

Big Data technologies and extreme-scale analytics

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D5.1: MARVEL Minimum Viable Product†

Abstract: The purpose of this deliverable is to describe all activities related to the design,

implementation, and release of the MARVEL Minimum Viable Product (MVP). This

document sets the scope and goals of the MVP, as well as discusses the decisions to achieve

these goals, by means of definition of specific use case scenarios, selection of MARVEL

components, and infrastructure that facilitates the operation and demonstration of the use

cases. More specifically, the document details the adjustments of the MARVEL architecture,

the specific role of each component within the MVP, integration and deployment processes

and tasks, and an extensive demonstration of the selected use cases from the user point of

view. Finally, the MVP results are linked to MARVEL’s objectives, as this release paves the

way towards the first complete prototype of the MARVEL framework.

Contractual Date of Delivery 31/12/2021

Actual Date of Delivery 31/12/2021

Deliverable Security Class Public

Editor Christos Dimou (ITML)

Contributors ITML, FORTH, IFAG, AU, ATOS, FBK,

TAU, STS, UNS, GRN, ZELUS, PSNC

 Quality Assurance Manolis Falelakis (INTRA)
Tomás Pariente Lobo (ATOS)

† The research leading to these results has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 957337.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 2 - 31 December, 2021

The MARVEL Consortium

Part.

No.
Participant organisation name

Participant

Short Name
Role Country

1
FOUNDATION FOR RESEARCH

AND TECHNOLOGY HELLAS
FORTH Coordinator EL

2 INFINEON TECHNOLOGIES AG IFAG Principal Contractor DE

3 AARHUS UNIVERSITET AU Principal Contractor DK

4 ATOS SPAIN SA ATOS Principal Contractor ES

5
CONSIGLIO NAZIONALE

DELLE RICERCHE
CNR Principal Contractor IT

6
INTRASOFT INTERNATIONAL

S.A.
INTRA Principal Contractor LU

7
FONDAZIONE BRUNO

KESSLER
FBK Principal Contractor IT

8 AUDEERING GMBH AUD Principal Contractor DE

9 TAMPERE UNIVERSITY TAU Principal Contractor FI

10 PRIVANOVA SAS PN Principal Contractor FR

11
SPHYNX TECHNOLOGY

SOLUTIONS AG
STS Principal Contractor CH

12 COMUNE DI TRENTO MT Principal Contractor IT

13

UNIVERZITET U NOVOM

SADU FAKULTET TEHNICKIH

NAUKA

UNS Principal Contractor RS

14
INFORMATION TECHNOLOGY

FOR MARKET LEADERSHIP
ITML Principal Contractor EL

15 GREENROADS LIMITED GRN Principal Contractor MT

16 ZELUS IKE ZELUS Principal Contractor EL

17

INSTYTUT CHEMII

BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK

PSNC Principal Contractor PL

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 3 - 31 December, 2021

Document Revisions & Quality Assurance

Internal Reviewers

1. Manolis Falelakis, (INTRA)

2. Tomas Pariente Lobo, (ATOS)

Revisions

Version Date By Overview

0.0.7 31/12/2021 Christos Dimou PC and TC review comments

0.0.6 29/12/2021 Christos Dimou Figure updates

0.0.5 27/12/2021 Christos Dimou Fixed minor issues

0.0.4 24/12/2021 Christos Dimou Revised document after internal reviews

0.0.3 07/12/2021 Christos Dimou First full draft. Integration of inputs from

partners

0.0.2 10/11/2021 Christos Dimou Comments on the ToC.

0.0.1 03/11/2021 Christos Dimou ToC.

Disclaimer

The work described in this document has been conducted within the MARVEL project. This project has

received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 957337. This document does not reflect the opinion of the European Union,

and the European Union is not responsible for any use that might be made of the information

contained therein.

This document contains information that is proprietary to the MARVEL Consortium partners. Neither
this document nor the information contained herein shall be used, duplicated or communicated by any

means to any third party, in whole or in parts, except with prior written consent of the MARVEL

Consortium.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 4 - 31 December, 2021

Table of Contents

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION... 10

1.1 PURPOSE AND SCOPE OF THIS DOCUMENT ... 10
1.2 INTENDED READERSHIP ... 10
1.3 CONTRIBUTION TO WP5 AND PROJECT OBJECTIVES .. 10
1.4 RELATION TO OTHER WPS AND DELIVERABLES .. 11
1.5 STRUCTURE OF THE DOCUMENT .. 12

2 CONTINUOUS INTEGRATION.. 13

3 MVP SPECIFICATION ... 16

3.1 DEFINITION OF THE MVP .. 16
3.2 USE CASE SELECTION .. 16

3.2.1 Rationale... 16
3.2.2 GRN Use case 4 – Junction Traffic Trajectory .. 17

3.3 COMPONENTS.. 22
3.3.1 CATFlow... 22
3.3.2 DatAna .. 24
3.3.3 Data Fusion Bus ... 27
3.3.4 GRNEdge .. 29
3.3.5 Karvdash... 30
3.3.6 Sound event detection ... 32
3.3.7 MEMS microphone IM69D130 .. 32
3.3.8 Visual crowd counting .. 33
3.3.9 MARVEL Data Corpus ... 34
3.3.10 SmartViz ... 35

4 INTEGRATION AND DEPLOYMENT .. 38

4.1 ARCHITECTURE ... 38
4.1.1 Runtime and deployment view for the GRN4-UJ1: CATFlow inference .. 39
4.1.2 Runtime and deployment view for the GRN4-UJ2: Sound events and crowd counting 40
4.1.3 Runtime and deployment view for the GRN4-UJ3: MARVEL Data Corpus 41
4.1.4 Data management platform architecture ... 42

4.2 INFRASTRUCTURE ... 44
4.3 COMPONENTS’ DEPLOYMENT AND INTEGRATION ... 45

5 DEMONSTRATION .. 47

5.1 THE DECISION-MAKING TOOLKIT .. 47
5.2 USER JOURNEYS FOR GRN USE CASE 4 .. 50

5.2.1 User Journey 1: Vehicle and Bicycle Trajectories, and Vehicle counting 50
5.2.2 User Journey 2: Sound Events and Crowd counting .. 51
5.2.3 User Journey 3: Populating the MARVEL Data Corpus ... 52

6 CONTRIBUTION TO MARVEL GOALS .. 54

7 CONCLUSIONS ... 55

BIBLIOGRAPHY... 56

APPENDIX A.. 57

APPENDIX B .. 60

APPENDIX C.. 62

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 5 - 31 December, 2021

List of Tables

Table 1: MARVEL architectural components for GRN4-UJ1: CATFlow inference 39
Table 2: MARVEL architectural components for GRN4-UJ2: Sound events and crowd counting 40
Table 3: MARVEL architectural components for GRN4-UJ3: MARVEL Data Corpus 41
Table 4: Implemented actions for DMP components .. 44

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 6 - 31 December, 2021

List of Figures

Figure 1. Steps of an agile, iterative development process .. 13
Figure 2. Junction chosen for investigation for the MVP, with certain parts blurred for privacy 18
Figure 3. Image of camera used to inspect junction... 19
Figure 4. Still of truck causing an obstruction ... 20
Figure 5. Still of truck still causing an obstruction and causing a change in trajectories for other cars 20
Figure 6. Three-point turn Step 1 ... 21
Figure 7. Three-point turn Step 2 ... 21
Figure 8. Three-point turn Step 3 ... 21
Figure 9. Car and lightweight vehicle example ... 22
Figure 10. Bus example.. 22
Figure 11. CATFlow algorithm example ... 23
Figure 12. Dataflow to the CATFlow component ... 23
Figure 13. Apache NiFi example of topologies ... 25
Figure 14. Example of DatAna in MARVEL .. 26
Figure 15. DFB overall architecture... 28
Figure 16. Image from camera at dusk... 29
Figure 17. Illustration of the sound event detection component .. 32
Figure 18. Sample of a scene involving crowds and its corresponding density map............................. 33
Figure 19. Schematic illustration of the audio-visual crowd counting component................................ 34
Figure 20. MARVEL conceptual architecture ... 38
Figure 21. Scenario 1: CATFlow inference - Deployment and runtime view 40
Figure 22. Scenario 2: Sound events and crowd counting – Deployment and runtime view 41
Figure 23. Scenario 3: MARVEL Data Corpus – Deployment and runtime view 42
Figure 24. Selected DMP components for MVP refinement ... 43
Figure 25. Selected DMP components' interactions for the MVP ... 43
Figure 26. SmartViz dashboard.. 48
Figure 27. The trajectories widget ... 49
Figure 28. Temporal representation of detected vehicles .. 51
Figure 29. Pedestrian heatmap screen for UJ2 ... 52
Figure 30. Master-detail view of the AV files stored in the Data Corpus ... 53
Figure 31. Administration dashboard for the Data Corpus .. 53

file:///C:/Users/Christos/Desktop/D5.1%20Reviews/MARVEL-d5.1_v0.0.7.docx%23_Toc91846317

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 7 - 31 December, 2021

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

AV Audio-Visual

AVCC Audio Visual Crowd Counting

CI/CD Continuous Integration / Continuous Delivery

DFB Data Fusion Bus

DMP Data Management Platform

DMT Decision-Making Toolkit

DNS Domain Name System

E2F2C Edge-to-Fog-to-Cloud

EC European Commission

FFMPEG Fast Forward MPEG

GUI Graphical User Interface

HDFS Hadoop Distributed Files System

HLS HTTP Live Streaming

HPC High Performance Computing

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

KPI Key Performance Indicator

MEMS Micro Electro-Mechanical Systems

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MVP Minimum Viable Product

OLAP Online Analytical Processing

PANN Pretrained Audio Neural Networks

PDM Pulse Density Modulation

PFLOPS Peta Floating-Point Operations Per Second

POE Power Over Ethernet

RAM Random Access Memory

REST Representational State Transfer

RTSP Real-Time Streaming Protocol

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 8 - 31 December, 2021

SED Sound Event Detection

SNR Signal-to-Noise Ratio

SSO Single Sign-On

TB Terabyte

TRL Technology Readiness Level

UI User Interface

UJ User Journey

URL Uniform Resource Locator

USB Universal Serial Bus

UX User experience

VCS Version Control System

VM Virtual Machine

WP Work Package

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 9 - 31 December, 2021

Executive Summary

This deliverable showcases all activities carried out towards the realisation of the MARVEL

Minimum Viable Product (MVP). Following the Lean start-up methodology [1], the

MARVEL project aims to the early release of a functional, end-to-end, minimum

demonstrator that serves as a proof-of-concept for the overarching goals of MARVEL and

displays the potentials of the sought solution. The deliverable has been developed within the

scope of ‘WP5 – Infrastructure Management and Integration’, under Grant Agreement No.

957337.

The work presented in this document embarks from previously submitted deliverables ‘D1.2 –

MARVEL’s Experimental protocol’ and ‘D1.3 – Architecture definition for MARVEL

framework’, which define in detail the MARVEL pilot use cases and the refined framework

architecture, respectively. The information drawn from these documents constitutes the

foundations for the development of the MVP. We have selected use case ‘GRN4: Junction

Traffic Trajectory’, implemented in the city of Malta, as a use case that is both mature in

terms of technical requirements, and representative of the most fundamental aspects of

MARVEL’s framework. Additionally, we have proceeded with a careful selection of a subset

of the MARVEL architecture, and a corresponding list of MARVEL components, that support

the implementation and demonstration of the selected use case.

More specifically, for the selected use case, we have defined three different scenarios to cover

and showcase different parts of the MARVEL architecture, including edge data transfer, AI

components for event detection, cloud-level management, and aggregation of data, and,

finally, presentation of the detected events to the end-user via a graphical web user interface.

In terms of technical details, this document provides a detailed presentation of the allocated

infrastructure that supports the execution of the MVP, as well as a comprehensive description

of participating components and technologies offered by MARVEL partners, including

functionality, role of each component within the MVP, and component interfaces that

facilitate communication and integration with other components.

In this deliverable, we discuss how the MVP addresses and contributes to specific WP5 and

overall project goals, and its function as the foundation over which the two integrated

prototypes of the framework are going to be developed, in later stages of the project (M18 and

M30), that will, in turn, pave the way towards the final, large-scale deployment and operation

of MARVEL into real-world settings (M36).

