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Executive Summary 

 

This Deliverable called “Multi sensors data fusion and Object detection algorithms for in-disaster 
scene situation awareness” is the result of the Task 3.4 of Search&Rescue Project where the design 

and development of Obstacle Detection System (ODS) is described. 
 

In particular the following topic are introduced: the scope of a Robotic solution with an ODS onboard, 

the importance of the ODS within the S&R Project and the specific advantages to have a multi sensor 
data fusion algorithm. 

 
Then the System Overview is presented treating the related references, the Machine learning, AI, the 

Processing Unit, the Implementation notes and finally their integration in the selected S&R rescue 
Robot. 

 

In the following chapters the main topics are described: the architecture of Obstacle Detection 
System with smart sensors, special synchronisation and depth estimation; the implementation of 

Obstacle Detection Algorithms and finally the Fusion and Tracking operations. 
 

At the end of the deliverable there are references to the Robot System Integration (with recall to the 

D5.4) and the related Verification and Validation of the System. 
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1 Introduction  

 

1.1 Scope  

Robotic solutions that are properly sized with suitable sensors, modularised mechanical structures, 

semi-autonomous navigations systems that are well adapted to the conditions of the field can improve 

the safety and the security of personnel as well as their work efficiency and flexibility. 

With its feet on the ground, the semi-automotive vehicles are experiencing their own industrial 

revolution, increasingly closer to aerospace technology. The race of car manufacturers and 

technological firms to take advantage of technology without a driver is a wake-up call for the first 

responders’ industry. A semi-autonomous vehicle for first responders will be able to do three main 

things: First, you must know where it is. Secondly, it must be able to identify what is in the environment 

around. And finally, it must be able to make decisions about whether it moves or not. Sensors play a 

fundamental role in these matters. S&R engineering teams have worked hard together to identify the 

type of sensors that work best for this kind of applications. 

The optical sensors and cameras are already the trend in autonomous vehicles like cars or trams. 

Moreover the Laser Imaging Detection and Ranging (LIDAR), for example, uses lasers to generate 

precise images in 3D. The work of the S&R partners have been to focus on the mechanisms of sensor 

fusion. These will allow the robotic vehicles to draw a clear image of the surroundings, combining data 

from several sensors. 

The integration between Robot, all sensors, and others devices is detailed in the Deliverable D5.4 

“Testing of RESCUE MIMS on-board robotic platforms and drones” while the purpose of this document 

is to describe the Object Detection System (ODS) and its main functionalities with respect to the Search 

and Rescue project. The system is introduced in section 2. In section 3, an overview of the system 

architecture is described, and technologies used for object detection and sensor fusion are described 

in sections 4 and 5. Finally, the test environment will be described in section 6. 
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1.2 The importance of Obstacle Detection System (ODS) within the 

S&R Project 

Teleoperated robots has being successfully deployed in many rescue operations in urban environments 

with collapsed buildings and other structures [13]. From the after-action reports analysis, one of the 

main areas of improvement is considered the enhancement of situation awareness of the robots [12]. 

On this basis the obstacle detection system is developed from THALIT. The teleoperated or semi-

autonomous robots require a system for detecting moving objects as humans, vehicles and rescue dogs 

in the field. The system can support the operator or be used for obstacle avoidance during path planning 

from the robot. The ODS is taking the full advantage of all the available robot sensors in order to 

estimate with high confidence the object position. The obstacle detection system is also tracking the 

moving objects and can further predict their future position, avoiding interfering with their motion. With 

the obstacle avoidance system, the robots can be safely used in the field and support the rescue units 

or move in areas dangerous for humans.  

1.3 Advantages of multi sensor data fusion  

Multi-sensors data fusion is used by the Object Detection System (ODS) to aggregate information 

coming from different sensors. The fusion is accomplished as a result of a Sensor Fusion Algorithm 

(SFA) which is executed after the object detection stage. For each type of input sensor, a detection 

model is implemented and used. The input sensors used in Search&Rescue are the following: 

• LiDAR sensor, for which a clustering algorithm is implemented to detect objects; 

• Stereo camera, for which a Convolutional Neural Network is used to detect objects. 

The object detection task is further explained in chapter 4. 

Once multiple objects are detected, the measures are aggregated and tracked. This is done with 

association algorithms (Global Nearest Neighbor) and tracking algorithms (Kalman filters). The Sensor 

Fusion task is further explained in chapter 5. 

Due to the Sensor Fusion Algorithm, more robust measures can be achieved, by employing filtering 

approaches. Moreover, the use of a sensor fusion algorithm allows the robot to continue its task even 

in case of failure of a sensor (degraded mode). 
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2 System overview 

2.1 Reference system 

The Obstacle Detection System is a prototype developed within the T3.4. The main objectives are the 

following: 

• Detect and track obstacles, fusing information coming from different technologies of sensors; 

• Notify detected objects to the robot. The robot will use this notification to stop itself in case of 

a potential collision; 

• Make the robot’s pilot aware of the surrounding environment and notify him/her of obstacles 

detected; 

• Cover different scenarios despite weather conditions and unavailable sensors. 

