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Executive Summary 

 

This deliverable presents the overall development status of the deep learning analytics applied on UAV 

imagery (both visual and thermal) on M18 of the project’s lifetime. Within the duration of T3.3, several 

DL pipelines were designed, implemented, and tested on the task of object detection with humans as 

the main object of interest. Different variants of the pipelines were investigated including various 

powerful State-of-the-Art object detection network including Yolov4, scaled-Yolov4, Yolov5, Detectron2 

and FasterRCNN. In addition, a novel hybrid inference mechanism was proposed, developed, and tested 

to cope with the identified challenges especially with respect to the effect of the UAV flight altitude. 

The proposed inference mechanism combines the output of altitude-dependent local deep learning 

increasing the generalisation capabilities of the OD system. An extensive experiment set-up was 

designed to identify the best performing deep learning networks and demonstrate the detection 

performance of the proposed object detection pipeline utilizing both spectral and thermal information.  
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1 Introduction  

1.1 Objectives 

The scope of this report is to demonstrate the performance of the developed Deep Learning (DL) 

algorithms in detecting objects of interest (humans) in search and rescue operations. Several DL 

pipelines have been designed, implemented, and tested integrating recent and powerful State-of-the-

Art object detection (OD) networks. This report demonstrates the effectiveness of the proposed 

pipelines via thorough comparative experimentation that involves numerous data management, pre-

processing and OD learning algorithms.  

The ultimate objectives of this report are to: 

i) Identify human presence using aerial UAV images and advanced deep leaning analytics 

ii) Employ and utilize both spectral and thermal information in the task of object detection 

iii) Explore the efficacy of several powerful DL networks and select the one providing the 

optimal detection performance 

iv) Design, implement the final DL-enhanced OD pipeline that will be capable of detecting 

human under varying conditions. 

v) Demonstrate the predictive performance of the proposed OD pipelines providing visual 

examples (objects detected at various sceneries). 

 

1.2 Structure of the deliverable  

The rest of this deliverable is structured as follows. Section 2 presents the main characteristics of the 

advanced AI analytics and the associated pipelines that were used for implementing the object detection 

task. Technical characteristics of all the experiments are analytically provided. Section 4 presents and 

discusses the results of the proposed methodologies and finally, Section 5 concludes this report by 

presenting a short summary and general conclusion deriving from this report. 

 

1.3 Relation with other documents  

This report is related to WP4 and more specifically to tasks 4.2 (Data aggregation) and 4.5 

(Development of DSS Components). The proposed DL component will be fully aligned with the data 

aggregation mechanisms and tools decided in Task 4.2. The outputs of this component will be the 

detection findings that will be formulated using well-known standardized formats (e.g., JSON files). The 

standardized detection outputs will be then communicated to the SnR Decision Support System (Task 

4.5) that will use them to take decisions or suggest appropriate actions. The SOT DSS by KT and the 

PHYSIO DSS by CNR will be affected by this input in operational level. The detections (only text output) 

of the algorithms will be involved in COncORDE’s notification service. As a result, the end-user will see 

these detections on the screen and then decide enhancing his/her situation awareness capacity. 
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2 Advanced AI pipeline for object detection  

2.1 Pipeline design overview  

Object detection is a computer vision technique, for object identification and location in an image or 

video. It is applied to count objects in a scene, evaluate, map, and mark their exact positions. There is 

a variety of object detection algorithms that can be applied in different classes. The classes are defined 

from the behaviour and representation of the object in space (images, videos). People in motion, 

animals, objects such as glass, bicycles, etc., are some of the main classes that can be recognized using 

CNN-based deep learning networks either using custom-made designs or pre-trained algorithms. 

Convolutional Neural Networks (CNN) [1] is one of the most popular Deep Learning Neural Networks, 

and its name comes from the convolution mathematical linear operation between the matrixes. A CNN 

consists of multiple layers such as convolutional layer, non-linearity layer, pooling layer and fully 

connected layer. The convolutional and fully connected layers have parameters, while the non-linearity 

and polling ones don’t. CNN are able to provide high performance in Machine Learning problems, 

especially with applications where image data, computer vision, and natural language processing are 

involved. 

 In the present study, we have set as main objective to recognize and locate humans from aerial 

photographs of drones. We consider three image datasets appropriate for this project including humans 

as the main object in different landscapes, hours, and seasons of a year. 

 

Figure 2-1: Object detection pipeline 

 

Bellow we present the proposed AI pipeline which comprises the following processing steps: 

 

• Build a dataset for object detection using selective search 

• Annotate the dataset using appropriate tools 

• Fine-tune classification models on dataset 

• Run a selective search on the input image during inference 

• Using a fine-tuned model, make predictions on each proposal. 
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• Return the final results of the object detection. 

Each of the aforementioned processing steps is presented in the subsections below.  

2.2  Data preprocessing 

 

Organizing, preparing, and annotating the training data is a first crucial procedure, before training an 

object detection model. Selecting a labeling graphic user interface (GUI) is needed, and the main steps 

in the data annotation procedure are: (i) selection of images from the dataset, (ii) constructing 

boundary boxes and adapting the size of the boxes to the objects, and (iii) assigning the known object 

to one of the pre-determined classes (Figure 2-1). This step produces a new folder, with individual 

marking files for each image (most common, txt, xlm, json). Pre-processing and augmentation of 

images are measures that help with the smoother execution of the OD learning challenge. Moreover, 

different image preprocessing functions, such as image resizing and color transformations, can be 

added to the instruction, validation, and test sets. Picture resizing alters the size of the images and 

scales them to a specific set of dimensions. For example, to prevent the algorithm from identifying an 

object from its colors, color conversion can be used to convert a colored image (RGB channels) into a 

single grayscale channel. Image augmentation is also vital to increase the generalizability of the OD 

algorithm. Image enhancement involves, image shifting, random rotations, cropping, shearing, blurring, 

and random noise addition methods, which are used to magnify an actual dataset. Exporting the 

annotations in the correct format, which depends on the OD chosen model, is the final stage before 

the OD training.      

 

2.3 Transfer Learning 

In machine learning, transfer learning is a useful method for dealing with the issue of inadequate 

training data. In the transfer learning process a trained model in one task with limited data availability 

is repurposed on a second related task, allowing rapid progress or performance improvement. An 

advantage of Transfer Learning is that it allows Convolutional Neural Networks (CNNs) to learn from 

small data sets by importing information from models that have been pre-trained on massive datasets. 