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 10 - 31 December, 2021

1 Introduction

1.1 Purpose and scope of this document

The purpose of this deliverable is to describe the scope, design rationale, technical details, and

integration activities for the MARVEL Minimum Viable Product (MVP). Within the context

of MARVEL, the MVP is an early release that serves as a proof-of-concept for the project’s

main objectives, as it offers a functional demonstration that is minimum but complete, in

terms of end-to-end integration and delivery of value to the end-user.

In terms of design rationale, technical details and integration activities, this deliverable

explains how the MARVEL consortium has selected a representative use case and defined a

series of end-to-end scenarios that connect all layers of the MARVEL architecture, providing

meaningful information on detected traffic events to the end-user. In technical terms, we have

selected a series of components that were put in place and integrated into a solution that

realises the purpose of the MVP, by interconnections that manage, process, and transfer data

across all architectural layers in an efficient pipeline.

To complement the design and technical activities, this deliverable also lists the WP5 and

project objectives that the MVP addresses and how it serves as a steppingstone towards the

release of the more ambitious complete versions of the MARVEL framework in later stages

of the project.

1.2 Intended readership

Deliverable D5.1 – ‘MARVEL Minimum Viable Product’ is a public document that

accompanies the public demonstrator of this version of the MARVEL framework. The

content found in this document aims to show all stakeholders and potential users of the

framework, the feasibility of the MARVEL premise and the validity of the services provided

to the end-users. Additionally, this document will serve as a guide to upcoming integrated

releases of the MARVEL framework that will expand on the MVP in terms of expanding use

cases, MARVEL components and technologies incorporated, and services offered.

1.3 Contribution to WP5 and project objectives

This deliverable has been composed within the context of ‘WP5 – Infrastructure Management

and Integration’, and more specifically, it constitutes the first major output of ‘Task 5.3 -

Continuous integration towards MARVEL’s framework realisation’. The Description of

Action (DoA) states the objectives of WP5 as such:

WP5 main objective is to ensure successful E2F2C framework delivery for distributed

extreme-scale audio analytics. The framework allows for powerful, scalable, and real-

time processing of multimodal audio-visual data on top of distributed deployment of

MARVEL ML models. In details, WP5 aims to ensure: (i) provision and configuration

of a powerful HPC infrastructure; (ii) orchestration of infrastructure resource

management and optimised automatic usage of external computational and storage

resources; (iii) seamless integration and quality assurance of software releases; (iv)

quantifiable progress against societal, academic and industry validated benchmarks;

(v) real-life experimentation and validation at large scale; and (vi) continuous

alignment with the responsible AI planning and guidelines set out in T1.3.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 11 - 31 December, 2021

The MVP constitutes the first concrete step towards achieving the objectives of this work

package, by providing a stripped-down, functioning version of the envisioned framework that,

nevertheless, addresses and incorporates all mentioned attributes of this framework, including

(i) provision of the required infrastructure, (ii) resource management, and (iii) integration of

offered technologies. For specific aims (iv), (v), and (vi) mentioned above, the MVP provides

the necessary foundation over which subsequent complete, large-scale versions of MARVEL

will be further developed.

Specifically, for Task 5.3, the DoA states that:

Task 5.3 will implement and deploy the MARVEL integrated framework that realises

the technology convergence defined in the MARVEL architecture specification T1.4.

The MARVEL E2F2C Framework bridges Big Data technologies to IoT,

Edge/Fog/Cloud computing and HPC, to allow real time decision making and

monitoring of multimodal smart cities environments. This task realises societal and

industrial opportunities in the smart-city domain (T6.2) by ensuring a smooth and

effective integration of the separate MARVEL components. Aspects like

interoperability, scalability, accountability, transparency, responsibility, and

performance will be considered, as well as a continuous delivery approach, to achieve

quality assurance in software releases. Releasing software frequently will not only

respect the natural evolution of the technologies developed within the project but it

will also allow developers to react promptly to the continuous data providers

feedback. Reliability of these developments is also increased following this strategy as

recurrent releases usually involve lesser and harmless changes. According to the plan

(Sect.3.1.1), this task will describe in detail the MARVEL releases namely a proof-of-

concept demonstration (Minimum Viable Product (MVP)) - M12, the 1st complete

prototype – M18 and the 2nd Final prototype – M30.

Being the first output of this task, the MVP described in this deliverable constitutes the first

tangible solution that tackles most of the fundamental notions mentioned above and lays the

foundations over which future releases will build upon. For the former case, the MVP is a first

approach to technology convergence of various offerings, provides a demonstration of real-

time interaction with the end-user, and provides an effective integration of the MARVEL

components. Moreover, it has set the ground for the implementation of the described

continuous integration/continuous delivery (CI/CD) approach. For the latter case, future

versions of the MARVEL framework will provide the depth and scale required to put in place

a complete CI/CD process, and address the mentioned interoperability, scalability,

accountability, transparency, responsibility, and performance issues.

1.4 Relation to other WPs and deliverables

This deliverable relies on the foundational work conducted within ‘WP1 – Setting the scene:

Project setup’. More specifically, the selection of Use Case for demonstration draws from the

detailed material on Use Case descriptions of deliverable ‘D1.2 – MARVEL’s Experimental

protocol’. Additionally, deliverable ‘D1.3 – Architecture definition for MARVEL framework’

is an important source for this work, as it contains the refined architecture, which is the

blueprint for this release, as well as subsequent releases. D1.3 also provides useful

information that D5.1 builds upon, as for example the description of available MARVEL

components and their TRL, the grouping of components into building blocks that correspond

to architectural layers, and the outline of integration processes that need to be applied.

This deliverable is also coupled with work in progress within the context of ‘WP2 - MARVEL

multimodal data Corpus-as-a-Service for smart cities’, ‘WP3 – AI-based distributed

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 12 - 31 December, 2021

algorithms for multimodal perception and situational awareness’, and ‘WP4 - MARVEL

E2F2C distributed ubiquitous computing framework’. More specifically:

• From WP2, integral parts of the MVP are the Data management and distribution

platform (Task 2.2), and the MARVEL Corpus-as-a-Service (Task 2.4).

• From WP3, the AI algorithms on Audio-Visual (AV) data that are developed and

refined within this work package (Task 3.3) were considered for inclusion in the

MVP, and the most relevant and mature of those offerings are now part of the

demonstrator.

• From WP4, progress in various directions has provided important foundations and

inputs to the MVP, namely the optimised audio capturing (Task 4.1), audio

anonymisation (Task 4.2), and the Decision-Making Toolkit (T4.4).

Within WP5, there has been a close collaboration with Task 5.1 and Task 5.2, with regards to

the underlying infrastructure and resource management, respectively. Additionally, there is a

connection to Task 5.4 that aims to set the benchmarks to validate MVP results. This close

dependency is expected to continue until the release of the final complete version.

This deliverable will be a reference to upcoming deliverables ‘D5.4. MARVEL Integrated

framework – initial version’, ‘D5.6. MARVEL Integrated framework – final version’, and

‘D5.7. MARVEL’s framework large scale deployment’ that will describe the expanded

integrated versions of the framework. The MVP demonstrator will be the basis for the first

evaluation that will be part of ‘D5.5. Technical evaluation and progress against benchmarks’.

Finally, most of the work planned for ‘WP6 – Real-life societal experiments in smart cities

environment’ will use information contained in this deliverable, but more importantly

upcoming deliverable ‘D6.1 - Demonstrators execution – initial version’.

1.5 Structure of the document

The structure of this document is as follows:

• Section 2 discusses the envisioned CI/CD processes to be established and describe

which of the aimed CI/CD activities have been utilised for the development of the

MVP.

• Section 3 provides the scope and building blocks of the MVP, namely: a) a definition

of the MVP that sets the scope and value of this release, b) the use case selected for

demonstration and the rationale behind this choice, and c) a comprehensive list of

MARVEL components that implement the selected use case.

• Section 4 describes issues related to the integration of the above building blocks,

namely the architecture, infrastructure, and components. Moreover, it discusses

relevant deployment and testing issues that have arisen during this process.

• Section 5 presents the MVP demonstrator, specifically from the end-user perspective,

by means of Use Case implementation and User Interface screens.

• Section 6 links the results presented in previous sections to the overall MARVEL

goals and objectives.

• Section 7 summarises and concludes this document

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 13 - 31 December, 2021

2 Continuous Integration

Before embarking on the definition and development of the MVP release, we need to define

and put in place the integration process, i.e., the steps to take and tasks to complete so that any

component that needs to be part of the next release, can be integrated easily and in a

standardised way.

The main challenge for integration is to make sure that a large number of independent,

heterogenous components can communicate effectively with each other, and together achieve

a goal of greater scope than their individual functionalities offer. In addition to the interfaces

that are required for this communication, infrastructure issues arise, as these components

should operate in a well-defined environment.

Traditional approaches to integration advocate for a predefined list of releases to be realised

in the future and a series of activities (design, development of interfaces, deployment,

integration, testing, etc.) to occur during the time between the releases. Each of these phases

is completed before moving to the next, and when all are completed, the integration and

deployment is realised. This process resembles a traditional, waterfall approach to software

development. However, this approach is not resilient to frequent changes in requirements and

occurrence of unknown issues that are common to digital product and platform development.

For the integrated MARVEL framework, we follow an agile approach to integration, namely

the Continuous Integration/Continuous Delivery (CI/CD) [2]. According to this approach, the

delivered framework is implemented in small iterations, with the addition of small increments

of services and functionalities at each iteration. This approach respects the natural,

incremental way of developing complex systems while enabling stakeholders to monitor the

implementation progress, give early feedback, and react promptly to potential technical or

other obstacles that may arise. Finally, with continuous integration, qualitative, non-functional

aspects of the developed platform are considered early on, including interoperability,

scalability, accountability, transparency, responsibility, and performance, thus achieving

quality assurance in system development iterations and releases. A typical agile, incremental

process to software development is depicted in Figure 1.

Figure 1. Steps of an agile, iterative development process

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 14 - 31 December, 2021

In deliverable ‘D1.3 – Architecture definition for MARVEL framework’ Section 2.5, we

outlined such a process by listing the steps and tools required to fulfil MARVEL’s technical

challenges.

During the development of the MVP, we have initiated the definition of steps and the

selection and configuration of tools that we will use throughout the course of the project. In

the list below, we describe what has been already done during the implementation of the

MVP, with reference to the guidelines provided in deliverable D1.3, Section 2.5. We also

discuss actions to be taken after the MVP, towards the complete integrated versions.

• Technical project organisation: A detailed roadmap should be in place before the

integration efforts are initiated. At integration initiation, the roadmap should contain

scenarios and use cases to be implemented, a list of components and their

specifications/requirements, required infrastructure needed, and planning of upcoming

releases. Initial execution plans for MARVEL use cases/pilots are provided in D1.2.

During the MVP: We have created and used such a roadmap with a comprehensive list

of tasks to be carried out, with the respective timeline, milestones and expected

deadline. Progress was tracked within the context of scheduled, frequent MVP-

focused meetings, and details for the tasks were shared with live online documents or

email exchanges.

After the MVP: We will define a similar roadmap for the upcoming first complete

release (M18). We will replace the documents and email exchanges of the MVP with

an issue ticketing system (e.g., Redmine1) that is more efficient in tracking progress

and exchanging information for ongoing and future tasks.

• Source version control system: During the execution of integration, all open-source

components under development should be stored in a version control system (VCS,

e.g., git2/GitLab3). Furthermore, participating components should ideally be developed

and delivered as containerised microservices, in all cases that it is feasible, to further

facilitate automation. In case a component cannot meet this requirement, integration

and deployment will be realised in a manual or semi-automatic way. Each component

should a) expose an interface to the other components, b) be self-sufficient and have

all needed external libraries and other dependencies already installed in the container,

and c) provide detailed documentation of at least its exposed interface, input/output

data format, user manual (if applicable), as well as build, deployment, and execution

instructions.

During the MVP: We have put in place and use a GitLab repository4 where all

components that participate in the MVP scenarios are uploaded. All components fulfil

requirements a) and b) mentioned above, as they provide interfaces to other

components and are shipped using docker.

After the MVP: We plan to provide detailed documentation for all MARVEL

components that are integrated into the framework and make this documentation

available to all MARVEL partners. Additionally, we will provide a standardised

1 https://www.redmine.org/

2 https://git-scm.com/

3 https://gitlab.com/

4 http://registry.marvel-platform.eu/

https://www.redmine.org/
https://git-scm.com/
https://gitlab.com/
http://registry.marvel-platform.eu/

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 15 - 31 December, 2021

format for data modelling and data exchange, that all connected components will be

required to implement. This way, MARVEL components will be easily integrated,

while the MARVEL framework will be easily extended with future technologies and

interoperable with external systems that follow the same standards.