Consequently, ODS main functions are: 

• Acquire sensors (LiDAR and Camera) raw data; 

• Filter and process raw data at sensors outputs; 

• Detect obstacles in front of the robot, associating information from different sensors and 

tracking them. 

The ODS block diagram is represented in Figure 1. The ODS architecture is composed of different 

modules with different responsibilities. These modules are combined in a pipeline in which each output 

of a module is the input of another one. ODS includes two different sensors, whose data will be fused 

together in order to improve obstacles detection probability. Moreover, the use of multiple sensors 

allows to improve the detection in different environments in which certain sensors perform better than 

the others. As an example, in nightly scenarios, a LiDAR sensor can be used to detect objects with more 

accuracy with respect to a non-infrared camera. 

 

Figure 1: ODS block diagram 

 

The ODS software runs on a dedicated NVIDIA Jetson AGX Xavier board, which is presented in section 

2.3. Implementation notes for ODS modules are presented in section 2.4. In-depth analysis of ODS 

architecture is presented in Chapter 3. 

 

2.2 Object detection 

The object detection task allows to identify objects from the raw data coming from different sensors 

(LiDAR, camera). The data is represented in the same reference system, using the spatial 
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synchronization module. The algorithms used in the object detection task depend on the input data. In 

particular, objects are detected on input images through the use of a Convolutional Neural Network, 

which will be further explained in chapter 4.1. Objects are detected in LiDAR’s point cloud input through 

the use of a clustering algorithm, which will be further explained in chapter 4.2.  

2.2.1 Machine learning and AI 

Machine learning approaches and, in particular, deep neural networks, will be deeply used by the Object 

Detection System to detect objects from the input data. Machine learning algorithms are based on the 

training task: a model is able to perform certain operations by using training data to learn how to 

approximate a certain function. Machine learning approaches are further described in chapter 4.1. 

2.3 Processing unit 

ODS runs on the NVIDIA Jetson AGX Xavier board with a Linux-based OS installed. This board features: 

• CPU: 8-core ARM v8.2 (x64) @2.26 GHz, 8MB L2 + 4MB L3; 

• GPU: 512-core Volta GPU @1.37 GHz with Tensor Cores; 

• RAM: 32GB 256-Bit LPDDR4x (137 Gbps). 

 

 

Figure 2: Nvidia Jetson AGX Xavier board 

 

The Obstacle Detection Systems processes will be divided between the CPU and the GPU of the Xavier 

board, as showed in Figure 1, thanks to its 512-core Volta GPU. 

The ODS will be installed on the robot through the use of a self-contained box, which will be now 

described. The ODS prototype is composed by the Peli 1400EU Protector Case including the Xavier 

board and a DC-DC convert from 24 V to 12 V. The dimensions of the ODS HW prototype are presented 

in Figure 3, together with the three interfaces. Reading Figure 3 from left to right, the following 

connectors are illustrated: 

 

• RJ45 interface, for the Ethernet connection between the Xavier board and the robot; 
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• Power supply interface, which is a circular 3 pins connector; 

• Green LED, which is turned on when the ODS HW prototype is fed 

 

 

Figure 3: ODS Design of the interfaces of the HW prototype 

 

2.4 Implementation notes 

The Obstacle Detection System is based on the Robot Operating System (ROS) framework, which allows 

easy inter-process communication. ROS allows for modelling each functional block as a separate 

application which can communicate with the other modules using ROS messages. 

The ODS system will be implemented in the aforementioned board in which ROS is installed. From the 

ROS ecosystem we borrow the libraries that allow different processes (applications) to exchange 

messages efficiently, as well as tools to record and play back a session of messages exchange. This 

technology is particularly useful when dealing with many different sensors, as it allows decoupling the 

main application from the software modules that link to the sensors and, in principle, to abstract from 

the technical details of a particular sensor, facilitating the possibility of changing the set of sensors in 

use. 

Docker containers are used to implement separated and containerised microservices: each module of 

the pipeline runs in a Docker container and can communicate with the other modules via ROS messages. 

Containers are orchestrated using Docker Compose: using composition files written in YAML format, 

services that correspond to ODS modules can be defined. These services can easily be enabled/disabled 

to choose which module should be started and which not. Due to Docker containers, each module runs 

on a container generated by a predefined Docker image that can easily be managed to include the 

needed packages. This allows for easy isolation and prototyping for the ODS modules. 
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2.5 Integration of the Sensor Fusion Algorithm in the DFKI robot 

The Obstacle Detection System will be integrated in the DFKI robot in order to detect objects from raw 

data coming from the robot’s sensors.  

In order to do that, the ODS will receive input data from: 

• Stereo cameras: input data are the video frames captured from the camera sensors 

• LiDAR sensor: input data are the 3D point cloud captured from the sensor 

Objects detected by the system will be notified to the robot and to the driver Operator. 