A simple definition is as follows: “Transfer learning is the reuse of a pre-trained model on a new 

problem. It's currently very popular in deep learning because it can train deep neural networks with 

comparatively little data” [2].  More specifically, we use the knowledge from an already-trained network, 

with high amounts of data, and transfer the knowledge, through the weights, to our model. For transfer 

learning applications in problems that use image data, the most common models are the deep learning 

pre-trained ones. This technique is done between the Layers where the network architect decides to 

freeze. One of the main advantages of transfer learning are that the model has an improved initial skill 

along with an increased rate of improvement during the training phase. Finally, the trained model has 

a higher convergence capacity compared to a custom-made network.  

 

In Figure 2-2 the structure of the aforementioned technique is presented, whereas in Figure 2-3 the 

expected learning improvement with transfer learning is indicatively given. 
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Figure 2-2: Transfer Learning diagram 

 

 

 

 

Figure 2-3: Learning improvement [3] 
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2.4 Models            

In object detection models fast and accurate detection algorithms are needed. Detection systems 

repurpose classifiers for detection, evaluating them at various locations and scales in a test image. A 

number of state-of-the-art architectures have been evaluated in this deliverable to test their 

performance and thus select the best performing model. The necessary details for every network such 

as parameters, frameworks, etc., are presented in the subsections below. The most efficient and reliable 

one was finally selected to be integrated in our final OD pipeline.  

 

2.4.1 You Only Look Once (YOLO)  

YOLO is a unified system for detecting objects. The YOLO architecture is similar to a fully convolutional 

neural network (FCNN) [4]. Specifically, it utilizes a convolutional network for object detection, and 

uses the whole image to reframe the object detection as a regression problem. It feeds the image (n x 

n) to the FCNN and the output is an (m x m) prediction, where the mxm grid defines the bounding 

boxes. These models are optimized for detection performance by being trained in full pictures. For 

example, Figure 2-4 is divided into an SxS grid, and for each grid cell predicts B bounding boxes, 

confidence for those boxes, and C class probabilities. YOLO models have a lot of advantages compared 

to traditional object detection methods. First of all, YOLO is extremely fast with good real-time 

performance and high accuracy [5], it works with the entire image during training and test, it exports 

contextual information about classes and appearance, and learns generalizable objects' 

representations.   

 

 

Figure 2-4: A simplified input of the YOLO object detector pipeline 

 



Search and Rescue 
Data-driven analytics applied on UAV imagery using deep learning 

  D3.5 

  
 

 

 

16 
 

  

YOLO consists of two main post-processing steps to quantify the bounding boxes: (i) intersection over 

union (IoU) and (ii) non-maximum suppression (NMS). Non-max suppression is an object detection 

approach that seeks to select the best bounding box from a series of overlapping boxes. The goal of 

non max suppression in the following image is to eliminate the yellow and blue boxes, leaving just the 

green box. The IoU measures how closely the predicted bounding box corresponds to the real object 

bounding box. NMS is applied extensively in important computer vision areas and is a key component 

of many proposed detection methods, whether we cope with edge, corner, or object detection. 

Moreover, the detection algorithms’ inability to localize accurately the term of interest (clusters of 

multiple detections close to the actual size), defines YOLO systems as necessary for detection problems. 

YOLO creates incredibly fast predictions for different artifacts in an image using both IoU and NMS with 

its main limitation being the inability to detect multiple small objects that are close to each other. 

2.4.2 YOLO version 4 with Darknet framework. 

Cross Stage Partial Network (CSPNet) separates the feature map of the base layer into two parts: a) 

one part goes through a dense block and a transition layer, b) the other part is combined with 

transmitted feature map to the next stage. A feature map is a 2D matrix of neurons and it is an 

important part of CNN, because its convolutional layer receives a block of input feature maps and 

generates a block of output feature maps. Darknet framework is a custom framework written by Joseph 

Redmon [6]. It is incredibly versatile and produces state-of-the-art object detection results, although it 

is not user-friendly. Its main technical specifications are given below: 

• Backbone - CSPDarknet53 with Mish activation 

• Neck - PANet with Leaky activation 

• Plugin Modules - SPP 

• V100 FPS - 62@608x608, 83@512x512 

• BFLOPs - 128.5@608x608 

The original YOLO (You Only Look Once) was constructed by Joseph Redmon (now retired from CV) in 

a custom framework called Darknet. Darknet is a very flexible research framework written in low-level 

languages and has produced a series of the best real-time object detectors in computer vision: YOLO, 

YOLOv2, YOLOv3, and now, YOLOv4. Original YOLO – YOLO combines the problem of drawing 

bounding boxes and identifying class labels in one end-to-end differentiable network. YOLOv2 - YOLOv2 

proposes a number of iterative improvements on top of YOLO including BatchNorm, higher resolution, 

and anchor boxes. YOLOv3 - YOLOv3 is built upon previous models, adding an objectness score to 

bounding box prediction. It also, adds connections to the backbone network layers, and predicts at 

three separate levels of granularity to improve performance on smaller objects. YOLOv4 is a series of 

computer vision technique additions that work with a few small novel contributions. All YOLO models 

are object detection models trained to utilize an image and search for a subset of object classes, which 

are enclosed then, in a bounding box for class identification. Typically, object detection models are 

trained and evaluated on the COCO dataset [7], containing a broad range of 80 object classes. Object 

detection models can generalize to new object detection tasks when exposed to new training data. 

All object detectors receive an image as input and compress features through a convolutional neural 

network backbone. In image classification, these backbones are the end of the network and prediction 

can be made from them. In object detection, multiple bounding boxes need to be drawn around images, 

along with classification, so that feature layers of the convolutional backbone can be mixed and held 
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together (neck). Object detectors can be split into two main categories: i) one-stage detectors and ii) 

two-stage detectors. A one-stage detector, on the other hand, just needs one run through the neural 

network to anticipate all of the bounding boxes. That's a lot speedier and better suited to mobile 

devices. In several disciplines, including autonomous driving, a two-stage detector seeks to generate 

multiple bounding boxes of objects in a given image. The detection happens in the head, where the 

two-stage detectors decouple the task of object localization and classification for each bounding box, 

while the one-stage detectors predict the object localization and classification at the same time. YOLO 

is defined as a one-stage detector, hence, You Only Look Once. 