• Continuous Integration/Continuous Delivery: At each iteration, a functional subset

of the platform is going to be delivered for testing and demonstration purposes. As

integration advances, the delivered platform will contain an increasing number of

components and services, gradually reaching the full version of MARVEL. In this

stage, automated tools (e.g., Jenkins5) will be used to facilitate the deployment

processes, from retrieving the component executables, for example in the form of a

docker image if applicable, to orchestrating the execution of multiple components on

the specified infrastructure.

During the MVP: No automation tools were required for the MVP, as there are only a

few components that comprise the framework. Additionally, the infrastructure was

configured from scratch, making connection, access, and utilisation processes

available to the technology providers during the development of the MVP. Therefore,

we decided it is more efficient to carry out all integration activities in a manual or

semi-automated way.

After the MVP: As the MARVEL framework will grow in scope, participating

components and scale of the underlying infrastructure, adoption of automated tools for

CI/CD will be beneficial.

• Quality Assurance: It is important to guarantee that each delivered increment meets

high standards of quality both in terms of design and code implementation, as well as

in terms of execution reliability, performance, and interoperability with other

components. To that end, we can use automated tools (e.g., Sonarqube6) for code

quality, test coverage, etc., in conjunction with the realisation of functional,

integration, and acceptance testing efforts.

During the MVP: Such quality assurance tools were only used partially or

independently for some components of the MVP. This approach was sufficient for a

small-scale, proof-of-concept demonstrator.

After the MVP: As the MARVEL framework will grow, such tools will be

incorporated in the CI/CD pipeline.

• Bug tracking: During the development and testing of the MARVEL platform, any

bug or other system instability should be promptly recorded and made available to

developers for fixing. This can be achieved by using a backlog tool that is part of the

project organisation step.

During the MVP: As mentioned above, no bug tracking or ticket issuing tool was used

for the development of the MVP.

After the MVP: We consider using such tools for the upcoming release, in order to

keep track of the rising number of technical tasks to be realised.

5 https://www.jenkins.io/

6 https://www.sonarqube.org/

https://www.jenkins.io/
https://www.sonarqube.org/

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 16 - 31 December, 2021

3 MVP Specification

In this section, we set the scope and goals of the MVP by providing a definition of what an

MVP is, a description of the selected use case, and a comprehensive list of components that

implement the selected use case.

3.1 Definition of the MVP

A Minimum Viable Product (MVP) is a concept introduced in the context of the Lean Startup

methodology [1] that tackles common issues that appear when developing a new product. An

MVP is defined as “that version of a new product which allows a team to collect the

maximum amount of validated learning about customers with the least effort” [1]. This

validated learning comes from the early release of a minimum product that shows both the

potential benefits and shortcomings or unforeseen implications of that product.

A key premise behind the idea of MVP is that we produce an actual product (which may be of

reduced functionality, or a service with an appearance of automation, but which is partly

manual behind the scenes) that we can show to stakeholders and observe their actual reaction

to the product or offered services. Essentially, the MVP serves as a proof-of-concept that can

reveal early on signs of both potential value and obstacles to anticipate in the future.

The primary benefit of an MVP is that the owner of the product can gain an understanding of

the interests and opinions of stakeholders without fully developing the product. The sooner

this information is available, the less effort and expense will be spent on a product that may

be misdirected.

As the term MVP is gaining popularity, some misconceptions about this term may arise.

Often product developers focus on the “minimum” part of the acronym, defining a subset of

the envisioned functionality for the product. This approach may lead to a subset of the final

product that may not reveal anything meaningful about its value and the perception of the

stakeholders towards this product. The term “viable” is also important in the sense that a

reduced, but complete, end-to-end service should be offered to the end-users. Of equal

importance is the interpretation of the reactions and the overall evaluation of an MVP.

Measures and benchmarks should be defined beforehand so that owners will know what

attributes to measure and how to draw conclusions from the demonstration of an MVP.

In MARVEL, we use the MVP as the core piece of a strategy of experimentation. We

hypothesise that the value offered by MARVEL is indeed feasible, demonstrable and satisfies

a wide range of end-user needs and has a significant societal impact. During the design of the

MVP, we paid equal attention to the terms “minimum” and “viable”, while kickstarting the

process of defining benchmarks and evaluation goals that will take place after its release

(‘Task 5.4 - Quantifiable progress against societal, academic and industry validated

benchmarks’).

3.2 Use case selection

3.2.1 Rationale

As described in detail in deliverable ‘D1.2 – MARVEL’s Experimental protocol’, there are

three real-life experiments designed to be implemented and executed in pilots for three cities,

Malta, Trento, Novi Sad. For the first two, four different use cases are defined to support the

real-life experiments, while for the latter pilot, two use cases are defined. These use cases

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 17 - 31 December, 2021

cover a wide range of activities to be monitored and potential events to be detected, analysed

and mitigated.

With the kick-off of ‘Task 5.3 - Continuous integration towards MARVEL’s framework

realisation’, we set a series of pilot-focused meetings in order to gain a better understanding

and insights about the nature, setting, involved actors, events, and technical implication of

each use case. These meetings combined detailed exposition of the real-world setting and

needs of the pilot end-users, with a comprehensive examination of available technologies that

are related and can address the end-user needs.

The selection process for the MVP use case was based on several criteria that were discussed

during these meetings, including maturity of the use case and feasibility of completion within

the given timeframe. The maturity of a use case was examined in terms of a) availability of

infrastructure, b) availability of historical data necessary for the development components or

training of AI models that had to be realised in parallel, and c) level of understanding of the

details of the use case by both pilot owners and technology providers. In terms of employed

technologies, after mapping potential utilisation of offered MARVEL components to the use

case, we proceeded with the evaluation of readiness of each component, in terms of a)

maturity/TRL, and b) estimated effort for integration with other components.

This fruitful and productive process advanced by selecting the favourite candidates and

eliminating complex use cases or use cases that rely on components that need more time to be

ready for integration. The result of this process was the timely selection of use case ‘GRN4 –

Junction Traffic Trajectory’ of the Malta pilot. During this process, in addition to the selected

use case that is required for the MVP, significant progress has been made towards the

understanding and development of other use cases that will be implanted in future releases.

The selected use case offers a wide variety of inputs that may be managed and processed by

the MVP, including vehicle identification, trajectories, sound events, and crowd counting that

will showcase the potentials of MARVEL’s AI infrastructure, while providing the end-user

with an immediate view of the events and current state happening on street level. This use

case is described in detail in the following section.

3.2.2 GRN Use case 4 – Junction Traffic Trajectory

Use case GRN4 - Junction Traffic Trajectory Collection is focused on the requirement of

long-term data analytics that shed light on both the behaviour of road users (e.g., car drivers,

motorcyclists, cyclists, pedestrians, etc.) and on gathering traffic statistics at road network

junctions. This use case is of interest for long-term transport planning and evaluation. In

particular, there is currently significant interest in studying active travel modes, such as

cycling, walking, and more generally micro-mobility. Authorities in Malta are interested in,

for example, finding the optimal position of pedestrian crossings, whether provisions for

cyclists at complex junctions are adequate, and whether installed provisions are being used as

intended.

This use case requires entity (traffic object) detection and its trajectory across a junction or

road segment and descriptive statistics of network junction traffic. It, therefore, follows that

entity detection and tracking models can be potentially used as a first processing stage

followed by further processing to generate descriptive statistics.

For the implementation of the MVP, the trajectories of the cars are first extracted using the

CATFlow object detection and tracking algorithm, followed by basic data analysis carried out

on the output data and finally visualised on the UI.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 18 - 31 December, 2021

The main data for the MVP will be obtained from the Mgarr Camera. This is a static camera

installed over a road junction. The main reason this camera was chosen was due to its ability

to observe a junction during all times of the day, thus a varied dataset can be produced, and

various testing conditions can be considered. These include lighting levels such as day, night,

and dusk as well as different weather conditions such as wind, sun, and rain. The camera

includes an integrated microphone that delivers raw synchronised AV data. The CATFlow

algorithm makes use of the video only, however, this data will also be used to develop and

test the traffic sound event detection (SED) models and the audio/video anomaly detection

models. Similarly, the same setup supports the experimental implementation of algorithms at

the edge.

Figure 2 shows the junction chosen for the MVP as seen from the static camera installed for

the MVP. Figure 1Figure 3 shows the actual Mgarr camera being used to monitor this

junction.

Figure 2. Junction chosen for investigation for the MVP, with certain parts blurred for privacy

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 19 - 31 December, 2021

Figure 3. Image of camera used to inspect junction

For this use case, we have defined two user journeys7, i.e., operation scenarios from the point

of view of the end-user. The first user journey for this use case concerns the collection of

vehicle and bicycle trajectory data. The trajectory data is of interest since it can be used to

model what could be considered normal for the different types of vehicles. This data can be

either used by traffic engineers to make data-driven decisions on the trends observed at a

particular road or junction or else it could be used to search for instances of anomalous

events. Figure 4 and Figure 5 show an example of how vehicle trajectories change due to a

lightweight vehicle stopping in the middle of the road (or at the roadside) for

unloading/loading cargo. These events push cyclists and vehicles out and can be the cause of

accidents. A traffic engineer would be interested in knowing whether this is a one-off event or

a recurring one. If, for example, lightweight vehicles are often the cause of obstructions at this

particular junction, a dedicated loading and unloading bay could be set up at the location of

interest for the convenience of all road users.

7 In this document, we use the term “User Journey” to refer to operation scenarios from the point of view of the end-user and

the term “Scenario” to refer to the entire end-to-end functionalities offered for demonstration in the context of the MVP.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 20 - 31 December, 2021

Figure 4. Still of truck causing an obstruction

Figure 5. Still of truck still causing an obstruction and causing a change in trajectories for other cars

Other events that could be of interest for traffic engineers are manoeuvres such as three-point

turns as shown in the stills below. In roads where cars frequently pass at high speeds, such

manoeuvres could be dangerous and lead to accidents. This example is shown in Figure 6,

Figure 7, and Figure 8.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 21 - 31 December, 2021

Figure 6. Three-point turn Step 1

Figure 7. Three-point turn Step 2

Figure 8. Three-point turn Step 3

The second user journey concerns the collection and visualisation of traffic statistics and

involves mainly vehicle counting per type or class. The main purpose here for the user

journey is to get data on the most frequent vehicles on the road, and thus the traffic engineer

would have the ability to plan changes in the infrastructure based on the counts. The selection

of this static camera placement is ideal for this user journey since it is frequented by various

types of vehicles, whose distribution changes from weekdays to weekends.

Figure 9 and Figure 10 show the different types of vehicles expected at the Mgarr Camera

junction.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 22 - 31 December, 2021

Figure 9. Car and lightweight vehicle example

Figure 10. Bus example

3.3 Components

In this section, we provide technical information about the components that take part in one or

more use case scenarios for the MVP. For each component, we provide a description, the

technologies employed, and the role of that component in the MVP.

3.3.1 CATFlow

Overview

CATFlow is a system developed by GRN to analyse video footage of road traffic (possibly in

real-time), to determine how road users use the given infrastructure. At the heart of CATFlow

is an object detection and tracking algorithm, which detects and tracks the movements of

pedestrians, cars, buses, light-goods-vehicles, heavy-goods-vehicles, motorcycles, and

bicycles across the camera view. The user has the option to specify entry and exit points on

carriageway lanes and these are used to compute the traffic object movement, trajectory and

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 23 - 31 December, 2021

estimated speed. This information is encoded in JSON format, which is then sent to the

storage device ready for consumption. At the time of writing, the pedestrian data is not being

collected but will be added in the future. The CATFlow output data (i.e., the JSON files or

messages) does not contain any personal information. The system is currently at TRL 6 level.

Figure 11 shows an example of the detection and tracking features of the CATFlow

algorithm. Each vehicle is being identified with a bounding box. The algorithm is able to

distinguish between the different kinds of vehicles.

Figure 11. CATFlow algorithm example

Figure 12. Dataflow to the CATFlow component

Technologies

Figure 12 depicts the dataflow in CATFlow and the interface with other components. The

input is a camera stream. At the time of writing, the HLS streaming protocol is used, and then

the frames are fetched using FFMPEG. Each frame is sequentially fed first into an object

detector and then into a multi-object tracker in order to track entities across the camera view.