 

 

Figure 4: Data Connection Block Diagram 

 

The Obstacle Detection System can provide the information regarding obstacles, such as bounding 

boxes position and objects speed to the robot using ROS messages. More information about the output 

format will be presented in Chapter 3.1. Moreover, the pilot operator can be guided in its operations by 

a visual support composed of JPEG images sent from the ODS. Raw images are collected from the 

cameras and the bounding boxes of camera-detected object classes will be drawn on them. These 

bounding boxes are enriched with the information coming from LiDAR sensor (position and speed data) 

and the resulting images are sent by the system to the operator’s console. 
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Figure 5: ODS integration for Search&Rescue 
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3 Obstacle Detection system architecture 

3.1 Overview 

The block diagram of the ODS system architecture, which will be implemented in the AGX Xavier 

platform, is represented in Figure 6. It is possible to distinguish seven different macro blocks: 

 

• Smart sensors; 

• Spatial synchronization; 

• Object detection; 

• Depth estimation; 

• Data association; 

• Tracking; 

• Decision 

 

Figure 6: Block diagram of the ODS architecture 

 

Inputs of the system are smart sensors: each block is composed by the hardware device and a sensor 

driver that is in charge of receiving the data in form of ROS messages and forwarding it to the following 

blocks. 

Output of sensors can be processed by a spatial synchronization module, which is responsible for 

applying roto-translations to input data or to represent the information in the same reference systems. 

More details are presented in section 3.3. 

Then objects are detected on sensors raw data. So: 

• Convolutional Neural Network (CNN) will run on video frames, enclosing objects detected by 

the model in Bounding Boxes (BBs). In particular, the YOLOv4 network is used in this context, 

which is presented in chapter 4.1. 

• Clustering algorithm will be implemented, to aggregate LiDAR 3D point clouds. This algorithm 

is presented in chapter 4.2. 

Later, the depth estimation module represents the information (like central point coordinates, width, 

and length) on the robot Cartesian coordinate reference system. At the end of this process, objects 

detected by LiDAR and camera are represented in the same reference system and they can be 

compared.  

The Sensor Fusion Algorithm is a fundamental and crucial stage of the ODS. This is composed of two 

steps: data association and tracking. They analyse at one time step the given data and decide on the 

most likely measurement-to-track associations. Objects detected coming from different sensors are 
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associated using the Global Nearest Neighbor (GNN) algorithm. A limited number of the associated 

objects can be tracked with Linear Kalman Filters (LKFs) or Unscented Kalman Filters (UKFs). 

The following figure shows how objects coming from different sensors (LiDAR and camera) are 

associated and tracked from the Sensor Fusion Algorithm in a 2/3 configuration. 

 

Figure 7: Data association & tracking of camera and LiDAR detected objects 

 

In particular, the figure shows the steps accomplished by the system at different times: 

1. Objects are detected from LiDAR and camera acquired data. These detections are sent to the 

Sensor Merger module; 

2. LiDAR detected objects are received and processed by the module. The first step is the Data 

Association, in which the objects coming from different sensors are associated with an 

association algorithm (Global Nearest Neighbor); 

3. The next step is the tracking of the associated objects. The tracking step is accomplished with 

the use of a Kalman Filter for each object. Objects are grouped in two categories: Tentative 

Tracks and Confirmed Tracks. This is done with the K/N logic: once enough measures are 

received for an object, the track become Confirmed. Since only a measure has been received 

for each object, each track is in Tentative state; 

4. Camera detected objects are received and processed by the modules and the two steps 

(associations and tracking) are executed again. Thus, the camera measures are associated with 

the LiDAR measures to determine objects correspondence. Then Kalman filters uses the 

association data to update their state. In this case, two objects become Confirmed, since two 

measures out of three are received. The third object is still in Tentative state since no new 

measures has been associated with the previously received one. 

 

In-depth analysis of SFA will be presented in chapter 5. 

The output information of the ODS for the robot will be the following: 

• Reference time of detected objects; 
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• Objects position (x, y, z) ; 

• Objects speed; 

• Measure of uncertainty of the given data; 

• Objects class, which belongs to the set <Pedestrian, Car, Dogs>. 

Moreover, the system will output JPEG images by aggregating raw images from stereo camera, 

bounding boxes detected from CNN and additional information, such as speed, coming from LiDAR data 

processing. This data will be sent to the operator’s console to assist the operator in his/her tasks. 

 

3.2 Smart sensors 

3.2.1 Camera input 

The cameras used for this integration form a stereo setup. Each camera will provide to the system the 

captured frames as ROS messages (Image) in the topics /stereo/cam_left/image_raw and 

/stereo/cam_right/image_raw, which contains the raw data encoded as RGB 8 bits. Moreover, size of 

the frames (width, height) is also provided in this message. Once a frame is received, it is forwarded 

to the ODS pipeline for further processing. 

3.2.2 LiDAR input 

The LiDAR used for this integration is a Velodyne VLP16. LiDAR data are 3D point clouds expressed in 

the sensor cartesian reference system and divided on 16 detection layers. The data is received by the 

ODS as ROS message (PointCloud2) in the topic /velodyne/velodyne_points with a rate of 10Hz. The 

message contains, for each point, the following information: 

• Cartesian coordinates (x, y, z) 

• Intensity of the measurement 

• Layer of detection 

Once received, this data is forwarded to the pipeline as a ROS message. 