In our application, Darknet framework was used, because training YOLOv4 in TensorFlow, Keras, and 

PyTorch frameworks was still under construction. The following backbones exist for the YOLOv4 object 

detector (Table 2-1): 

• CSPResNext50 

• CSPDarknet53 

• EfficientNet-B3 

 

Backbone model Input 

network 

resolution 

Receptive 

filed size 

Parameters Average size 

of layer output 

(WxHxC) 

BFLOPs 

(512x512 

network 

resolution) 

FPS 

(GPU 

RTX 

2070) 

CSPResNext50 512x512 425x425 20.6 M 1058 K 31 (15.5 
FMA) 

62 

CSPDarknet53 512x512 725x725 27.6 M 950 K 52 (26.0 
FMA) 

66 

EfficientNet-B3 
(ours) 

512x512 1311x1311 12.0 M 668 K 11 (5.5 
FMA) 

26 

Table 2-1: YOLOv4 object detector backbones 

 

 

2.4.3 YOLO version 5 with Pytorch framework. 

This is the first release of models in the YOLO family to be written in PyTorch, rather than PJ Reddie's 

Darknet. YOLOv5 [8] was initially implemented in PyTorch, and it benefits from the established PyTorch 

ecosystem, in terms of support and deployment. Iterating on YOLOv5 may also be easier for the broader 

research community because it is a more widely known research framework. YOLOv5 is incredibly quick. 

We observe inference times up to 0.007 seconds per image, in a YOLOv5 Colab notebook running a 

Tesla P100, which translates to 140 frames per second (FPS). YOLOv4 on the other hand, after being 

converted to the same Ultralytics PyTorch library, achieved 50 FPS. Also, YOLOv5 includes five different 

model sizes: YOLOv5s (smallest), YOLOv5m, YOLOv5l, YOLOv5x (largest).  

A recommended splitting percentage is, to apply 70% of data in the training set, 20% in the validation 

set, and 10% in the testing set. Then the training and validation folders are copied and pasted into the 

data directory, in the project folder. For the training process of the annotated dataset, a conversion in 
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YOLO format is needed. To convert the annotation format from XML to YOLOv5 txt format, we used an 

online tool that automatically generates two text files, containing the full path of all the images in the 

training and validation folders. These text files are referenced in the configuration yaml file. YAML (a 

recursive acronym for "YAML Ain't Markup Language") is a human-readable data-serialization language, 

commonly used for configuration files and applications where data is being stored or transmitted. 

For this model we trained: yolov5-m, yolov5-l and yolov5-x.  We downloaded the pre-trained weight, 

for transfer learning, from Ultralytics Google Drive, and we moved our preferred models in the 

appropriate file, that weights are contained. The YAML configuration file, of the corresponding version 

of YOLOv5 that used for training, modified, and the number of classes nc has been changed to 1. For 

the training process of YOLOv5 detector, the training command has been applied. The command 

options are presented below: 

• Img: number of training images 

• batch: determine batch size 

• epochs: define the number of training epochs. (Note: often, 3000+ are common here!) 

• data: set the path to our yaml file 

• cfg: specify our model configuration 

• weights: specify a custom path to weights 

• name: result names 

• nosave: only save the final checkpoint 

• cache: cache images for faster training 

• device: to select the training device, “0” for GPU, and “cpu” for CPU. 

 

Once we have completed training, the trained models are saved and then we evaluate how well the 

training procedure performed by looking at validation metrics such as precision, recall, IOU, average 

precision (AP), and mean average precision (mAP), which are explained more precisely in the subsection 

2.6.  

 

2.4.4 Scaled YOLO version 4. 

Wang et al., 2021 [9], present a scaling approach of the YOLOv4 for modifying the structure instead of 

the depth, the width, and the resolution of the network, while the proposed method is able to deal with 

the quantitative factors (inference time and average precision) that depend on the equipment of the 

database. They are focused on the model’s construction (image size, number of layers, and number of 

channels) and optimization, in order to extract the performance and the inference speed. The authors 

considered, in their network, CSP-ized CNN backbones such as ResNet, ResNext, and the traditional 

Darknet backbone, and present the “CSP-ized” portion of the network. For big objects detection, into 

big images, the increase of depth and number of stages in the CNN backbone/neck is crucial, while 

increasing the width reportedly has much lower effect. This process allows the dynamically adjustment 

of the width and depth according to the scaled-up input size and the number of stages, as also to the 

real-time inference speed requirements.  
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Figure 2-5: Architecture of YOLOv4-large, including YOLOv4-P5, YOLOv4-P6, and 

YOLOv4-P7. The dashed arrow means replace the corresponding CSPUp block by CSPSPP 

block. [9] 

 

2.4.5 Efficient Det 

TensorFlow2 Object Detection API is an extension of the TensorFlow Object Detection API, where a 

state-of-the-art object detection model collection can be trained under a unified framework 

(EfficientNet). EfficientNet [10] is a ConvNet, realeased by Google Brain Team that forms the backbone 

of the EfficientDet architecture, able to learn the scaling process of ConvNet architectures. There are 

many actions for adding more parameters to a ConvNet such as to: i) create wider layers, ii) create 

deeper layers, iii) insert high resolution imagesor iv) make a combination of these improvements.  

 

Figure 2-6: Model Scaling [10] 

 

The exploration of all these possibilities can be quite tedious for machine learning researchers. The 

paper [10] seeks to optimize downstream performance given free range over depth, width, and 

resolution while staying within the constraints of target memory and target FLOPs. They found that 

their scaling methodology improves the optimization of previous ConvNets as well as their EfficientNet 
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architecture. The EfficientNet looks like a good backbone to build upon. It efficiently scales with model 

size and outperforms other ConvNet backbones. 

 

Figure 2-7: EfficientDet architecture [10] 

 

 

EfficientDet Feature Fusion 

Feature fusion combines representations of an image at different resolutions. Typically, the fusion uses 

the last few feature layers from the ConvNet, but the exact neural architecture may vary. 