Internally, it uses entry and exit lines or boundaries. Having both an entry and an exit line,

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 24 - 31 December, 2021

and knowing the distance between these, the vehicle speed can be estimated. Pedestrians on

the other hand are tracked across the frame since pedestrians may follow a random path. No

personal data is computed. Typically, the asset executes at the fog layer but can be modified

to execute at the edge.

Since there can be many instances of CATFlow, Kafka is used as a message broker. The

information is then stored on an OLAP database, ready to be consumed by an API to create

reports or visualisations.

Role in the MVP

The camera and the CATFlow algorithm will be used as part of the assets to implement the

chosen use case for the MVP, which is GRN’s Use Case 4: Junction Traffic Trajectory

Collection. The camera is for the collection of raw AV data, whilst the CATFlow algorithm

will be used to extract the vehicle/object trajectories as well as traffic count data.

Use case GRN4 aims at collecting and storing the data on vehicles’ trajectories. The output

from the CATFlow algorithm readily yields this information on trajectories and in addition,

the CATFlow output inherently includes traffic counts and estimated speed data.

3.3.2 DatAna

Overview

DatAna is an Apache NiFi8-based tool to manage data flows from heterogenous data sources.

NiFi provides features for data collection and processing following a data-flow paradigm with

very little programming effort.

NiFi’s base unit of work is called a FlowFile, which provides an encapsulation of the data to

be processed with some extra attributes that define that data (like filename, last update time,

etc.). The NiFi FlowFiles (processing unit) can be routed and modified using specific

“Processors”. NiFi provides a huge number of predefined processors and extensibility to add

new ones. The FlowFile passes from one processor to the next by using specific

“Connections” that allows routing and branches of the overall data flow. One of the main

advantages of NiFi, besides the scalability and extensibility, is the intuitive user interface that

allows users to develop their data flows with little or none programming effort (although

complex flows usually require some administration, monitoring, configuration, and fine-

tuning).

NiFi and MiNiFi9 (a subset of the NiFi bundle with low processing footprint for edge

computing) can run independently. This means that MiNiFi agents can be deployed in devices

and connection with a “master” NiFi in the fog or cloud layers can be achieved via the NiFi

Site-to-Site (S2S) communication protocol10 enabling the creation of topologies such as the

ones shown in Figure 13.

8 https://nifi.apache.org/

9 https://nifi.apache.org/minifi/index.html

10 https://nifi.apache.org/docs/nifi-docs/html/overview.html#high-level-overview-of-key-nifi-features

https://nifi.apache.org/
https://nifi.apache.org/minifi/index.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html#high-level-overview-of-key-nifi-features

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 25 - 31 December, 2021

Figure 13. Apache NiFi example of topologies

The combination with other Apache NiFi subprojects, such as MiNiFi for edge devices, and

the easy integration with data sources and data sinks, such as Apache Kafka, makes this tool a

good candidate to glue different data processes within MARVEL.

MiNiFi agents can be installed at edge devices with some computational power (i.e., at a

Raspberry Pi, NVIDIA Jetson or similar) to perform initial steps of data ingestion and

processing, and then connect with other elements of the MARVEL framework, such as a NiFi

or a cluster of NiFi in the fog or cloud layers. This offers the possibility of creating MiNiFi to

NiFi topologies more or less complex depending on the usage scenarios and moving

dataflows from one layer to the next. Figure 14 depicts a potential scenario within the

MARVEL GRN pilot where DatAna is placed to handle non-AV data between the data

producers (GRN) and consumers (DFB). This figure is just an example, as both DFB and

DatAna could handle the data flows in different ways and different options will be explored

within the project lifetime.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 26 - 31 December, 2021

Figure 14. Example of DatAna in MARVEL

Technologies

As explained above, the main technology behind DatAna is Apache NiFi and some of its

subprojects such as MiNiFi. NiFi comes with many off-the-shelf processors for data

ingestion, processing, transformation and placement of data, including interfaces with Kafka,

MQTT, several databases (Mongo, HBase, Cassandra, ElasticSearch, etc.), file systems and

data lakes (HDFS, S3, Azure, etc.), among others. New processors can be developed and

deployed.

DatAna is the new name of the tool given in MARVEL to the work done by ATOS with

Apache NiFi. Besides the usage of the NiFi and MiNiFi technologies in MARVEL, the

overall idea of the tool is to offer a management layer for controlling MiNiFi agents as well as

helping on the right configuration of NiFi according to the best practices and needs of specific

use cases. The tool in previous releases has been used in other EU-funded projects (e.g., the

H2020 QROWD project) in smart cities scenarios. The current TRL is 4, and we expect to

complement it within MARVEL with the new features and demonstrate its usage in a relevant

environment in the MARVEL pilots to reach at least a TRL 6.

DatAna, as a DMP entry point, will interface with the data coming from the different pilot

scenarios as well as with DFB via dedicated Kafka topics. From the deployment perspective,

for the MVP DatAna is a simple NiFi service located in the PSNC cloud and managed by

Karvdash. In future iterations this deployment will be more complex, involving MiNiFi

agents at the edge and the definition of MiNiFi to NiFi topologies.

Role in the MVP

DatAna will contribute to 2 of the scenarios from the MVP as the initial entry point of the

non-AV data to the DMP tools.

• Scenario 1 (identification of vehicles and trajectories): DatAna will interface with the

output of CATFlow via a Kafka topic located in Azure managed by GRN. DatAna

will perform a data flow to ingest this data, make some transformations, and move the

results to a Kafka topic provided by the DFB inside the Karvdash environment.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 27 - 31 December, 2021

• Scenario 2 (sound events and crowd counting): DatAna will implement the data flow

to ingest the outputs (alerts and anomalies) from the analytical components,

specifically the Sound Event Detection (SED) and Audio Visual Crowd Counting

(AVCC) components, and finally pass these results to the DFB.

3.3.3 Data Fusion Bus

The Data Fusion Bus (DFB) is a customisable component that implements a trustworthy way

of transferring large volumes of heterogeneous data between several connected components

and the permanent storage. It comprises a collection of dockerised, open-source components

which allow easy deployment and configuration as needed.

DFB’s architectural design addresses several challenges that are raised by both the large

volume and the heterogeneous nature of data from different sources, taking into consideration

the needs and restrictions of the employed components. The main addressed challenges

include:

• seamless aggregation of data with different structures or formats;

• a cluttering threat to the components due to the quantity of the input data;

• access of data through a common, safe, accessible interface.

Inherent to DFBs design is the efficient handling of the enormous volume of the data that

need storage and manipulation, as well as mechanisms to remediate potential bottlenecks, lag,

or high demand on network traffic. These design decisions enable horizontal scalability while

providing a solution that is cloud-native with stateless components capable of being deployed

with flexibility. DFB follows the middleware approach by aligning data streams for time and

granularity and creating a user interface that serves as the interface of the platform,

customised to aggregate multiple streams, thereby allowing seamless service of data to the

network analysis and visualisation.

The key capabilities of DFB are:

• Data aggregation from heterogeneous data sources and data stores.

• Real-time analytics, offering ready-to-use ML algorithms for classification, clustering,

regression, and anomaly detection.

• An extendable and highly customisable User Interface for Data Analytics,

manipulation, and filtering, as well as functionality for managing the platform.

• Web Services for exploiting the platform outputs for Decision Support.

• Applications for Smart Production, Digitisation, and IoT, among others.

The key modules of DFB are:

a. Apache Kafka, an open-source framework for stream processing.

b. Elasticsearch, a distributed, multitenant-capable, full-text search engine.

c. DFB Core & UI, implementation of a REST API and a client GUI, respectively, for

management and monitoring of the DFB components.

d. Keycloak, an open-source software product that provides single sign-on to applications

and services.

Figure 15 depicts DFB’s overall inner architecture and its relation to other components of the

MARVEL platform. This figure shows DFB’s main modules mentioned above, as well as its

interfacing with edge devices that may produce non-binary data and other fog/cloud

components that provide their processed data into DFB.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 28 - 31 December, 2021

Figure 15. DFB overall architecture

The main inbound interface for DFB is Kafka’s messaging system that is based on the

publish-subscribe pattern. More specifically, any MARVEL data-producing component,

including real-time event detection and data analytics components, connects to DFB and

publishes any relevant data to a specific, predefined topic.

Regarding outbound interfaces, in the general case, any data-consuming component can

subscribe to a topic and receive instant updates on published data. Within the context of

MARVEL, data collected from Kafka brokers is subsequently passed onto an Elasticsearch

Logstash Kibana (ELK) stack for storage and further processing and visualisation. Although

DFB offers its own graphical UI for visualisation of aggregated data, collected streamed and

stored data can be made available to MARVEL’s visualisation components (e.g., SmartViz).

Finally, DFB offers a complete, standalone Single Sign-on module based on Keycloak open-

source product to ensure authenticated and authorised access to fused data.

As DFB is typically deployed on the cloud, it does not offer any edge processing options. It is

designed and optimised for handling non-binary data that is streamed to the Kafka interfaces

in real-time. For the MVP, DFB will not directly process or handle AV data; instead, any

results of AV processing from ML components can be made immediately available for real-

time analytics or stored for later filtering, processing, searching, and visualisation.

Role in the MVP

DFB will contribute to the 3 use cases from the MVP as the engine that fuses and indexes

large volumes of heterogenous non-AV data. It serves as an interface point for transferring

non-AV data collected by the DMP platform, especially DatAna, to the SmartViz’s UI, as

well as with connections to the MARVEL Data Corpus metadata.

In all scenarios, the input to DFB is non-AV data collected and processed by DatAna. The

latter component acts as a producer to DFB’s Kafka entry point, by subscribing to specific

topics that are defined per scenario. The data streamed through Kafka are indexed in DFB’s

Elasticsearch, using DFB’s ES-connector.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 29 - 31 December, 2021

The data streamed through or indexed at DFB are readily available for any client component,

most importantly SmartViz. This user-facing component can access data in two ways: a) by

subscribing to the corresponding topic of DFB’s Kafka, for real-time visualisations, or b) by

querying DFB’s Elasticsearch API, for visualisations of historical data.

3.3.4 GRNEdge

Overview

For the purpose of the MVP (for which AV computation will not take place at the edge) the

GRNEdge component is reduced to an off-the-shelf audio-video bullet camera. The camera is

connected to a modem to stream AV data directly to the Fog server. For the time being, this

component has no ability to carry out computations at the edge.

This GRNEdge device is located on the road that leads into and beyond a rural and largely

residential but also touristic town with a clear view of the two-way road and a side street. In

addition, the camera targets two bus stops on opposite sides of the road, ensuring the

collection of data that includes pedestrian traffic. In general, the road is used by various types

of vehicles such as bicycles, motorcycles, cars, heavyweight and lightweight vehicles, and

buses.

The camera in a static location allows us to view the situation on the road during various

times of the day and in different weather conditions. The constant streaming also gives us the

possibility to catch anomalous events such as car crashes or illegal manoeuvres of vehicles.

The TRL for this GRNEdge variant is TRL 7. Figure 16 shows the image streamed from the

camera at dusk.

Figure 16. Image from camera at dusk

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 30 - 31 December, 2021

Technologies

The component is a Safire2MP Dome Outdoor/Indoor IP Video Camera with POE & built-in

microphone. Thus, the microphone is in the same casing as the camera. The video is being

compressed with H264 compression. The streaming is in real-time to the GRN server and

makes use of the RTSP streaming protocol.

Role in the MVP

This component has various uses in the MVP. The first scenario where the GRNEdge device

will be used is as input to the CATFlow algorithm. The GRNEdge device will stream directly

to the fog server where the CATFlow algorithm processes the video stream to detect and track

the vehicles.

The Mgarr camera is also being used to collect data for training and testing the algorithms

which will be implemented in the MVP.

3.3.5 Karvdash

Overview

Karvdash is a service for facilitating interaction with MARVEL’s E2F2C testbed, by

supplying the landing page for users working on the platform, allowing them to launch

services, design workflows, request resources, and specify other parameters related to

execution through a user-friendly interface. Karvdash aims to make it straightforward for

domain experts to interact with resources in the underlying infrastructure without having to

understand lower-level tools and interfaces.

Karvdash is deployed upon a Kubernetes installation as a service and provides a web-based,

graphical interface to:

• Manage services or applications that are launched from customisable templates.

• Securely provision multiple services under one externally accessible HTTPS endpoint.

• Organise container images stored in a private Docker registry.

• Perform high-level user management and isolate respective services in per-user

namespaces.

• Interact with datasets that are automatically attached to service and application

containers when launched.