3.3 Spatial synchronization 

Raw data at the output of each smart sensor needs to be referred to the same reference system. The 

spatial synchronization is the module in charge of synchronizing in space the data collected from the 

sensors. The advantage of introducing spatial synchronization is to increase the probability of detection 

of the system.  

To do this, the dedicated module applies coordinate transformation and roto-translations to compensate 

the offset of the various sensors’ reference systems. Similar compensations are also needed to correct 

the orientation errors. These corrections must be tuned separately for each sensor and are stored in 

the ROS server. 

Moreover, this module is capable of filtering the data before transmitting them to the downstream 

modules, according to different criteria:  

• by defining a Region-of-Interest (ROI): discards everything that is outside of it; 

• by defining filters on the radar metadata in order to discard unwanted radar tracks (e.g., invalid 

states, artifacts, etc.) 
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In particular, roto-translations are applied to LIDAR raw data in order to represent the detected points 

in the robot reference system. 

The Figure 8 represents the location of the sensors with respect to the robot reference system. In 

particular, the following distances will be used by the Spatial Synchronization module: 

 

• a = 0.08m 

• b = 0.023m 

• c = 0.08m 

• d = 0.16m 

• e = 0.658m 

 

 

Figure 8: Seekur robot’s sensors displacement 
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3.4 Depth estimation 

Depth estimation exploiting multi-view geometry [1] is a technique used to estimate the depth of certain 

objects on a scene by leveraging on stereo images. Stereo images are a couple of synchronized images 

acquired by a stereoscopic camera setup, for which calibration parameters are known. 

The synchronized couple of images can be used to evaluate a depth map: an image that contains 

distance information about the object in the scene. Using this technique, the depth of the object 

detected by the Convolutional Neural Network can be evaluated. This is done by using both the images 

that come from the stereo camera: first both frames are fed to the CNN model, then detected objects 

are matched between the two frames and finally depth estimation is used to find the depth of objects 

in matched pairs. 

To evaluate the 3D position of an object, cameras must be modelled using the pinhole camera model, 

which approximates the behaviour of how the sensor represents a real-world point on the image plane. 

A camera can be mathematically described using this model, which is represented in the following 

equation: 

 

Figure 9: Camera Pinhole Model 

 

In this equation, 𝐴 (sometimes also named 𝐾 in different notations) is the camera intrinsic matrix. 𝑅 

and 𝑇 are, respectively, the rotation and the translation between the world coordinate system and the 

camera coordinate system. 𝑅 and 𝑇 together form the so-called extrinsic matrix. 𝑃𝑊 is the world 3D 

point, 𝑠 is the scale factor and 𝑝 is the point represented in the image plane. 

Intrinsic and extrinsic parameters can be obtained for a camera using a calibration procedure [14]. This 

approach consists in the estimations of intrinsic/extrinsic properties of the camera by leveraging on 

camera's multiple captures of a calibration pattern of a known size. 

In order to retrieve the position information for a real-world point, various techniques have been 

developed over the years. The most common method to estimate the 3D position of a point consists in 

using a stereo camera setup. By using two sensors, a two-view of the scene can be obtained. As a 

result of this additional view, a certain point on the scene can be found on both image planes. This 

allows, under certain conditions, to easily estimate the 3D position by leveraging on stereo disparity. 

In particular, the disparity estimation in stereo vision relies on the epipolar geometry, which is a 

particular type of geometry that describes the relationships between the 3D points and their projections 

in the two image planes, which are related by constraints. These constraints allow to restrict the search 

space for points in an image plane to lines in the other image plane (epipolar lines).  

The relationship of the points in the two views can be described using the Fundamental matrix, which 

describes the point correspondence in terms of epipolar geometry, and the Essential matrix, which 

describes this correspondence through the use of calibration parameters. 

In order to estimate these constraints between cameras and their scenes, the relationships between 

the two stereo heads must be known. To do this, a stereo calibration procedure is needed to obtain 

the transformation that allows to operate a change of basis between the first and the second camera, 

and vice versa, and so, to apply epipolar geometry on the two scenes. Once these values are obtained, 
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rectification of images can be accomplished. Stereo rectification [15] allows the two image planes to 

lay on the same plane and so, to make all the epipolar lines parallel. This operation led to a great 

simplification of the search procedure, allowing for dense depth estimation. When the same point is 

found on the two image planes, the 3D point coordinates can be reconstructed through triangulation. 

The operations needed to perform depth estimations are modularized and applied in the context of the 

ODS architecture to obtain 3D coordinates of objects detected through the use of the YOLOv4 model 

and by feeding these measures to the Sensor Fusion Algorithm. 

