table 8 and it is discovered in the 
Shop- 14 and Twitter databases. The column labeled ‘II’ in 

this table refers to the length of the longest pattern 
discovered in each of these databases. The following 
observations can be drawn from this table. 
First, the total numbers of periodic-frequent patterns revealed 
in both databases were relatively less than the number of 
periodic patterns and p-patterns. The reason is that the severe 
restraint that a frequent pattern has to display complete 
cyclic repetitions throughout the data has failed to identify 
many interesting partial periodically appearingpatterns. 
In addition, this strict constraint also resulted in finding the 
very short periodic-frequent patterns (see columns labeled 
‘II’ in Table 8). This happens because longer patterns 

generally fail to exhibit complete cyclic repetitions 
throughout the data. Setting a high period verge value can 
enable a user to determine long periodic-frequent patterns. 
On the contrary, this high period can result in ascertaining 
occasionally look as if patterns as periodic-frequent patterns. 
Accordingly, it is essential to ease this strict restriction 

without changing the period threshold value. As our model 
enables a user to relax this strict constraint, periodic patterns 
have been found more interesting than the periodic-frequent 
patterns for a given per threshold. 

 
Second, the total number of p-patterns discovered in both 
databases was much higher than the periodic patterns and 
periodic-frequent forms.  
 
 
 
 



International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-9 Issue-4 November 2020 

 

102 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  

Retrieval Number: 100.1/ijrte.A2014059120 
DOI:10.35940/ijrte.A2014.119420 
Journal Website: www.ijrte.org 
 

It is because of the usage of a low minSup has flattened Ma 
and Hellerstein’s model to discover not only all our periodic 
patterns as p-patterns, but also resulted in a combinatorial 
explosion of frequently appearing items fabricating too many 
p-patterns. Most importantly, many of the p-patterns 
discovered at low minSup were uninteresting to the users. 
The reason is that frequent 
items were merging with one another in all possible ways 
and generating p-patterns by nourishing a low minSup value. 
On the contrary, our model has reduced the combinatorial 
explosion of frequent items by assessing their interestingness 
with respect to their number of consecutive periodic 
appearances 
in a portion of data. 

VI. CONCLUSIONS ANDFUTUREWORK 

A new-fangled class of fractional periodic patterns called 
periodic patterns was introduced and it also discussed the 
effectiveness of these patterns in various real-world 
applications. A model for noticing such patterns was also 
proposed. The patterns discovered with the anticipated 
model do not please the anti- monotonic property. 
Consequently, a novel clipping procedure was proposed to 
lessen the computational cost of finding these patterns. A 
pattern-growth algorithm was also projected to discover the 
periodic patterns commendably. Investigational results 
suggest that the model is tolerant to the “rare item 
problem” and that the algorithm is well-organized. The 
efficacy of the periodic patterns was discussed by comparing 
them against the periodic-frequent and p-patterns. In our 
current study, we did not considered noisy data and the 
phase-shifts of the items within the data. 

 
For future work, methods for handling these two Scenarios 
will be handled. Another interesting future work will be out 
spreading our model to increase the performance of a 
relationship rule-based recommender system. 

REFERENCES 

1. R. Uday Kiran, J.N. Venkatesh, Masashi Toyoda, Masaru 
Kitsuregawa, P. Krishna Reddy. "Discovering  artial periodic-frequent 
patterns in a transactional database" , Journal of  Systems and 
Software, 2017 

2. "Transactions on Large-Scale Data- and Knowledge-Centered Systems 
XXXVIII" , Springer Science and Business Media LLC, 2018 

3. R. Uday Kiran, Haichuan Shang, Masashi Toyoda, Masaru 
Kitsuregawa. "Discovering Partial Periodic Itemsets in Temporal 
Databases" , Proceedings of the 29th International Conference on 
Scientific and 

4. Statistical Database Management - SSDBM '17, 2017 
5. "Advances in Knowledge Discovery and Data Mining" , Springer 

Science and Business Media  LLC, 2017 
6. Syed Khairuzzaman Tanbeer. "Discovering Periodic-Frequent Patterns 

in Transactional Databases" Lecture Notes in Computer Science, 2009 

7. Shimpli Dhale, Sagar Badhiye. "Review on towards efficient mining 
of recurrent patterns in time series data" , 2017 International 
Conference on Innovative Mechanisms for Industry Applications 
(ICIMIA), 2017 

AUTHORS PROFILE 

 
Mrs. D.Elavarasi, Assistant Professor, Department 
of Computer Science and Engineering, Mount Zion 
College of Engineering and Technology. I am 
having 13+ years of teaching experience. My area 
of interest is Data Mining. My keen interest in 
research focus on social media mining. 

https://www.openaccess.nl/en/open-publications