Karvdash does not do any processing but provides the mechanisms to efficiently deploy the

services included in the MARVEL data management toolkit, in all computing continuum

layers that support container-based execution. To configure and start services, Karvdash uses

a service templating mechanism - each service is defined with a series of variables. The user

can specify values to the variables as execution parameters through the dashboard before

deployment, and Karvdash will set other “internal” platform configuration values, such as

private Docker registry location, external DNS name, and others.

Internally, at the Kubernetes level, each Karvdash user is matched to a unique namespace,

which also hosts all of the user’s services. Containers launched within the namespace are

given Kubernetes service accounts which are only allowed to operate within their own

namespace. This practice organises resources per user and isolates users from each other.

Karvdash is currently at TRL 3, the goal being to reach TRL 5 as part of the integration into

the MARVEL platform.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 31 - 31 December, 2021

Technologies

Karvdash is written in Python using the Django11 framework. It is developed and tested on

Kubernetes 1.19.x-1.21.x. Every new Karvdash release is packaged in a container image and

can be installed using Helm12, as is the typical case with software packages on top of

Kubernetes.

For the purpose of the MARVEL MVP, Karvdash in installed on a VM deployed on PSNC’s

OpenStack offering. The VM is assigned 8 CPUs, 16 GB RAM, 512 GB of block storage,

runs Ubuntu 20.04.1 LTS Linux, and Kubernetes 1.19.8. This VM is placed at the “cloud”

side of the E2F2C platform.

Once deployed in the Kubernetes environment, Karvdash interfaces with the following

software components (installed as Karvdash pre-requisites) and platform facilities:

• The cert-manager13 certificate management controller for Kubernetes. This is used for

creating certificates automatically for the Kubernetes mutation/admission webhooks

that implement automatic storage mounting in user containers.

• The ingress controller14, which answers to a domain name and its wildcard; in

MARVEL, the ingress serves both “marvel-platform.eu” and “*.marvel-platform.eu”.

The ingress controller (under Karvdash control) is responsible for implementing the

platform’s external HTTPS endpoints, consolidating them all under the same DNS

suffix, and routing each different endpoint to the appropriate running service.

• JupyterHub15 for composing code in notebooks and Argo Workflows16 for

orchestrating tasks as workflow graphs. Karvdash runs side-by-side with these

services, providing SSO to users. For Argo Workflows, Karvdash also configures

appropriate authorisation directives, so each user will be allowed to access resources

in the corresponding Karvdash-defined namespace.

• A private container registry for storing container images locally.

• Karvdash uses local storage for state-keeping and data files, via-a claim to an existing

persistent volume on locally mounted block storage.

Role in the MVP

Karvdash plays a central role in all use cases included in the MVP by coordinating the

execution of the data management platforms and other software components on the E2F2C

testbed, as well as by mediating external accesses to any service that needs to be exposed

outside the MARVEL infrastructure (both taking care of connectivity, as well as

authentication issues). Moreover, Karvdash provides the implementation basis for optimised

deployment of AI tasks (as per project Task 3.4).

For the DatAna and DFB data platforms, we have created Karvdash-compatible templates, so

any platform user can launch the corresponding service. All containers are launched within

the user’s private namespace, while respective frontend’s (DatAna’s NiFi GUI and DFB’s

Kibana GUI) are exposed via Internet-accessible URLs, over HTTPS, and protected using the

Karvdash authentication infrastructure. Internally, these services can access any resource in

the E2F2C-private network. Persistent data is directed to Karvdash-supplied storage that can

11 https://www.djangoproject.com
12 https://helm.sh
13 https://cert-manager.io
14 https://kubernetes.github.io/ingress-nginx/
15 https://jupyter.org/hub
16 https://argoproj.github.io/workflows

https://www.djangoproject.com/
https://helm.sh/
https://cert-manager.io/
https://kubernetes.github.io/ingress-nginx/
https://jupyter.org/hub
https://argoproj.github.io/workflows

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 32 - 31 December, 2021

also be accessed via the Karvdash web interface. Deployment of DatAna and DFB also

required customisation and deployment of dependent ZooKeeper and Kafka services.

Karvdash also assists in the deployment of the Data Corpus, by integrating a web proxy

service to allow external, secure access to the Data Corpus API services. The proxy

implementation registers a new ingress endpoint at the Kubernetes side (in order to get a

HTTPS-compliant URL) and is configured to require authentication using the Karvdash-

registered credentials before forwarding requests to the backend.

3.3.6 Sound event detection

The sound event detection (SED) component takes as input audio signal captured at the scene

and outputs sound event activity information in pre-specified time-resolution (one second).

For each detected sound event, the component provides the sound class label and temporal

information when the sound activity started (onset timestamp) and when it ended (offset

timestamp). The timestamps will be reported in the relation to the start of the signal. The

overview of this SED is shown in Figure 17.

Figure 17. Illustration of the sound event detection component

The SED component implementation for the MVP detects four types of road vehicles: bus,

car, motorcycle, and truck. To develop a robust sound event detection system, a large dataset

captured in real conditions and manually annotated with the onset and offset timestamps for

the sound events (i.e., strong annotation) is required. As the manual annotation is not feasible

for such large datasets, the SED component is implemented using the transfer learning

approach. This approach uses a pre-trained model as a feature extractor to extract audio

embeddings. These embeddings are then used as input to learn target task-specific the SED

component for the MVP task. The component uses a pre-trained PANN model

(MobileNetV1) [3] that is trained with the AudioSet dataset (5000h of audio material) for a

general audio tagging task. The knowledge learned by this model is then transferred to vehicle

detection task by using task-specific learning examples to train a new model while using

audio embeddings produced by the pre-trained PANN model as features. The learning

examples are from task-specific public datasets (MAVD traffic dataset (4h audio) [4] and

IDMT traffic dataset (2.5h audio) [5]) as well as recordings from the GRN (recordings from

mobile setups and from fixed camera setups).

3.3.7 MEMS microphone IM69D130

The IM69D130 MEMS microphone is designed for applications where lower self-noise, wide

dynamic range, low distortions and a high acoustic overload point is required. It features the

specific IFAG Dual Backplate MEMS technology. Its main features are:

• Dynamic range of 105 dB

o Signal to noise ratio of 69 dB(A) SNR

o <1% total harmonic distortions up to 128dBSPL

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 33 - 31 December, 2021

o Acoustic overload point at 130dBSPL

• Sensitivity (± 1dB) and phase (± 2° @1kHz) matched

• Flat frequency response with low frequency roll-off at 28Hz

• Very fast analog to digital conversion speed (6µs latency @1kHz)

• Power optimised modes determined by PDM clock frequency

• PDM output

• Omnidirectional pickup pattern

In the scope of MARVEL, these features will enable accurate and clear data acquisition.

Audiohub Nano data acquisition component: This component features two microphones for

audio data acquisition and transfers the PDM input from the microphones to USB output,

such that the device can be connected via USB to a further processing device. Crucial features

of the device are:

• Audio streaming over USB interface

• Powered through Micro USB

• 48 kHz sampling rate

• 24-bit audio data (stereo)

• Mode switch for toggling between normal mode and low power mode with four pre-

defined gain configurations

• LED indication for the configured gain level in normal mode and low power mode

• Volume unit meter display with onboard LEDs

It can be easily used with Edge Devices due to the omnipresence of USB connectors.

3.3.8 Visual crowd counting

This component takes as input an image or video frame of a scene that may or may not

involve crowds of people, and outputs a number representing the total number of people

present in the image or video frame, which may be zero if no people are present. Optionally,

this component may also output a density map indicating the density distribution of the crowd

in each part of the image or video frame.

Figure 18. Sample of a scene involving crowds and its corresponding density map

Crowd counting is a regression problem which we approach using DL. Deep neural networks

provide outstanding results; however, they are typically made up of many interconnected

layers, which makes them computationally expensive and slow. Dynamic inference methods

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 34 - 31 December, 2021

alleviate this problem by skipping parts of deep neural networks, however, the downside is

that the results are usually less accurate. One such dynamic inference method is early exiting,

where early exit branches are added after intermediate layers of the deep neural network and

provide early results. We have proposed several methodologies for decreasing the accuracy

drop in these early exits, for instance, using curriculum learning, which first introduces easier

examples to the deep neural network and gradually introduces more difficult ones during

training; similar to how humans learn a curriculum.

Audio-visual crowd counting component

Similar to the visual crowd counting component, this component takes as input an image or

video frame of a scene that may or may not involve crowds of people. Additionally, a short

audio clip starting from -0.5s before the image or video frame was taken and ending +0.5s

afterwards, representing the ambient audio of the scene, is also given as input. This ambient

audio can help in situations where the quality of the image is low, for instance, low

illumination, low resolution, capture device noise and occlusion. The output is a number

representing the total number of people present in the image or video frame, which may be

zero if no people are present. Optionally, this component may also output a density map

indicating the density distribution of the crowd in each part of the image or video frame.

Figure 19. Schematic illustration of the audio-visual crowd counting component

As previously mentioned, crowd counting is a regression problem which we approach using

DL. Deep neural networks provide outstanding results, however, they are typically made up

of many interconnected layers, which makes them computationally expensive and slow.

Dynamic inference methods alleviate this problem by skipping parts of deep neural networks,

however, the downside is that the results are usually less accurate. One such dynamic

inference method is early exiting, where early exit branches are added after intermediate

layers of the deep neural network and provide early results. We have proposed several

methodologies for decreasing the accuracy drop in these early exits, including a novel

approach of mixing audio and visual features directly in the early exit branch using the newly

introduced Vision Transformer architecture [6].

3.3.9 MARVEL Data Corpus

MARVEL Data Corpus is a service for facilitating the ingestion and retrieval of processed

multimodal AV open data, obtained free of charge. Currently deployed behind Karvdash,

MARVEL Data Corpus works as a central repository offering a series of REST APIs for

uploading and accessing AV data.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 35 - 31 December, 2021

Towards the MVP, MARVEL Data Corpus has been deployed as a fully distributed

dockerised environment using two basic technologies HBase17 and Hadoop18. HDFS is a File

system of Hadoop designed for storing very large files running on a cluster of commodity

hardware. Hadoop HDFS provides a fault-tolerant storage layer for Hadoop and its other

components. It provides high throughput access to application data by providing the data

access in parallel. On the other hand, HBase is a Hadoop database, a distributed, scalable, big

data store. HBase provides low-latency random reads and writes on top of HDFS and it’s able

to handle petabytes of data.

Currently, MARVEL Data Corpus consists of:

• An HDFS namenode that regulates file access to the clients. It maintains and manages

the datanode and assigns tasks to them. Namenode executes file system namespace

operations like opening, closing, and renaming files and directories.

• An HDFS datanode that manages storage of data. This slave node is the actual worker

node that does the tasks and serves, reads, and writes requests from the file system’s

clients.

• An HDFS node manager as a WebLogic Server utility that enables to manage

namenode and datanode instances remotely.

• An HDFS resource manager node that is responsible for tracking the resources and

scheduling applications (such as Spark19 Jobs).

• An HDFS history server that works as a staging directory for temporary file creation

while running jobs also as directory for log files of finished jobs.

• An HBase master node that coordinates the HBase Cluster and is responsible for

administrative operations.

• An HBase region server that is responsible to handle a subset of the table’s data.

For the MVP, MARVEL Data Corpus exposes two basic REST APIs functionalities: a REST

API for ingesting data to the Corpus and a REST API for creating the respective record inside

the HDFS. The ingestion procedure, regarding the first API, is performed in two parts: first, a

negotiation with the HDFS for creating the necessary resource inside the Hadoop file system

which returns a unique location-endpoint inside the HDFS system and second, the actual

ingestion procedure to the latter endpoint. The REST API for creating records to the HBase

system is based on the description of audio and video metadata. The records will also include

a key-value field that will have the exact location-endpoint of the HDFS storage position of

the data.

3.3.10 SmartViz

Overview

SmartViz is a data visualisation toolkit that will constitute the UI of the decision-making

toolkit. It provides the means to visualise several incoming detected events deriving from the

analysis of data coming through the Edge layer. It consists of a set of visualisation tools

developed to allow exploratory analysis of the incoming data by using interactive and relative

presentations to the nature of the data. SmartViz enables the end-users to interact with and

17 https://hbase.apache.org/

18 https://hadoop.apache.org/

19 https://spark.apache.org/

https://hbase.apache.org/
https://hadoop.apache.org/
https://spark.apache.org/

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 36 - 31 December, 2021

gain a solid understanding of data, to drill into more detailed information, to discover patterns

and correlations of data items and to lead them in making data-driven decisions. SmartViz

functionalities will include advanced visualisations of detected events, demonstration of the

related statistical data via different visualisation schemas and widgets, data filtering options

and flexible interfaces.