 

 

 

Figure 10: Depth Estimation Pipeline 

 

In particular, the left and right camera’s frames are received by a module that is in charge to separately 

undistort and rectify the left and right frames using the camera parameters previously obtained through 

calibration. The resulting frames are then merged and fed to the YOLOv4 module, which detects the 

objects in the merged images. The merged image and the bounding boxes are sent to the 

StereoDepthEstimator module, which is responsible of: 

• associating left and right bounding boxes: each left frame’s bounding box must be associated 

with one right frame’s bounding box; 

• detecting keypoints and extracting descriptors [16][17][18] in each bounding box; 

• matching descriptors between associated bounding boxes; 

• triangulate matched keypoints to estimate 3D coordinates of objects contained in bounding 

boxes; 

These points in 3D coordinates are in one of the camera reference systems, therefore, to be able to 

use them along with 3D objects coming from the other sensors, they need to be referenced to the 

robot reference system. In order to do that, a series of affine transformations (rotations and 

translations) are applied to these points. Then, these objects are sent to the Sensor Fusion Algorithm 

which will use them as input measures to perform association and tracking operations. 
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4 Object detection algorithms 

4.1 Object detection on video frames with CNNs 

The object detection algorithm for S&R is an implementation of the single stage YoloV4 CNN algorithm 

[5]. The purpose of the algorithm implemented by the YOLO models [2] [3] [4] [5] is to perform real 

time detection of object instances appearing on the video frames from the camera sensors. Once the 

objects are detected into a video their detected properties are sent downstream through the processing 

pipeline. Downstream components refine the detection thanks to information from other sensors, 

filtering and tracking algorithms as described in Chapter 5. 

The information provided by the YoloV4 algorithm about each object in each frame is composed of: 

• An object bounding box that describes the position of the object in terms of the smallest 

rectangle on the image (x1, y1), (x2, y2) containing every pixel belonging to the object; 

• An object class as an enumerated value (pedestrian, car, dog); 

• A confidence value about the presence of an instance of an object of the detected class into 

the detected bounding box. 

Said information is computed by means of a convolutional (artificial) neural network.  

Artificial Neural Networks (ANNs) are a computation model inspired by the human brain. In ANNs the 

core computing units are called neurons. One simple and very used neuron type, the perceptron, 

computes an output vector given input vector by means of the application of a linear transformation. 

Typically, such operation is composed with a non-linear (activation) function. The term perceptron was 

originally used for just the linear neurons, but it is now common to use it also for nonlinear ones. The 

reason for the composition with a nonlinear function goes beyond the purpose of this text. In brief the 

nonlinearity is necessary to allow interconnected layers of neurons (feed forward neural networks, or 

multi-layer perceptrons, MLPs) to have a very important property: an MLP is a universal function 

approximator (Cybenko, in 1989, demonstrated it for sigmoid activation functions [6]). MLPs are 

theoretically able to approximate any function f, given enough computing power and a well-defined 

and big enough set of pairs of input vectors and corresponding output vectors computed using the f 

function itself. An input sample for which the output of the f function is known is called a labelled 

example. The parameters of the linear function are called weights and are “learned by example”, i.e. 

specific “backpropagation” algorithms are used to fit the weights to minimize the average difference 

over the examples between the real f function output and the MLP output. Such a theoretical “universal 

function approximation” property of MLPs is in practice hindered by many problems which make their 

use impossible or very impractical in many contexts. The main reasons are the huge computing time 

necessary, the difficulty of obtaining well defined datasets and other problems mainly related to the 

“vanishing gradient” problem. 

Object detection on images is one of the contexts where traditional MLPs have never been able to 

produce satisfactory results. For this reason, direct use of MLPs on images has been abandoned in 

favour of new techniques that allow to successfully train “deeper” networks, i.e. networks with many 

more layers, thus the name DNN, deep neural networks. DNNs can more efficiently cope with the 

specificities of the image-understanding related problems. DNNs are still using the same principles and 

similar algorithms to those used in MLPs but, like many modern neural networks, they can literally 

“bypass” the vanishing gradient problem thanks to very efficient techniques that allow building networks 
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with thousands of layers, compared with MLPs which typically are composed of just two layers. Indeed, 

theoretical results show that an MLP, to be able to approximate any function, just needs two layers. In 

practice, by building biologically inspired networks, practitioners have discovered that deeper networks 

can build intermediate representations in inner layers. The intermediate representations allow more 

structured “artificial reasoning” and thus provide better results, by far, compared to previous 

approaches. The DCNNs (deep convolutional neural networks) family of networks is special because it 

employs convolutional layers which have been a breakthrough for the adoption of neural networks on 

visual tasks. A 2D convolutional layer is a layer that applies a square convolution operation (called a 

convolution kernel) to its input. The convolution operation is performed by means of adapting a 

perceptron neuron as the 2D kernel: the 1D perceptron’s output vector is interpreted as the 

concatenation of all the output columns of the convolution. The output of the convolution on the input 

2D array is an either smaller or padded 2D array where each element is the result of the convolution 

of one rectangular sub-regions of the input with the kernel. It is important to note that the same input 

array element influences many “nearby” output array elements. Which output elements are influenced 

depends on the chosen “kernel size”, but the magnitude of such influence is learned. Thanks to this 

mechanism, the presence of many consecutive convolutional layers generates the so-called inner 

neurons “receptive fields”, i.e. each internal neuron focuses only on learning from its input region. 