 

Figure 2-8: Feature network design  

 

 

FPN (Figure 2-8) is able to fuse features with a top-down flow. Feature fusion can flow backwards and 

forwards from smaller to larger resolution, in the PA net. NAS-FPN is a feature fusion technique based 

on a neural architecture. EfficientDet uses “intuition” (and presumably many, many development sets) 

to edit the structure of NAS-FPN to settle on the BiFPN, a bidirectional feature pyramid network. The 

EfficientDet model stacks these BiFPN blocks on top of each other. In the model scaling procedure, the 

number of blocks varies. Additionally, there is a hypothesis by the authors of paper [10] that there 

might be a variety of certain features and feature channels in the amount that they contribute to the 

end prediction, so they add a set of weights at the beginning of the channel that are learnable. The 

EfficientNet checkpoints are further leveraged with feature fusion and all components of the 

architecture are efficiently scaled. Finally, these model weights are pre-trained on COCO, a generalized 
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image detection dataset. Each model consists of a model name, a base pipeline file, a pre-trained 

checkpoint, and a batch size. The base pipeline file is a shell of a training configuration, specific to each 

model type, provided by the authors of the TF2 OD repository. The pre-trained checkpoint is the location 

of the pre-trained weights file, saved from the pre-training on the COCO dataset. Starting from these 

weights we fine tune into our particular custom dataset task. From the pre-training process, our model 

does not need to start from square one in identifying what features might be useful for object detection. 

With all of those inputs defined, the base pipeline file is then edited to be in an appropriate form for 

our custom data and the pre-trained checkpoint. Training for a longer time need increasing the number 

of steps while training faster, increasing the batch size to a level that the GPU can handle. [11] 

 

2.4.6 Detectron2 

 

Detectron2 [12] is a PyTorch-based scalable computer vision model library, the second version of the 

Detectron project, which started as a Caffe2 project and provides state-of-the-art detection and 

segmentation algorithms. Using the Detectron2 platform, custom state-of-the-art computer vision 

technology can be incorporated into the workflow. All models from the original Detectron are included 

in Detectron2, including Faster R-CNN, Mask R-CNN, RetinaNet, and DensePose. A range of tasks 

related to object detection is supported from Detectron2, with boxes and instance segmentation masks, 

as well as human pose prediction, like the original Detectron. Detectron2 also includes support for 

semantic segmentation as well as panoptic segmentation, which incorporates semantic and instance 

segmentation. It is flexible and extensible, and also able to provide fast training on single or multiple 

GPU servers. 

 

 

Figure 2-9: Detectron 2 pipeline [12] 
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Facebook AI Research (FAIR) constructed Detectron2 to help researchers quickly implement and 

evaluate new computer vision research. Applications for the following target detection algorithms are 

included:  

• Mask R-CNN 

• Fast R-CNN 

• Retina-Net 

• DensePose 

• RPN 

• TensorMask 

 

 

2.5 Google Colab 

 

One of the main problems in complex networks and large datasets is the computational cost. An average 

performance computer with an average graphics card may need huge amount of time for training. In 

order to minimize training time, we used Google Collaboration (Colab) a product from Google Research 

[13]. In Colab, it is able to write and execute arbitrary python code through the browser, and is also 

well suited to machine learning, data analysis and education. It is a free online cloud based Jupyter 

notebook environment, providing the ability to train machine learning and deep learning models on 

CPUs, GPUs, and TPUs. It is as safe, as a private Google Doc. No one can access private Colab 

notebooks, and Google has the incentive to make it as safe as possible for their reputation, and for 

selling reasons. As for the information provided by Google's Colab documentation, A GPU provides 

1.8TFlops with 12GB RAM, while TPU delivers 180TFlops with 64GB RAM. In Colab, even with free GPU, 

someone should expect training to be a multi-hour process. 

 

2.6 Metrics 

Precision is a measure of, "when a model guesses how often does it guess correctly?", that is the 

percentage of the predictions are correct.  
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Figure 2-10: Precision metric formula 

Recall is a measure of "has a model guessed every time that it should have guessed?", that is 

measures how good it finds all the positives.  

 

Figure 2-11: Recall metric formula 

 

 

 

• Intersection over Union (IOU)  

IOU is a metric that finds the difference between ground truth annotations and predicted 

bounding boxes. This metric is used in the most state-of-art object detection algorithms. In 

object detection, the model predicts multiple bounding boxes for each object, and based on 

the confidence scores of each bounding box it removes unnecessary boxes, based on its 

threshold value.  
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IOU =   Area of union / area of intersection 

 

 

 

Figure 2-12: A sketch of a graphical depiction of the IoU metric 

 

 

• Average Precision (AP) 

To evaluate the detection commonly we use a precision-recall curve. Average precision 

produces numerical values, and therefore it is easy to compare the performance with other 

models. Based on the precision-recall curve, AP summarizes the weighted mean of precisions 

for each threshold with the increase in recall. Average precision is calculated for each object. 

 

• Mean Average Precision(mAP) 

Mean average precision is an extension of Average Precision. In Average Precision, we only 

calculate individual objects but in mAP, the precision is referred in the entire model. To find 

the percentage, of the correct predictions in the model, we are using mAP. Every object has its 

individual average precision values; we are adding all these values to find the Mean Average 

Precision. 

 

• Variations among mAP 

In most of the research papers, these metrics have extensions like mAP iou = 0.5, mAP iou = 

0.75, mAP small, medium, large. Below, we present these extensions and the definition of 

them: 

-mAP iou=0.5 model used 0.5 threshold value to remove unnecessary bounding boxes, it is 

the standard threshold value for most of the models. 

-mAP iou=0.75 model used 0.75 threshold value, By using this we can get accurate results 

by removing bounding boxes with less than 25% of the intersection with ground truth image. 

-mAP small model produced mAP score based on smaller objects in the data. 

-mAP large model produced mAP score based on larger objects in the data. 

 

 

https://analyticsindiamag.com/how-i-created-my-own-data-for-object-detection-and-segmentation/
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2.6.1 FPS 

 

FPS (Frame Per Second) defines how fast an object detection model processes a video and generates 

the desired output. At the end it only depends on the input data on which OD is performed (e.g., 

online/offline, video or photo). The calculation of frames per seconds processing speed (FPS) is a way 

to express how fast the method is. Often you can bump it to the term "real time" which is a way to 

express that the method can process a video sequence "online" with the assumption of the video having 

a frame rate of 25 (FPS). The term "real time" is often disliked, because in and of itself it does not state 

anything. 