Using its aforementioned capabilities, SmartViz aims to help users greatly decrease the time

needed to gain a solid situational awareness. Therefore, decision-makers will be empowered

to discover patterns, behaviours, and correlations of data items via a visual data exploration

process that will be supported and enhanced by knowledge gained about the available

information by the rest of the MARVEL subsystems.

The data visualisation toolkit will be able to consume a variety of data, coming through

different workflows and pipelines inside the MARVEL infrastructure. Such data could have

different velocity, format, type and can be offered via live or batch streams. The purpose of

the SmartViz toolkit is to be able to handle and support all the above and in parallel to satisfy

the end-user needs and facilitate decision-making.

SmartViz’s current TRL is 4 and is expected to reach TRL 6 at the end of the MARVEL

project.

Technologies

The SmartViz data visualisation toolkit is served as a web application directly accessible by

end-users and it is written in Typescript using the Angular20 framework. It uses selected

visualisation libraries written in Typescript and JavaScript that contribute to the pool of

visualisation widgets.

This frontend part of the toolkit depends on a middleware, that transforms information into

internal data representations, which can therefore feed the visualisations. This web server that

acts as the middleware between the SmartViz and the other data distribution components of

the MARVEL subsystems, also hosts configuration options, managing parameters like user

authentication and authorisation, dashboard sharing options, etc. It is written in Node.js21 with

Express.js22 as its web application framework and it uses the architectural style of REST.

SmartViz is capable of connecting with multiple data sources and then use its internal data

API and configuration options to produce predefined as well as user-defined visualisation

dashboards. Existing adapters can already support RESTful APIs and real-time data feeds

(i.e., Kafka topics) through the web server described. The deployment and integration of

SmartViz in MARVEL will be done in Docker environment since our services are offered as

Docker images along with the corresponding configuration files (i.e., in yaml format).

Role in the MVP

SmartViz is the final component in the tail of the MPV’s pipeline and its purpose is to give

meaningful insights and interaction capabilities to the end-users and thus, to facilitate urban

planning.

SmartViz plays a central role in two of the use case scenarios selected for the MVP. It will

carry out the visualisation needs of the undertaken use case GRN4: Junction Traffic

20 https://angular.io/

21 https://nodejs.org/

22 https://expressjs.com/

https://angular.io/
https://nodejs.org/
https://expressjs.com/

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 37 - 31 December, 2021

Trajectory, along with the specified user stories that will be described in Section 5. The pool

of visualisation includes widgets that vary from simple charts and graphs to complex timeline

representations, geospatial depictions, and real-time rendering of data. For the MVP, we will

select several widgets from this pool that will make sense for the user needs, and for the

respective data that will be utilised. Geospatial depictions and statistical analysis through

graphs, charts, and tables with information regarding the detected events are some of the main

widgets that will be exploited for the scope of the MVP. Regarding the middleware that is

described above, we will use all the functionalities it offers, and it will support both real-time

data streams and historical data.

The DMT will constitute and facilitate the interactions with MARVEL end-users. It will serve

as the key interface of all processes performed in MARVEL delivering all the insights

produced to the users to consume and decide the next steps. SmartViz is the component that

facilitates the visualisations depicted in the DMT through pre-configured widgets according

to the preferences of the users and co-designed with the MARVEL partners and the GRN

pilot for the MVP of the project. For the scope of the MVP, SmartViz connects by its internal

data API and configuration with RESTful APIs and real-time data feeds (i.e., Kafka topics), to

produce a user-predefined visualisation dashboard. However, more data adapters can be

plugged in to support different data sources for including other pilots and use cases in the

upcoming versions of the DMT. The output of the adapters is handled by a middleware, that

transforms information into internal data representations, which therefore feeds the

visualisations. The frontend part of the tool is served as a web application directly accessible

by end-users. Data are displayed using a pool of visualisations that include simple charts,

graphs, and geospatial depictions in real-time rendering of data streams. Moreover, advanced

filtering mechanisms and interconnected visualisations are available to allow multiple ways of

data presentation and foster exploratory data analysis.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 38 - 31 December, 2021

4 Integration and deployment

In this section, we present integration and deployment activities for the MVP, including the

specific architectural views for the selected use case scenarios, the required infrastructure, as

well as discussion of components and data integration, deployment and testing.

4.1 Architecture

We now explain the instantiation of the MARVEL conceptual architecture, presented in

Figure 1 of D1.3 for the MVP use case GRN4: Junction traffic analysis, including also further

specifications, refinements and interactions of MARVEL components relevant for the MVP.

For completeness, we show the MARVEL conceptual architecture in Figure 20 below.

Figure 20. MARVEL conceptual architecture

In the context of the MVP demonstrations, we define three user journeys (UJ) that describe

the operation of the framework as perceived by the end-user. We also use the term “Scenario”

that supports and implements the defined UJ, describing not only the end-user experience but

also the technical details for that implementation.

We consider three different UJs within the MVP GRN4 use case:

1. UJ1: CATFlow inference user journey: This UJ provides the end-user with

information about detected vehicles and their trajectories. In particular, the end-user

visualises the trajectories of the detected vehicles, as well as statistics over the usage

of the junction by particular vehicle types, for example, cars, trucks, and motorcycles.

2. UJ2: Sound events and crowd counting user journey: This UJ presents the end-user

with detailed advanced information, including sound events and pedestrian

distribution on the area of the monitored junction. The end-user is informed about the

exact time of the interesting sound event, and a heatmap of pedestrian distribution on

the area of the junction.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 39 - 31 December, 2021

3. UJ3: MARVEL Data Corpus user journey: This UJ lays the path of the infrastructure

that supports training of AI models, by forwarding anonymised AV data to the

MARVEL Data Corpus that can be monitored and queried by the Corpus admin

dashboard.

The first two user journeys correspond to data/workflow for inference, while the third one

corresponds to the data/workflow for MARVEL Data Corpus. In the following sections, we

describe the MARVEL architecture for each of the above user journeys, specifically, the

runtime and deployment view.

4.1.1 Runtime and deployment view for the GRN4-UJ1: CATFlow inference

Table 1 provides the list of components together with their main functionalities, across

MARVEL functional subsystems, to be used in GRN4-UJ1. In this scenario, video streams

from two cameras are collected using GRNEdge in raw form and transmitted wirelessly to the

GRN fog server. CATFlow, deployed also at the GRN fog server, ingests this data in real-

time and produces from the ingested videos the number of detected vehicles and traffic

trajectories. These output results of CATFlow are in the JSON format and are produced

periodically. The output of CATFlow is published as a Kafka topic and further ingested to

DatAna using NiFi, where basic data transformation is achieved. From DatAna, the dataflow

is passed to DFB and finally to SmartViz. SmartViz provides the UI to the user (in this

scenario, traffic engineer), including visualisations related to the CATFlow inference results.

Karvdash is orchestrating the deployment of the cloud-based components: DatAna, DFB, and

SmartViz. Figure 21 provides the deployment and a simplistic runtime view of the MARVEL

architecture for the GRN4-UJ1 scenario.

Table 1: MARVEL architectural components for GRN4-UJ1: CATFlow inference

MARVEL

subsystem

Component information

Name Owner Functionality Deployment layer

Sensing and

perception

subsystem

GRNEdge GRN
Video streams collection and

transmission (2 cameras)
Edge

CATFlow GRN
AI inference: vehicle count,

traffic trajectories
Fog

Data management

and distribution

subsystem

DatAna ATOS Data management – NiFi Cloud

DFB ITML Data management – Kafka Cloud

Optimised E2F2C

processing and

deployment

subsystem

Karvdash FORTH Service deployment Cloud

E2F2C

infrastructure

Cloud layer PSNC
Cloud layer for GRN4-UJ1:

PSNC cloud
Cloud

Fog layer GRN
Fog layer for GRN4-UJ1:

GRN server
Cloud

Decision-making

and user

interactions

subsystem

SmartViz ZELUS UI and visualisations Cloud

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 40 - 31 December, 2021

Figure 21. Scenario 1: CATFlow inference - Deployment and runtime view

4.1.2 Runtime and deployment view for the GRN4-UJ2: Sound events and crowd

counting

Table 2 provides the list of components together with their main functionalities, across

MARVEL functional subsystems, to be used in GRN4-UJ2. In this scenario, video streams

from two cameras are collected using GRNEdge in raw form and transmitted wirelessly to the

GRN fog server. Two AI components, SED and AVCC, ingest this data in real-time and

produce timestamps for abnormal sound events, and pedestrian distribution over the junction.

These output results of the algorithms are in the JSON format and are produced periodically.

The outputs of SED and AVCC are published as Kafka topics and further ingested to DatAna

using NiFi, where basic data transformation is achieved. From DatAna, the dataflow is passed

to DFB and finally to SmartViz. SmartViz provides the UI to the user (in this scenario, traffic

engineer), including visualisations related to the inference results. Karvdash is orchestrating

the deployment of the cloud-based components: DatAna, DFB and SmartViz. Figure 22

provides the deployment and a simplistic runtime view of the MARVEL architecture for the

GRN4-UJ2 scenario.

Table 2: MARVEL architectural components for GRN4-UJ2: Sound events and crowd counting

MARVEL subsystem
Component information

Name Owner Functionality

Sensing and perception

subsystem
GRNEdge GRN AV data collection and transmission

Multimodal AI
SED AU Sound Event Detection

AVCC TAU Audio Visual Crowd Counting

Data management and

distribution subsystem

DatAna ATOS Data management – NiFi

DFB ITML Data management – Kafka

Optimised E2F2C

processing and
Karvdash FORTH Service deployment

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 41 - 31 December, 2021

deployment subsystem

E2F2C infrastructure
Cloud layer PSNC Cloud layer for GRN4-UJ2

Fog layer GRN Fog layer for GRN4-UJ2

Decision-making and

user interactions

subsystem

SmartViz ZELUS UI and visualisations

Figure 22. Scenario 2: Sound events and crowd counting – Deployment and runtime view

4.1.3 Runtime and deployment view for the GRN4-UJ3: MARVEL Data Corpus

Table 3 provides the list of components together with their main functionalities, across

MARVEL functional subsystems, to be used in GRN4-UJ3. In this scenario, video streams

from two cameras are collected using GRNEdge in raw form and transmitted wirelessly to the

GRN fog server. These data are passed through an anonymisation component. The

anonymised AV data, along with relevant metadata and annotations are processed by a script

that makes sure that all data are transferred and stored in the Data Corpus, following a

specific data model, defined for the needs of MARVEL. The current version of this data

model provided in Appendix A, and is expected to evolve as the Data Corpus is further

developed. Karvdash is orchestrating the deployment of the cloud-based components. Figure

23 provides the deployment and a simplistic runtime view of the MARVEL architecture for

the GRN4-UJ3 scenario.

Table 3: MARVEL architectural components for GRN4-UJ3: MARVEL Data Corpus

MARVEL subsystem
Component information

Name Owner Functionality

Sensing and perception

subsystem
GRNEdge GRN AV data collection and transmission

Security, privacy and

data protection

subsystem

Anonymisation FBK
Video anonymisation offline version

of VideoAnony component

Optimised E2F2C Karvdash FORTH Service deployment

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 42 - 31 December, 2021

processing and

deployment subsystem

E2F2C infrastructure
Cloud layer PSNC Cloud layer for GRN4-UJ3

Fog layer GRN Fog layer for GRN4-UJ3

Decision-making and

user interactions

subsystem

MARVEL Data

Corpus-as-a-Service
STS MARVEL Data Corpus

Figure 23. Scenario 3: MARVEL Data Corpus – Deployment and runtime view

4.1.4 Data management platform architecture

The Data Management Platform (DMP) figure which presents the overview of the data

management and distribution subsystem, also showing the main component interactions and

data flows, is illustrated in Figure 21 of MARVEL D1.3. For the sake of saving space, we

omit including it here; the interested reader can refer to D1.3, p. 6223. For the purposes of the

MVP, specific parts of the subsystem were selected and were refined and re-specified. Figure

24 illustrates the selected components. As shown in the Figure, the core DMP components for

the MVP are the DFB and DatAna. Selected functionalities of those components serve as

technological enablers towards the MVP. Specifically, Apache NiFi to allow the processing of

data flows between the edge and the fog layers, Kafka for stream processing, and

Elasticsearch. The data considered for the MVP will originate from GRN and will be

distributed using CATFlow. The aforementioned component refinements are reflected in the

selected data flows which are depicted as red arrows in Figure 24. The eventual data flows

will arrive at the DMT components (WP4) for ultimate visualisations.