Moreover, inner neurons process information already elaborated/simplified/abstracted by neurons in 

previous layers. In this way the last convolutional layers, the ones close to the final output of the 

network, are able to generate outputs which have large receptive fields and can learn very high level 

or abstract concepts. 

 

Figure 10: An example of a 2D convolution, X denotes the convolution parameters 

 

The design from scratch of a new DNN network architecture is a very complex task specially because 

of the vast amount of design choices available. A common and very successful approach is to build new 

networks reusing or repurposing parts of successful networks. Moreover, it is possible to change just a 

little part of the architecture to specially fit the model to a new task. This is the approach followed by 

S&R: S&R is using a repurposed and retrained YoloV4 model. 

The network architecture of the YoloV4 family of networks is described in the diagram below: 
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Figure 11: Two-stage and one-stage networks architectures 

 

As can be seen from the image above, different alternative implementations are possible. Our 

implementation is 162 layers deep and has been trained on the MS COCO dataset. The network final 

layers are modified to give better results on a smaller number of classes compared to the full set of 

COCO classes. In particular, YoloV4 is an excellent choice for embedded systems that need to provide 

results with small latency. 

In S&R implementation each video frame received from the camera is processed in a timeframe of 

approximately 30ms to 50ms and the generated output is sent a ROS message on the detected object 

ROS topic which spawns a list of detected objects data for every video frame. 

4.2 Object detection on LiDAR point cloud 

 

Figure 12: Obstacle detection pipeline 

 

Processing Pipeline 
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We designed a custom pipeline for obstacle detection by implementing a multi-layer occupancy grid 

mapping [7]. The first steps are similar to classical geometrical approaches, as shown in Figure 12, 

until we compute the 2D occupancy grid. The only difference will be the size of the cell, which is smaller 

(i.e., 0.05 m) to allow us to perform operations directly on the grid.   

The main differences are in the clustering. In a simpler pipeline, 2D bounding boxes can be retrieved 

directly from the grid, which are then used to extract a portion of the original PointCloud, and compute 

all the information on that one. In this scenario, since fitting a vertical plane on a single lidar layer is 

not feasible, we want to retrieve the heading from the 2D grid. To do so, after computing the connected 

components, we proceed to reconstruct a convex hull for each element. Then we differentiate two 

possible scenarios, displayed in Figure 13 

 

Figure 13: two possible scenarios of heading computation. Two sides of the obstacle are visible (left). 

Only one side is visible (right) 

 

If both dimensions of the convex hull are above a fixed threshold, it means the obstacle is not 

perpendicular with respect to the lidar, and therefore two sides are visible, Fig. 13 (left). In this case, 

the convex hull generally has a triangular shape, since only two sides of an obstacle are visible. 

Accordingly, we retrieve the three vertices of the triangle and infer from those the possible fourth 

vertex. From those four points, it is possible to calculate the heading of the obstacle. In particular, to 

filter noise, we compute the relative angle of each side and average it, with the assumption of a 

rectangular shape for the obstacle.   

If one size is under the threshold, we assume that the obstacle is parallel or perpendicular to the lidar, 

Fig. 13 (right). In this case, it is impossible to employ the described approach, and computing the 

heading based only on two points, which might be close together, would be excessively noisy. 

Therefore, we proceed to fit a line using the RANSAC algorithm on the occupancy grid points. The slope 

of this line is the heading of the obstacle. This solution is still noisier than computing the values on the 

two obstacle sides, but it allows us to retrieve the heading even when only one side of the obstacle is 

visible.   

To increase the accuracy, we still take the cropped area of the original PointCloud around this 2D 

bounding box, using the PointCloud point to compute the size and center of the box and a minimum 

height. Since some obstacles might be described by only one lidar plane, we are not able to return the 

exact height of the obstacle, but only the maximum value retrieved by the lidar.   
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In this pipeline, we assume that obstacles have a rectangular shape to compute the heading. Since this 

requirement is not satisfied by a pedestrian, we check the convex hull size before performing the 

heading computation. If both dimensions are under a fixed threshold and are more similar to a 

pedestrian than a vehicle, this computation is not performed. We still compute the 3D box using the 

information from the grid and the original PointCloud, but we will not provide a heading. 

 

Classification  

The output of the previously described pipeline is a list of 3D bounding boxes. The final step is, 

therefore, to assign a class to each box. Since the number of points describing an obstacle is extremely 

low, and a geometrical approach has been employed to perform the detection, a rule-based solution is 

also used to perform classification. In particular, each box is described by a set of features; length, 

width, and height. Then we defined a list of thresholds for four possible classes of obstacles; pedestrian, 

vehicle, building, and undefined. To assign a class, we analyze each bounding box size and compare it 

to the thresholds. Finally, the unknown type is employed to cover all the scenarios where the 

combination of the three-dimension does not match any of the other three possible classes. 
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5 Fusion and tracking 

The sensor merger module is the component that performs actual data fusion and tracking of detected 

targets. Each sensor transmits its data independently of others and according to its own data rate. 