 

2.7 Validation Strategy 

 

We separated the data into training, validation, and test set to prevent the model from overfitting and 

to accurately evaluate it. The training process of a computer vision model depends on the examples of 

images, where the learning process is applied. A loss function is used to direct the model toward 

convergence on how near or far away it is from making the right prediction. The model uses the loss 

function to create a prediction function that maps the pixels from the image to the output. The loss 

function on the training data will continue to display lower values as the model hyper-specifies to the 

training set, while the held-out validation set will gradually increase. The training set is the largest set 

of the dataset, the validation set is a subset used after testing to see how well the model does on 

photos that weren’t used during training, and the test set gives the final results of how the model might 

do on the validation set after the training. 

The recommended allocation of the dataset for this project was 70% of the dataset to train set, 20% 

of the dataset to validation set, and 10% of the dataset to test set. 
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3 Results 

3.1 Presentation of Datasets 

 

Three datasets with different characteristics were considered here. The first one (Lacmus) is a publicly 

available dataset consisting of images captured by drones in which humans are shown in a variety of 

poses and sceneries. All images have been captured from a horizontal shooting from approximately 40-

50 meters height. The second and the third datasets were generated by us using a mixture of drone 

photos found online. The second is a collection of drone photos taken from a lower flight altitude 

(<40m), whereas the third is a collection of thermal images collected by drones in which humans are 

depicted. More information about the three datasets is given below.  

3.1.1 High altitude dataset  

 

The Lacmus drone dataset (LADD) is a collection of 1036 images captured by drones for pedestrian 

detection. The dataset was compiled by volunteers from Lisa Alert, Sova, and other organizations. This 

dataset was exported from a horizontal shooting of a 40- 50 meters height. The pictures depict people 

in a variety of poses. The VOC format is used for LADD annotations. Photos taken during different 

seasons of the year (winter, spring, and summer) are included in the dataset. This dataset was 

downloaded from https://github.com/lacmus-foundation/lacmus. Examples of this dataset are shown 

in Figure 3-1 

 

(a) 

https://github.com/lacmus-foundation/lacmus


Search and Rescue 
Data-driven analytics applied on UAV imagery using deep learning 

  D3.5 

  
 

 

 

27 
 

  

 

(b) 

 

(c) 

 

(d) 

Figure 3-1: Examples from the Lacmus dataset 

 

3.1.2 Low altitude dataset 

 

A second dataset was created from different datasets with different backgrounds. The databases 

selected were from Κaggle, older databases or published articles with images of drones depicting 

humans. Some of these databases are: Okutama database [14], UAVDT database [15], UCF-ARG Data 

Set [16] and more. The inclusion criteria were the following: (i) to include humans, (ii) to have different 

backgrounds, and (iii) to be taken at a lower altitude compared to above database. This mixed low 

altitude dataset contains 800 images. Examples of this dataset are shown in Figure 3-2. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 3-2: Example of Mixed dataset 

3.1.3 Thermal images dataset 

 

A dataset comprising of thermal photos from drones was finally produced for the project's needs. It 

was created out of thermal photos from three separate databases in which humans were the main 

object. A total of 600 photos were annotated from the following three source: (i) a dataset especially 

designed for SAR operations using a DJI Matrice 210 Drone outfitted with a FLIR thermal camera. 

(https://zenodo.org/record/4327118). (ii) The Synthetic Depth & Thermal (SDT) collection that includes 

40k synthetic and 8k actual depth and thermal stereo pictures that describe human behavior in interior 

settings. It Includes samples with people laying, sitting, and standing in four distinct room types (living 

room, bedroom, bathroom, and kitchen), all filmed from a high vantage point 

(https://zenodo.org/record/4124309#.YAVgZDmg-bg). (iii) Four 30-second video sequences of eight 

persons playing soccer in an indoor arena (court size 4020 metres). Thermal cameras of the type of 

AXIS Q1922 with a resolution of 640480 pixels and a frame rate of 25 frames per second caught the 

footage (https://www.kaggle.com/aalborguniversity/thermal-soccer-dataset). Examples of these 

datasets are shown in Figure 3-3 (a).  

https://zenodo.org/record/4327118
https://zenodo.org/record/4124309#.YAVgZDmg-bg
https://www.kaggle.com/aalborguniversity/thermal-soccer-dataset
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

Figure 3-3: Example of Thermal dataset 

 

 

3.2 Object detection results on the high-altitude dataset  

 

Table 3-1: Training models and parameters for Lacmus dataset 

 below gives information about the OD models that were tested here for their suitability in identifying 

humans in the high-altitude dataset. Specifically, the table cites models, frameworks, versions, and 

additional details such as the number of images used and the image resolution. 
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Models No. of 

images 

Augmenta

tion 

Resolution 

on Training 

Framework Model version 

Yolov5 963 No 416x416 Pytorch xlarge 

Yolov5 2313 Yes 416x416 Pytorch small 

Yolov5 250 No 416x416 Pytorch medium 

Scaled-Yolov4 2313 Yes 416x416 Pytorch CSP 

Scaled-Yolov4 2313 Yes 416x416 Pytorch CSP 

Scaled-Yolov4 2313 Yes 416x416 Pytorch CSP 

Scaled-Yolov4 963 No 416x416 Pytorch CSP 

Scaled-Yolov4 963 No 416x416 Pytorch CSP 

Yolov4 200 No 416x416 Darknet yolov4.conv.137 

Yolov4 2313 Yes 416x416 Darknet yolov4.conv.137 

Detectron2 250 No 416x416 Pytorch faster_rcnn_X_101_32x8d_FPN_

3x 

EfficientDet 2313 Yes 416x416 Tensorflow

2 

D0 

Faster R-CNN 2313 Yes 416x416 Tensorflow

1.5 

rfcn_resnet101 

Faster R-CNN 2313 Yes 416x416 Tensorflow

1.5 

faster_rcnn_inception_v2 

Faster R-CNN 2313 Yes 416x416 Tensorflow

1.5 

ssd_mobilenet_v2 

MobileNet 2313 Yes 416x416 Tensorflow

1.5 

ssd_mobilenet_v2 

MobileNet 963 No 416x416 Tensorflow

1.5 

rfcn_resnet101_coco_2018_01_

28 

Table 3-1: Training models and parameters for Lacmus dataset 

 

As it can be observed in the table above, the effectiveness of the models in different sample sizes (250, 

963 and 2313) was also investigated. Τhe optimal image resolution after testing was proved to be the 

416x416. All images in dataset have been resized in this size, improving the performance of each 

algorithm. The frameworks used were Pytorch, Darknet, Tensorflow 2, and Tensorflow 1.5. 
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Table 3-2 below presents the results of the aforementioned models in the high-altitude dataset. The 

order of the results is the same as in Table 3-1. In addition to precision, recall, and mAP, the iteration, 

and batch size were also reported. This was done to show how mAP varies when the batch size and 

the number of iterations change. EfficientDet and FasterR-CNN did not manage to converge thus 

providing inferior results (that are actually omitted from the table below). 