23 “D1.3 Architecture definition for MARVEL framework,” Project MARVEL, 2021.

https://zenodo.org/record/5463897#.Yc19Sy8Rr0p

https://zenodo.org/record/5463897#.Yc19Sy8Rr0p

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 43 - 31 December, 2021

Figure 24. Selected DMP components for MVP refinement

The selected components from the GRN-DMP-DMT chain are extracted and illustrated in

Figure 25. The exact data flows that are demonstrated in the scope of the MVP are shown in

black arrows. The blue part represents the GRN components, while the orange parts represent

the DMP and DMT components.

Figure 25. Selected DMP components' interactions for the MVP

In the following table, the implemented actions regarding the integration of the components in

the GRN-DMP-DMT continuum are listed. On the left part of the table, pair of components

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 44 - 31 December, 2021

are reported (following the logical flow of Figure 25). On the right part of the table, the

implemented actions are reported.

Table 4: Implemented actions for DMP components

Integration Implemented actions

CATFlow – DatAna • Azure connection

• Azure Kafka topics for DatAna consumer

• Data contents

DatAna – DFB • DFB connection

• DFB Kafka topics for DatAna producer

• Elastic Indices

• DatAna transformations

• Data Schema for DFB input

DFB – SmartViz • DFB Kafka topics for SmartViz consumer

• Necessary queries to Elasticsearch

With regards to the integration of GRN’s CATFlow and DatAna, technical details on Azure

connections, Kafka topics for data consumers and data contents were addressed. With regards

to the integration of DatAna and DFB, DFB connections, Kafka topics from data producers,

Elastic indices, DatAna transformations and Data Schemas were addressed. With regards to

the DFB - SmartViz integration, Kafka topics where SmartViz should subscribe for

visualisations and Elasticsearch indices to query for historical data visualisations were

addressed.

4.2 Infrastructure

PSNC cloud infrastructure

PSNC provides computing resources for various MARVEL subsystems operating in the cloud

layer. The provided infrastructure consists of access to the HPC supercomputer and access to

virtualised private cloud. The powerful supercomputer Eagle offers 1.4 PFLOPS of

processing power. It consists of more than a thousand nodes with a total of more than 30

thousand cores and 120 TB of operational memory (RAM). Additionally, to take full

advantage of the AI-based algorithms for AV analytics, the computing platform is equipped

with 78 GPUs NVIDIA V100 with 32GB of memory each.

However, the primary role in MVP is played by virtualised private cloud resources. These are

available via LabITaaS, which is the processing and data collection node, offering cloud-

based services. LabITaaS is managed by OpenStack web interface and deployed as

Infrastructure-as-a-Service. All functionality of OpenStack governed cloud is available via

REST API allowing for building flexible flows that adjust used resources exactly to current

needs. This approach enables scripted deployment and utilisation of auto-scaling and

reliability mechanisms.

The first component used in the MVP cloud layer is Karvdash that belongs to the Optimised

E2F2C processing MARVEL subsystem. Karvdash is installed on a VM equipped with 8

CPUs, 16 GB RAM, 512 GB of block storage, runs Ubuntu 20.04.1 LTS, and Kubernetes

1.19.8.

The next two components in the MVP cloud layer represent the Data management and

Distribution Subsystems. First of them is DatAna, a simple NiFi service located in the PSNC

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 45 - 31 December, 2021

cloud and managed by Karvdash. DatAna acts as an entry point and interfaces with the second

component of this subsystem that is DFB. Communication between these components is

accomplished via Kafka topics.

The last components in the MVP cloud layer refer to the User interactions and decision-

making subsystem. The goal of SmartViz is to provide advanced UI visualisations of the

DMT. Additionally, PSNC provides VM and sufficient storage resources for the MVP version

of MARVEL Data Corpus as-a-Service.

4.3 Components’ deployment and integration

After having specified the views of the architecture and the size of the required infrastructure,

we proceeded with the technical activities of deploying and integrating the selected

components. The outcome of all activities is a functional release of the MVP, accessible to

authorised users of the MARVEL platform24.

The first activity deals with updating and shipping the individual components. As mentioned

in Section 2, a GitLab is put in place for MARVEL partners to use. We decided that all

software components are shipped as dockerised containers, thus providing a unified way of

handling and deploying components, as well as resolving issues of dependencies, libraries and

environment configuration for each component.

For all these components, we used Karvdash as the dashboard to execute and monitor

component deployments.

For the data management and decision-making components (DatAna, DFB, and SmartViz),

we proceeded with test integrations, as these components are connected and used in various

ways for different scenarios. We established a pipeline in which DatAna retrieves some

sample data from a file system, streams these data to DFB’s Kafka on a test topic, DFB

indexes the data in Elasticsearch, and finally SmartViz subscribes to the test topic, queries the

Elasticsearch and presents real-time and historical data respectively with generated sample

visualisations. At this stage, the proof-of-concept that we address is that this pipeline can be

reused for different scenarios. The added value of this pipeline for scale and performance will

be more evident in future releases where a number of components will stream large volumes

of data to the data management platform for visualisation.

For Scenario 1 and Scenario 2, we defined the non-AV data formats that represent the

information produced and handled for these specific scenarios. We have chosen JSON for all

non-AV data exchanged between components. For Scenario 1, CATFlow’s output contained

vehicle detection and trajectory information (Appendix B), while for Scenario 2, the outputs

of the AI components (AVCC, SED) were used to define the structure to be exchanged

(Appendix C).

Overall, the three supported scenarios are implemented by the integrated components of the

MVP, corresponding to the user journeys described in this document. The scenarios, the

participating components, and the data flow description are explained in the remainder of this

section.

Scenario 1: The purpose of this scenario is to provide the end-user with information about

detected vehicles and their trajectories. In a real-world operation, CATFlow would receive

real-time AV data from cameras and operate on these data to detect vehicles and trajectories.

For the MVP, CATFlow receives a set of files with recorded video and sound from the

24 https://www.marvel-platform.eu

https://www.marvel-platform.eu/

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 46 - 31 December, 2021

cameras on the street level. The results are retrieved by DatAna that, in its turn, streams the

collected data to DFB’s Kafka. The data are indexed in the Elasticsearch instance so as to be

available at any time. Finally, SmartViz queries the Elasticsearch API, retrieves the data, and

presents them to the end-user, as presented in detail in Section 5.1.

Scenario 2: The purpose of this scenario is to present the end-user with detailed advanced

information, including sound events and pedestrian distribution on the area of the monitored

junction. The data flow for this scenario is similar to Scenario 1. The AV files with recorded

video and sound from the street-level cameras are made available through the GRNEdge

module to two AI components: SED and AVCC. The inference results of these components

are, respectively, timestamps on the recorded video that mark an interesting sound event, and

a heatmap of pedestrian distribution on the area of the junction. Similar to Scenario 1, these

inference results are streamed through DatAna to DFB, and the indexed information is

accessed and visualised by SmartViz, as detailed in Section 5.1.

Scenario 3: The purpose of this scenario is to lay the path for the infrastructure that supports

training of AI models, by forwarding AV data to the MARVEL Data Corpus. The Data

Corpus component was successfully deployed. The recorded AV files with the accompanying

metadata (timestamps, sources, file type, duration, etc.) were transmitted to the Corpus from

the GRNEdge module, after passing through video anonymisation. The stored data can be

monitored and queried by the Corpus admin dashboard.

The above scenarios were tested thoroughly in parts and in end-to-end tests. The tests were in

general successful, after solving many technical and configuration issues that arose. In many

cases, the inference results of the AI algorithms were not accurate, as these algorithms were

trained with generic data or with training transfer techniques. However, the purpose of the

MVP release is to showcase the potentials of the framework, leaving accuracy, efficiency and

optimisation issues to next releases when larger quantities of relevant datasets will be

available.

Additionally, the testing phase revealed several issues that need to be addressed in detail for

the upcoming integrated releases of the MARVEL framework, as for example, the

performance issues that will appear when the size of data becomes significant, the real-time

version of the tested inputs, the establishment of links and references between AV and

metadata (annotations, inference results), and the need to improve accuracy and efficiency of

AI algorithms through training with appropriate datasets.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 47 - 31 December, 2021

5 Demonstration

In this section, we present the MVP demonstrator that focuses on services provided from the

end-user point of view. We describe the role of the Decision-Making Toolkit as a means for

visualising the collected and processed traffic data and relevant detected events. For each user

journey defined, we present the screens with which the end-user interacts.

5.1 The Decision-Making Toolkit

The Decision-Making Toolkit will be the user interface of the MARVEL project. For the

scope of the MVP, we have decided to focus on the use case GRN4: Junction Traffic

Trajectory collection (see section 3.2.2 for more details of the use case that has been described

in detail in D1.2: MARVEL’s Experimental Protocol).

Principles of Design Thinking were leveraged in order to design the UX of the MVP as well

as the extended MARVEL solution. For the purposes of the MVP, we identified the user

(traffic engineer) as well as their prioritised need which led to this use case in the first place:

“As a Transport engineer, I need a way to track and analyse traffic data in various junctions,

so that I devise a better traffic plan for the area”.

We then identified a few ideas to tackle this need and we prioritised them according to impact

and feasibility. The ones with the highest impact and feasibility are prioritised to be

implemented and released as our MVP. The detailed user journey is described in paragraph

5.2 of this document. The ideas prioritised are:

1. The user will be able to view the trajectories of various types of vehicles on the

junctions watched on a camera image (batch data).

2. The user will be able to view the number of different types of vehicles appearing in

the junction on various interactive graphs (batch data).

3. The user will be able to view anomalies on the junctions watched on a map (real-time

info with geolocation coordinates).

In later versions after the MVP, we are planning to position this information on the map as

well in order to better satisfy this need and enrich the features covering this use case.

As a result of the process described above, the DMT will provide to the users of MARVEL

visualisations of detected events mostly associated with traffic and vehicles. The toolkit will

allow the visualisation for the facilitation of medium to long-term decisions with the

assistance of the predefined widgets. A few preconfigured visualisation schemas were

selected to address the ideas described earlier based on best practices and on ZELUS’ team

experience for user-friendliness and intuitiveness, in order to allow the use of the toolkit by

users with no need for extensive training.

Users will firstly choose from the available use cases (Figure 26). In the context of the MVP,

the GRN4: Junction Traffic Trajectory was the one selected for development.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 48 - 31 December, 2021

Figure 26. SmartViz dashboard

The dashboard for this use case (Figure 26) allows users to choose one of the available

scenarios per pilot use case. For the MVP, use case GRN4: Junction Traffic Trajectory

Collection links to two implement scenarios, detailed in the following subsections.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 49 - 31 December, 2021

Figure 27. The trajectories widget

Detailed information regarding the trajectories of the detected vehicles will be presented in

the Trajectories widget. In this widget, the paths of the passing vehicles are drawn in the

image of the camera feed that is recording them. The paths are grouped and color-coded

depicting different kinds of vehicles. The user is able to change the time period and select the

type of vehicle to further investigate.

Detailed information about the detected incoming events will be presented in the Details

widget. This widget also supports a standalone text filtering capability in order to search

through the available information.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 50 - 31 December, 2021

Although events coming to the DMT are only the ones produced by the GRN pilot and the AI

system for the MVP, SmartViz is capable of supporting all the other sources that will be

deployed in the full version of the MARVEL framework.

5.2 User journeys for GRN Use Case 4

5.2.1 User Journey 1: Vehicle and Bicycle Trajectories, and Vehicle counting

This user journey tackles the need for traffic engineers to view and analyse the trajectories of

cyclists and other vehicles. This will allow the traffic engineers to make informed decisions

on issues such as the most preferred location of a cycle path or if there needs to be more

enforcement on issues such as heavyweight vehicles staying on the left side of the road. This

data could then be visualised as a collection of traces drawn on an image of the road being

investigated. The UI widget that the end-user interacts with is shown in Figure 27.

The edge component for this use case will be the Mgarr Camera. This camera can stream both

audio and video, however, only video is required by the CATFlow system, which is used for

the MVP implementation. The video data is streamed using the RTSP protocol to the GRN

fog layer. Here the CATFlow algorithm is used to process the video. The output from the

CATFlow algorithm is structured non-binary data, in JSON format. Included in this data are

points that trace each vehicle's trajectory.