Thus, each sensor’s scan of the environment arrives at this module asynchronously. Inside this module, 

different policies can be implemented, in order to change the way the fusion is carried out: 

• Complete asynchronous approach: each scan arrives as soon as it is available, and it is 

processed on its own. This approach is also known as completely serialized as all the inputs are 

serialized into a single input and processed on its own 

• Synchronous approach: scans from the different sensors are hold until they are all available (at 

least one scans from each sensor), so that they can be fused together, and the result can be 

used to feed the tracking bank 

Detections are compared to existing targets under tracking to perform data association via GNN 

(Hungarian algorithm). Associated detections are used to feed a KF-based tracking algorithm (UKF). 

 

5.1 Data association algorithms 

Global Nearest Neighbor (GNN) has been chosen as the method to select measurements to associate 

to a certain track. GNN is a sequential tracking method, so it processes in one step the set of candidate 

assignments and decides on the most likely measurement-to-track associations. 

To give this method more robustness we can add constrained extra information. For example, we can 

impose that only detections with the following features: 

• similar speed of the track; 

• same class of the track; 

• similar RCS of the track; 

• similar width of the track; 

are selected. A maximum likelihood estimation (MLE) function will be implemented to maximize the 

probability of detection. This is a method of estimating the parameters of a probability distribution by 

maximizing a likelihood function, so that under the assumed statistical model the observed data is most 

probable. 

GNN considers all possible measurement-to-track assignments within appropriate gating regions and 

generates the most likely assignment hypothesis by solving a 2D binary assignment problem. The 

assignment hypothesis is used to set irrevocable assignments that cannot be modified by future data. 

The GNN method consists of the following steps: 

• Predict the measurements and their covariances to estimate the validation gates. 

• Compute the cost for all possible measurement-to-track assignments within each gating region. 

• Formulate the 2D assignment problem and obtain a global optimal solution as the best 

assignment hypothesis. 

• Perform tracking by updating the state of each object and its covariance from the assignment 

result. 
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5.2 Object tracking 

The tracking block has two sub-modules: the track manager and the update/prediction track.  

• In the track manager the logic to manage a track is implemented. This logic is the K/N method, 

which can be implemented in disjoined time frames or using a sliding window, according to 

which N detections are evaluated. The K/N logic converts a Tentative track in a Confirmed track 

if it appears K times out of N. 

• The update/prediction track sub-block is composed of a list of UKF, one for each detected 

object. The number of tracked objects and consequently the number of implemented UKF will 

be optimized according to the maximum computational load of the Xavier platform, favouring 

the nearest objects to the robot. 

 

5.2.1 Kalman Filters 

 

The Kalman Filter (KF) [8] is an algorithm that provides estimates of some unknown variables given 

some of their observed measurements over time. It implements optimal predictive estimators, based 

on a set of mathematical equations which minimize the covariance of the estimated error, when certain 

assumed conditions are satisfied. The Kalman Filter can be used for linear problems under the 

assumption that Gaussian noise is added to the system. However, KF solutions are far from optimal in 

a non-linear system with non-Gaussian noise added. 

Extended Kalman Filter (EFK) [9] [10] has been developed over time in order to implement an optimal 

predictive estimator for non-linear systems with Gaussian noise. EFKs have the same structure of KFs, 

but the first uses Taylor expansions to linearize and approximate all the non-linear transformations. 

EFK relies on Jacobian matrices to substitute the linear transformations of the original Kalman Filter. 

Unscented Kalman Filter (UFK) [11] provides a further improvement to EFK by lowering the 

computational complexity avoiding the need to compute the Jacobian matrices and achieving better 

accuracy in many scenarios. The basis of the UKF is the unscented transformation, which is a method 

for approximating the moments of a non-linear random variable. Using this tool, the UKF approximates 

the probability density obtained from the non-linear transformation of such random variable. This is 

done by evaluating the non-linear function with a minimal set of carefully chosen sample points called 

sigma points. These sigma points are then propagated through the true non-linear system and allow 

estimation of the posterior mean and covariance that is accurate to the third order for any non-linearity. 

Although the EKF and UKF are computationally efficient, it is worth remembering that their accuracy is 

limited by the validity of the approximations necessary to arrive at closed-form expressions for the 

posterior probability density function. 

The Object Detection System can use the Linear Kalman Filter and the Unscented Kalman Filter to track 

objects. The type of filter to be used will be chosen after tests on the real environment. 
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6 Robot System Integration (refer to D5.4 “Testing of RESCUE 

MIMS on-board robotic platforms and drones”) 

 

6.1 Robot Functional requirements 

To provide first responders with crucial information of the environment in form of spatial maps, the 

robot needs a proper network interface as well as hardware interface to mount the necessary tools for 

the job. This includes in addition to ODS 

a) a 4G/WiFi router 

b) an additional voltage regulator to provide power to the ODS 

c) an ethernet hub to connect these components, so they can access the network independently 

as well as work as a unit for controlling the robot. 