 

 

Models Iterations Batch size Precision Recall mAP 

Yolov5 
400 16 0,55 0,657 0,61 

Yolov5 
100 16 0,5613 0,7445 0,7177 

Yolov5 
250 16 0,498 0,73 0,6648 

Scaled-

Yolov4 300 16 0,5754 0,7383 0,6943 

Scaled-

Yolov4 200 32 0,5139 0,7886 0,7549 

Scaled-

Yolov4 350 40 0,6262 0,8024 0,7802 

Scaled-

Yolov4 500 32 0,641 0,801 0,794 

Scaled-

Yolov4 800 8 0,676 0,789 0,785 

Yolov4 
2000 16 0,5062 0,6226 0,5724 

Yolov4 
2000 64 0,67 0,65 0,6018 

Detectron2 
1500 16 n/a n/a 0,5252 

MobileNet 
10000 12 0,018 0,08 0,02 

Table 3-2: Results for Lacmus dataset 

 

The best performing model for this dataset was scaled-YOLOv4 trained on 500 iterations and using the 

CSP architecture. Its performance was 0.794 mAP with an optimal combination of 32 batch sizes and 

963 images. It should be mentioned that other versions of the scaled-YOLOv4 also achieved good 

performances (0,6943-0,794), whereas YOLOv5 accomplished the next best performances (0,61-

0,7177). In Figure 3-4, Figure 3-5, and Figure 3-6, the performances of the best performing models 

are presented. 
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Figure 3-4: Output metrics for scaled-YOLOv4 with 32 batch size, CSP pre-trained 

weights 

 

 

 

 

Figure 3-5: Output metrics for scaled YOLOv4 with 32 batch size, CSP pre-trained weights  
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Figure 3-6: Output metrics for YOLOv5 with 2500 images, small pre-trained weights 

 

3.3 Object detection results on the low altitude dataset  

 

Table 3-3 cites the OD models that were trained using images from the low altitude dataset. The table 

summarizes all the main parameters of the models, including frameworks, versions, and additional 

details. 

Models No. of 

images 

Augmentati

on 

Resolutio

n on 

Training 

Framework Model version 

Yolov5 583 No 416x416 Pytorch the small backbone but without its 

weights 

Yolov5 583 No 416x416 Pytorch large 

Yolov5 719 No 416x416 Pytorch small 

Faster 

R-CNN 

719 No 416x416 Tensorflow1.

5 

rfcn_resnet101 

Faster 

R-CNN 

749 No 416x416 Tensorflow1.

5 

rfcn_resnet101 

Scaled-

Yolov4 

1926 Yes 416x416 Pytorch CSP 

Efficien

tDet 

749 No 416x416 Tensorflow2 D0 

Scaled-

Yolov4 

749 No 416x416 Pytorch CSP 
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Yolov5 749 No 416x416 Pytorch small 

Detectr

on2 

749 No 416x416 Pytorch faster_rcnn_X_101_32x8d_FPN_3x 

Scaled-

Yolov4 

749 No 416x416 Pytorch P5 

Scaled-

Yolov4 

1926 Yes 416x416 Pytorch P5 

Scaled-

Yolov4 

800 No Raw 

resolution 

Pytorch CSP 

Detectr

on2 

800 No Raw 

resolution 

Pytorch faster_rcnn_X_101_32x8d_FPN_3x 

Yolov5 800 No Raw 

resolution 

Pytorch large 

Table 3-3: Training models and parameters for Mixed dataset 

 

Similarly, as in the previous dataset, the effectiveness of the models in a smaller sample of images was 

also tested. Again, the optimal image resolution after testing is 416x416. The frameworks used were 

Pytorch, Tensorflow 2, and Tensorflow 1.5. Table 3-4 cites the performance of the aforementioned 

models in the low altitude dataset. Faster R-CNN did not converge in our dataset and therefore its 

performance is omitted from the table below. The same applies for EfficientDet.  

 

Models Iterations Batch size Precision Recall mAP 

Yolov5 500 64 0,739 0,959 0,96 

Yolov5 500 24 0,823 0,97 0,974 

Yolov5 300 64 0,775 0,902 0,924 

Scaled-Yolov4 300 32 0,443 0,881 0,839 

Scaled-Yolov4 200 16 0,281 0,692 0,546 

Yolov5 300 16 0,354 0,701 0,601 

Detectron2 1500 64 - - 0,4225 

Scaled-Yolov4 50 16 0,296 0,701 0,518 

Scaled-Yolov4 50 8 0,342 0,85 0,791 

Scaled-Yolov4 50 6 0,538 0,929 0,91 

Detectron2 1500 64 - - 0,63936 

Yolov5 300 32 0,913 0,888 0,925 
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Table 3-4: Results for mixed dataset 

 

The best model for this dataset was YOLO v5-large version, trained on 500 iterations. The performance 

of YOLOv5 was 0.974 mAP with an optimal combination of 24 batch sizes and 583 images. Other 

versions of the YOLO v5 also achieved very good performances (0,924-0,974). Scaled-YOLOv4 also 

accomplished satisfactory performance (0,518-0,91). In the following figures some of the best results, 

are presented. 

  

 

Figure 3-7: Output metrics for scaled YOLOv4 with 200x200 resolution, CSP pre-trained 

weights, 150 epochs, and 800 images. 

 

 

 

Figure 3-8: Output metrics for scaled YOLOv4 with 16 batch size, CSP pre-trained weights 
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Figure 3-9: Output metrics for scaled YOLOv4 with 16 batch size, P5 pre-trained weights, 

and 100x100 resolution. 

 

Figure 3-10: Output metrics for scaled YOLOv4 with 500x500 resolution, CSP pre-trained 

weights,150 epochs, and 800 images. 
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Figure 3-11: Output metrics for scaled YOLOv4 with 749 images, CSP pre-trained weights 

and 200 epochs. 

 

 

 

 

Figure 3-12: Output metrics for scaled YOLOv4 with 749 images, P5 pre-trained weights 

and 50 epochs. 
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Figure 3-13: Output metrics for scaled YOLOv4 with 8 batch size, CSP pre-trained 

weights, 50 epochs, and 800 images. 

 

 

 

 

Figure 3-14: Output metrics for scaled YOLOv4 with 10 batch size, CSP pre-trained 

weights,800x800 resolution, and 150 epochs. 
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Figure 3-15: Output metrics for scaled YOLOv4 with 10 batch size, CSP pre-trained 

weights, 800x800 resolution and 300 epochs. 

 

 

Figure 3-16: Output metrics for scaled YOLOv5 large with 24 batch size, and 583 images. 

 



Search and Rescue 
Data-driven analytics applied on UAV imagery using deep learning 

  D3.5 

  
 

 

 

40 
 

  

 

Figure 3-17: Output metrics for large YOLOv5 with 32 batch size, and 300 epochs. 

 

 

 

 

Figure 3-18: Output metrics for YOLOv5 with no weights, 64 batch size, and 583 images. 
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Figure 3-19: Output metrics for YOLOv5 with 64 batch size, small pre-trained weights 

and 300 epochs. 

 

Based on the results so far in both the low- and high-altitude datasets, Scaled-Yolov4 was the best 

performer in the high-altitude dataset, whereas it was the second-best performing model in the low 

altitude dataset (with Yolov5-large being the best). Finally, Scaled-Yolov4 (Pytorch-CSP) was selected 

as the overall best model due its increased computational efficiency (compared to Yolov5-large) and 

due to its high performances in the task of human detection using drones’ images taken at both high 

and low flight altitudes. Thus, scaled-Yolov4 was used in the subsequent analysis of the deliverable.  

 

3.4 Performance with respect to different image resolutions and fps 

 

Table 3-5 cites the performance achieved by the best performer (scaled-Yolov4-Pytorch-CSP) for 

different image resolutions. The GPU speed, defined as the average processing time (in ms) per image, 

is also provided.  

 

Resolution GPU speed (average ms / img) Batch size Precision Recall mAP 

100x100 0.07 16 0,748 0,942 0,939 

224x224 0.08 16 0,697 0,951 0,942 

500x500 0.1 16 0,598 0,938 0,923 

800x800 0.13 16 0,669 0,949 0,944 

1000x1000 0.18 16 0,772 0,946 0,947 
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Table 3-5: Output metrics per input image resolution 

 

As expected, the performance of the model increases when the resolution increases. Τhis is mainly due 

to the better image quality, that leads to a more efficient algorithm. Figure 3-20 presents the AP 

performance of the best model with respect to the processing time that is needed on average per 

image.  

 

Figure 3-20: Average precision of Scaled-Yolov4 per image resolution and GPU speed 

 

It was observed that for lower image resolutions, the model recognizes objects faster while at the same 

time the model’s accuracy reduces. However, this drop in algorithm accuracy is relatively small 

compared to the observed time difference. So, the conclusion is that when we need to detect objects 

in real time, we can reduce the image size inside the model. When the detection is done off-line, then 

there is no need to reduce the image quality. Ιn each of the two cases the detection time depends on 

the graphics card capacity and it’s a decision of the user to find the best trade-off between accuracy 

and complexity that matches his/her needs.  

 

3.5 Cross dataset testing using scaled-Yolov4 

 

The generalization capacity of the best model is investigated in this section. To achieve the following 

experimentation was conducted:  

- Scaled-Yolov4 was trained on the high-altitude dataset and then it was applied to recognize 

humans in the low-altitude dataset 

- Scaled-Yolov4 was trained on the low-altitude dataset and then it was applied to recognize 

humans in the high-altitude dataset 
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- Finally, different image resolutions were considered to investigate the effect of image resolution 

in the generalization capacity of the models.  

Table 3-6 presents the performance of the best model on the aforementioned experiments.  

 

Training  Testing Version Resolution  Precision Recall mAP 

High altitude 
dataset 

Low altitude 
dataset 

CSP 416x416 0.0498 0.0312 0.00246 

Low altitude 

dataset 

High altitude 

dataset 

CSP 100x100 0.167 0.0556 0.055 

Low altitude 

dataset 

High altitude 

dataset 

CSP 500x500 0 0 0 

Low altitude 

dataset 

High altitude 

dataset 

CSP 1000x1000 0 0 0 

Table 3-6: Cross dataset weights metric results 

Ιt is a fact that the models did not work properly. The model that was trained to recognize small objects, 

failed to recognize large objects and vice versa. These results were expected, and the conclusion is that 

certain conditions (such as altitude of the drone, size of the objects, etc.) must be defined appropriately, 

for a proper working algorithm. 

 

Four indicative examples are given in Figure 3-21, Figure 3-22, Error! Reference source not found., 

and Figure 3-24 in which one of the models fails to recognize the human objects. Specifically in images 

taken from higher altitudes (where the size of the object is small), the OD model that was trained on 

the low-altitude dataset fails to recognize humans and vice versa.  
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(a) Output of the OD trained on                      

the low-altitude dataset 

(b)  Output of the OD trained on                     

the high-altitude dataset 

Figure 3-21: Identification of humans in images taken at a low flight altitude 

 

 

 

  

(a) Output of the OD trained on                          

the low-altitude dataset 

(b)  Output of the OD trained on                     

the high-altitude dataset 

Figure 3-22: Identification of humans in images taken at a high flight altitude 
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(a) Output of the OD trained on                          

the low-altitude dataset 

(b)  Output of the OD trained on                     

the high-altitude dataset 

Figure 3-23: Identification of humans in images taken at a high flight altitude 

 

  

(a) Output of the OD trained on                              

the low-altitude dataset 

(b)  Output of the OD trained on                             

the high-altitude dataset 

Figure 3-24: Identification of humans in images taken at a high flight altitude 

 

 

These findings necessitate the development of new OD models that can generalize well in both images 

taken at different flight altitudes. To cope with the challenge, two new approaches were further tested:  

- In the first one, a new mixed dataset was generating concatenating all the available images 

into a single database.  