The sensors of the robot need to provide the data to the Obstacle Detection System, which then 

provides obstacle information to the robot for semi-autonomous control as well as to the driver in the 

control room for manual control, in case the semi-autonomous system fails or does not lead to desired 

robot operation. 

In particular, the Robot will integrate the Obstacle Detection System in order to elaborate the output 

of the Detection SW and to decelerate/stop the movement, the ODS will provide information to the 

onboard Robot System by outputting fused obstacles position and velocity data in the robot reference 

system on a ROS topic. 
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7 Verification and Validation of the multi sensor data fusion 

algorithm in laboratory 

 

7.1 Test setup 

Tests for the Object Detection System can be grouped in two categories: 

• Tests on synthetic data to evaluate the performance of the sensor fusion algorithm; 

• Tests pre-built datasets provided by DFKI; 

• Tests on target to evaluate correctness of input and output data in the deploy environment. 

The tests on synthetic data will be executed on the host environment by simulating the objects’ positions 

for certain time steps. This methodology allows to assess the quantitative accuracy of the Sensor Fusion 

Algorithm; 

The tests on the pre-built datasets allow to validate the correctness of the system with respect to the 

input data. For these tests, ROS files are provided, which allows to test the input data handling and to 

qualitatively assess the precision of the ODS in the context provided by the bag file. Figure 14 shows 

two frames extracted by the provided videos, which show two objects in a possible context of operation. 

 

Figure 14: Contextual frames of provided videos 

The tests for the target environment will be executed on the target device. All Docker containers have 

to be switched on. Feeding the ODS HW prototype and connecting the Ethernet cable to the robot, it 

is possible to check if the defined ROS topics are published and their consistency. The contents of ROS 
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messages are under definition according to the developments of the ODS algorithms. These tests are 

aimed to prove the correctness of the pipeline implementation from a qualitative point of view: 

quantitative measurements cannot be obtained without the object’s ground truths. 

 

7.2 Test description 

• Synthetic tests: synthetic object positions will be fed to the system and the output of the Sensor 

Fusion Algorithm will be compared to simulation data to evaluate the performance of the 

algorithm. The Figure 14 the pipeline that is used to obtain quantitative results on synthetic 

data. 

The following errors and KPIs are defined to measure the accuracy of the Sensor Fusion 

Algorithm: 

Association errors: 

o False positive: output that does not describe an actual (annotated) target 

o False negative: output target that is missed by any hypothesis 

o KPI: Multi Object Tracking Accuracy (MOTA): tracker’s overall strength based on the 

sum of false positives ratio, false negatives ratio and mismatches ratio. 

Tracking errors: 

o Root mean square error: square root of the mean of the squared differences between 

original and estimated positions 

o KPI: Multi Object Tracking Precision (MOTP): average dissimilarity between all true 

positives and their corresponding ground truth targets. 

• Datasets tests: the ODS runs on the host environment and the provided bag files are played. 

• Target tests: the robot will have to be controlled using manual control and the semi-

autonomous exploration algorithm in an outdoor and indoor environment. The environment 

must contain obstacles (like pedestrians, cars and dogs), which the ODS can detect. 

 

 

Figure 15: Synthetic test pipeline 
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7.3 Test results 

• Synthetic tests: KPIs will be generated using the comparison of SFA output and simulation 

data; 

• Datasets tests: the ODS must correctly handle the dataset ROS topic and the message 

exchange. The system must detect and track objects with enough qualitative accuracy on the 

provided datasets. 

• Target tests: the main expectation is the detection of three types of elements during the Robot 

movement: Pedestrian, Cars and Dogs. The output of the ODS SW will be towards the Robot 

in order to hard stop the Robot operation moreover to show the camera images with the 

Detections to the Robot Driver. 
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8 Conclusion 

This document has presented the Object Detection System (ODS) developed for task 3.4. This system 

allows obstacle detection and tracking by fusing information coming from different sensors that are 

mounted on the robot (cameras and LiDAR). ODS overview has been given in chapter 2, by describing 

the features, the role within the overall system and the implementation notes. In chapter 3, the ODS 

architecture has been described by examining the module of its pipeline and its input/output data. 

Then, in chapter 4 and 5, the main technologies used by the system have been described. In particular, 

for the object detection task, CNN (camera) and clustering (LiDAR) methods have been presented in 

chapter 4. The data association and tracking task has been presented in chapter 5 by describing the 

main algorithm used (GNN and LKF/UKF). Finally, in chapter 6, the testing methodologies have been 

presented. Test methodologies can be grouped in two categories: synthetic tests to perform 

quantitative and qualitative analysis on simulated data, and tests on the real environment to prove the 

correctness of input/output data with qualitative measurements. 

The Object Detection System has been described in its key features. Thanks to them, the system can 

accomplish the objectives described in chapter 1.2. 
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