- A new hybrid inference mechanism was designed that combines the outcomes of altitude-

dependent local OD models.  

The results of both new approaches are presented in the following subsections. The best performing 

model (scaled-Yolov4) was employed in both approaches.  
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3.6 Results on the concatenated dataset 

 

As discussed above, the low and the high-altitude datasets were concatenated into one new dataset. 

Scaled-Yolov4 was trained on the training subset of the concatenated dataset and the performance 

achieved on the testing subset is shown in Table 3-8. 

 

 

Dataset  No. of images Resolution Augmentation  Framework  Model 
version 

iteration 

Concatenated 2132 raw no Pytorch  Scaled-

Yolov4-
CSP 

300 

Table 3-7: Parameters of the model trained in the concatenated dataset  

 

Dataset  Batch size Precision Recall mAP  Average ms/ image  

Concatenated  8 0.64 0.793 0.77 0.03 

Table 3-8: Performance of the model trained in the concatenated dataset 

 

Τhe results of the OD model on the concatenated dataset were satisfactory despite the known difficulty 

of the problem (where multiple objects of varying sizes are to be detected). Τhe achieved mAP was 

0.77 and in Figure 2-1 the evolution of all metrics is presented in detail. 

 

 

Figure 3-25: Output metrics for the concatenated dataset. 
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The following pictures show some of the results obtained by the model in the test set. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3-26: Indicative successful detections of humans from the OD model trained on 

the concatenated dataset  

 

3.7 Results using a hybrid inference mechanism  

 

A hybrid inference mechanism was also proposed, designed, and implemented by AIDEAS taking into 

account the generated inference-ready local models. Specifically, learning is performed separately in 

each one of the two datasets (A and B comprising photos taken from high and low altitudes, 
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respectively). All seven OD networks are tested at each dataset and the best performer is chosen per 

case. To detect objects on a testing photo the following inference approach is then applied:  

(i) the photo is first classified into one of the classes (low or high altitude) based on a 

predetermined threshold (h=40m).  

(ii) the inference-ready local model associated with the specific altitude class is then applied 

to produce the final detections. 

The proposed methodology can be easily scaled considering more altitude classes (e.g. low, 

medium and high) depending on the characteristics and dynamics of the object of interest. In our 

case, the use of two altitude classes were proved to be adequate in terms of the achieved detection 

performance. Figure 3-27 depicts the proposed Hybrid-DA methodology framework.  

 

 

Figure 3-27: Hybrid-DA methodology framework 

 

 

 

The proposed Hybrid-DA inference methodology was also applied on the images of the concatenated 

dataset and its results are given in Table 3-9 in comparison with the best results achieved by the previous 

testing scenarios. The accuracy for the best local model in the high-altitude database was 79.4%, 

however these models failed to recognize humans in the low-altitude dataset (mAP: 0.2%). Similarly, 

the accuracy of the best OD model in the low altitude database it was 97.4%, whereas its generalization 

capacity on the high-altitude dataset was very limited (mAP: 5.5%). Concatenating the two databases 

led to a moderate detection performance (77%). The overall best performance was achieved by the 

proposed hybrid inference technique with a mAP of 86.2% for images taken at both high and low flying 

altitudes (Figure 3 30). 
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Training Testing mAP (%) 

Low altitude data Low altitude data 97.4 

High altitude data High altitude data 79.4 

Low altitude data High altitude data 0.2 

High altitude data Low altitude data 5.5 

Concatenated dataset Concatenated dataset 77 

Hybrid inference on the 
concatenated dataset  

Hybrid inference on the 
concatenated dataset 

86.2 

Table 3-9: Best performances achieved by Scaled-Yolov4 on different testing scenarios  

 

 

 

 

Figure 3-28: Best models outputs 
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(a) 
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(b) 
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(c) 

Figure 3-29: Successful detection of humans using the proposed hybrid inference 
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3.8 Results on thermal images  

 

The capacity of the proposed methodology in detecting humans using a different image source was 

also tested. Thermal images were finally employed to train the best OD model. Details on the 

characteristics of the thermal dataset can be found in the subsection 3.1.3. The Scaled Yolov4 was 

again chosen to detect humans on the thermal images. Table 3-10 and Table 3-11cites the parameters 

of the deployed model and the performance achieved.  

 

Dataset  No. of images Resolution Augmentation  Framework  Model 
version 

iteration 

Thermal  600 416 x 416 no Pytorch  Scaled-

Yolov4-
CSP 

300 

Table 3-10: Parameters of the model trained in the thermal dataset 

 

 

Dataset  Batch size Precision Recall mAP  Average ms/ image  

Thermal 8 0.94 0.98 0.98 0.03 

Table 3-11: Performance of the model trained in the thermal dataset 

 

 

 

The mAP achieved was 0.983%, highlighting the excellent detection capacity of the model to detect 

humans in thermal images as well as the increased discrimination ability of thermography to quantify 

differences in temperature between humans and the background.  

 

The following pictures show some of the results obtained by the model in the test set. 
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Figure 3-30: Indicative successful examples of human detection using thermal images 

 

 

 

Overall, it was concluded that the proposed OD pipeline is capable of detecting humans under different 

conditions and using either spectral or thermal information. Thermal images were proved to be more 

informative leading to higher detection performances.  
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4 Conclusions 

 

This deliverable presented the overall development status of Task 3.3 (Data-driven analytics applied on 

UAV imagery using deep learning). Within the development phase of this task, the following 

accomplishments have been achieved:  

Several powerful DL networks were investigated in terms of their ability to detect human in three 

different datasets (comprising of either high and/or low altitude photos). 

Each of the deployed OD network was tested on each of the three datasets and the best performer 

was identified per case.  

A novel hybrid OD inference pipeline was designed and implemented. This pipeline combines the 

outputs of altitude-dependent local models to increase the generalisation capacity of the OD system.  

The predictive performance of all the explored OD pipelines was demonstrated in a thorough 

experimental set-up. Visual examples of the identified objects were also provided on either spectral or 

thermal photos under various conditions (backgrounds, seasons, and sceneries).  

The AIDEAS is currently preparing a manuscript with all the OD advancements and the proposed hybrid 

inference mechanism (to be submitted as a journal publication). Next steps include the integration of 

the DL-based UAV analytics into the SnR COncORDE platform. These efforts will be carried out in Task 

4.5.  
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