For the needs of the MVP, the JSON data produced by CATFlow are stored in files in

Karvdash shared folders, from where DatAna takes them, provides the necessary formatting

and passes the messages to the DFB Kafka in the cloud. The streamed data can be accessed

and used for visualisation. For the purposes of visualisation, the data will be used to collect

the trends of trajectories. Real-time analytics are not required in this user journey as decisions

will be made on historical data collected.

Additionally, this user journey presents a count (a distribution) of the different types of

vehicles passing through a road junction or segment. This will allow the user to be able to

track how frequently a road is being used and by what type of vehicle. This information could

then be used to make data-driven decisions on the road infrastructure. For example, a road

frequently used by heavy vehicles would need to be re-surfaced more often and/or would

require a different mix of road surfacing materials. Alternatively, the engineer might consider

rerouting the heavy vehicles. On the other hand, a road frequently used by cyclists would

make a candidate for the installation of a cycling lane or the installation of cycling

infrastructural technology. For the MVP, only simple data processing algorithms are

implemented such as collecting and separating the traffic counts based on the different types

of vehicles or the visualisation of colour-coded trajectories which a human being would be

able to visually process and reach conclusions.

Finally, the information of detected vehicles is also presented to the user in a temporal form,

as shown in Figure 28. In the table shown, the horizontal axis is time, divided into slots of one

hour. Vertically, the grouping of vehicles by type is shown. The detected vehicles, color-

coded and labelled with their vehicle type, are represented as dots at the exact moment of

detection.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 51 - 31 December, 2021

Figure 28. Temporal representation of detected vehicles

5.2.2 User Journey 2: Sound Events and Crowd counting

Similar to User Journey 1, the primary end-users for this user journey are traffic engineers

that need to view and analyse advanced detected events, namely sound events and count of

pedestrians on the junction area. While UJ1 presents information useful for monitoring a

junction, this UJ draws the attention of the end-user to specific events and areas of the camera

frame where a decision may need to be taken. In future releases, any relevant algorithm of the

complete set of MARVEL’s AI algorithms could be incorporated in this setting. In Figure 29,

the UI screen for UJ2 is shown.

The edge component for this use case will be the Mgarr Camera. This camera can stream both

audio and video, that are processed by the SED and AVCC components. SED outputs a JSON

structure with a detected sound event type, and the timestamp for this occurrence. For

example, one of the capabilities of SED is to identify a vehicle by its sound. AVCC outputs a

JSON with points on each frame of a video with a likelihood value for a pedestrian to be

present at that point. This information is summarised in a matrix that corresponds to the input

frame and later visualised as a heatmap over the original frames. Examples of both outputs of

the two components are presented in Appendix B and Appendix C.

As in UJ1, the inference results in JSON format are stored in files in Karvdash shared folders.

DatAna accesses those folders and after providing the necessary formatting, it passes them as

JSON messages to the DFB Kafka in the cloud, then indexed in the Elasticsearch module and

can be accessed and used for visualisation. An example of a visualisation of the heatmap for

detected pedestrians is shown in Figure 29.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 52 - 31 December, 2021

Figure 29. Pedestrian heatmap screen for UJ2

5.2.3 User Journey 3: Populating the MARVEL Data Corpus

Unlike the previous UJs, this user journey is not directly targeted to traffic engineers or any

other professional end-users that need to monitor events on a street level and make a decision.

For this UJ, the end goal is to collect, and store in the Data Corpus all annotated, anonymised

AV data that will be available to the AI components for model training and potentially to any

other client that may use these data. At this stage, as well as during the phase of growth and

maintenance of the Data Corpus, the targeted end-users for this UJ are administrators that

need to monitor both the contents of the Corpus (statistics for files, details of individual files),

as well as monitoring the health and performance of the underlying infrastructure. In Figure

30 and Figure 31, we can see two administration screens that show a master-detail view of an

uploaded file and the admin dashboard view, respectively.

The value of these UI elements will be more evident as the Data Corpus size will increase in

the course of the project, as content and infrastructure monitoring activities will be crucial for

the performance of the Data Corpus.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 53 - 31 December, 2021

Figure 30. Master-detail view of the AV files stored in the Data Corpus

Figure 31. Administration dashboard for the Data Corpus

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 54 - 31 December, 2021

6 Contribution to MARVEL goals

The overarching goal of MARVEL is to deliver an Edge-to-Fog-to-Cloud (E2F2C)

framework that operates in real-world environments, processing large volumes of captured

AV data, enabled by multi-modal perception and intelligence. More specifically, with regards

to the project objectives analysed in the DoA, the delivery of the MVP is related to 'Overall

project Objective 3 that states:

Objective 3: Break technological silos, converge very diverse and novel engineering

paradigms and establish a distributed and secure Edge-to-Fog-to-Cloud (E2F2C)

ubiquitous computing framework in the big data value chain Challenge Big Data

phenomenon, often called a ‘data tsunami’ raises multifaceted technological

challenges. AI platforms, like IoT applications, rely their success not only on efficient

data processing/management but also in a coordinated action where diverse

technological silos are converged. In contrast to other domains where these actions

have been established (e.g., connected cars), multimodal perception in a smart city

environment lacks significantly behind.

The MVP presented in this document contributes to this objective by setting the stage for the

E2F2C infrastructure, incorporating a set of AI components that showcase their perception

and intelligence capabilities, as well as demonstrating successful end-to-end scenarios for data

management and presentation. This contribution can be regarded as “setting a steppingstone”

towards the upcoming, complete versions of MARVEL that will expand the scale of the MVP

in terms of infrastructure, provided services and volume of data to be processed. Finally, the

proof-of-concept demonstration of the MVP validates the value delivered to the end-user in a

controlled environment and lays the ground for next releases to operate and be tested in real-

life experiments.

The MVP also addresses the enablers that are linked to the above objective, namely a) E1-

HPC infrastructure and resource management, b) E2-Distributed and optimised DL models

deployment, c) E3-Secure and distributed computing framework, and d) E4-Complex

decision-making and insights. In this document, we have presented a minimum subset of

MARVEL technologies that address the above-mentioned topics of end-to-end infrastructure,

distributed AI, distributed computing, and decision-making capabilities. These issues will be

further developed and explored in the next releases of the framework.

Finally, the MVP provides a functional platform that can be used for the evaluation of

technical KPIs that are linked to the above Objective (e.g., KPI-O3-E1-1 to KPI-O3-E4-1),

concerning novel algorithms, algorithmic accuracy and performance, and facilitation of

complex decision-making. A thorough technical evaluation of the MVP will take place during

the upcoming benchmarking activities (Task 5.4), while end-user feedback and evaluation

will occur during the scheduled events and Info-days. The results of these evaluations will be

detailed in the respective deliverables D6.2, D6.3, D6.4, D5.2, and D5.5.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 55 - 31 December, 2021

7 Conclusions

In this document, we presented the MVP for the MARVEL framework. We embarked from

the previous work on framework architecture and use case definition and proceeded with the

specification of the scope and goals of the MVP. We presented in detail the process and

rationale for selecting the appropriate use case to be demonstrated and the technical decisions

regarding infrastructure, user journeys, participating components, and integration of

technologies into a unified, end-to-end platform. We discussed results and observations from

the development and operation of the MVP and linked this release to the overall MARVEL

objectives and subsequent releases.

This document can be used as a basis and reference for planned activities, deliverables and

milestones, most notably: a) the planned benchmarking sessions within Task 5.4, to be part of

deliverable ‘D5.2 - Technical evaluation and progress against benchmarks – initial version’,

b) the public events, showcases and info days where the MVP will be demonstrated to the

public, c) the pilot execution and evaluation, deliverables ‘D6.1 – Demonstrators execution –

initial version’, ‘D6.2 – Evaluation report’, and d) the upcoming complete versions of the

integrated framework, deliverables ‘D5.4 - MARVEL Integrated framework – initial version’,

‘D5.6 - MARVEL Integrated framework – final version’.

Especially for the above-mentioned initial version of the MARVEL integrated framework

(M18), it constitutes a natural continuation of the integration efforts that have started with the

MVP. To that end, we plan to set a detailed roadmap towards M18, for designing,

implementing and delivering a complete version of MARVEL of greater scale and operated in

a real-world setting. In terms of integration processes, as explained in this document, we plan

to enrich our CI/CD process with more issue tracking, documentation and automation tools

that will be necessary for managing the expected data volume, number of components and

underlying infrastructure.

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 56 - 31 December, 2021

Bibliography

[1] Eric Ries. “The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation

to Create Radically Successful Businesses”. New York: Crown Business, 2011.

[2] Jez Humble, David Farley. "Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation”. Addison-Wesley Signature Series 1st

Edition

[3] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D.

Plumbley. "Panns: Large-scale pretrained audio neural networks for audio pattern

recognition." IEEE/ACM Transactions on Audio, Speech, and Language Processing

28 (2020): 2880-2894.

[4] Pablo Zinemanas, Pablo Cancela, and Martin Rocamora, "MAVD: A Dataset for

Sound Event Detection in Urban Environments", Proceedings of the Detection and

Classification of Acoustic Scenes and Events 2019 Workshop (DCASE2019), pages

263–267, New York University, NY, USA, Oct. 2019

[5] Jakob Abeßer, Saichand Gourishetti, András Kátai, Tobias Clauß, Prachi Sharma, and

Liebetrau, IDMT-Traffic: An Open Benchmark Dataset for Acoustic Traffic

Monitoring Research, EUSIPCO, 2021.

[6] Su, Xiu, et al. "Vision transformer architecture search." arXiv preprint

arXiv:2106.13700 (2021).

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 57 - 31 December, 2021

Appendix A

Data Corpus data model

{

"id": "<Entity's unique identifier>",

"category": "<String Reference that points to the type of data, e.g. Audio, Video, Img>",

"dataProvider": "<String Reference that points to the data pilot, e.g. UNS, GRN, MT>",

"description": "<A text-based description of the data>",

"use_case": "<String Reference that points to the corresponding usecase, e.g. GRN1>",

"dataset": "<String Reference that points to the corresponding dataset described in D2.1>",

"keywords": "<A set of keywords describing the topic of the data>",

"video": {

 "video_metadata": {

 "video_resolution": "<the video resolution>",

 "video_fps": "<video frames per seconds>",

 "annotation_type": {

 "annotation_software": "",

 "annotation_ontology": ""

 },

 "device_id": "<points to file that gives device info>",

 "Location": {

 "latitude": "<the latitude of the recording>",

 "longitude": "<the longitude of the recording>"

 },

 "duration": "<video duration in seconds>",

 "total_snippets": "<the total number of snippets>",

 "snippet": [

 {

 "id": "<snippet unique identifier>",

 "publication_date": "<Date of data creation>",

 "duration": "<snippet duration in seconds>",

 "starts": "<snippet starting point in seconds>",

 "ends": "<snippet ending point in seconds>",

 "timestamp": "<the timestamp of data ingestion>",

 "Datanode_HDFS": "<name of datanode where snippet is stored>",

 "Url_HDFS": "<the url/path where the snippet is stored>",

 "is_annotated": "<flag that marks if data is annotated>",

 "annotator_id": "List of annotators",

 "annotation_files": "a list of annotation files",

 "annotation_summary": "<type of events that refer to the

corresponding snippet, parse the annotation file -> to place here>",

 "additional_events": "extra annotation events",

 "Augmentation": {

 "is_augmented": "<flag that marks if snippet is augmented>",

 "augmentation_method": "<Enumerator that points to the

augmentation technique>"

 },

 "Anonymization": {

 "is_anonymized": "<flag that marks if data is anonymized>",

 "anonymization_method": "<Enumerator that points to the

anonymized method>"

 }

 }

]

 }

},

"audio": {

 "audio_metadata": {

 "audio_bitrate": "<the audio bitrate>",

 "audio_sampling": "<sampling frequency in Hz>",

 "no_of_channels": "<the number of channels>",

 "annotation_type": {

 "annotation_software": "",

 "annotation_ontology": ""

 },

 "Location": {

 "latitude": "<the latitude of the recording>",

 "longitude": "<the longitude of the recording>"

 },

 "duration": "<audio duration in seconds>",

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 58 - 31 December, 2021

 "total_snippets": "<the total number of snippets>",

 "snippet": [

 {

 "id": "<snippet unique identifier>",

 "publication_date": "<Date of data creation>",

 "duration": "<snippet duration in seconds>",

 "starts": "<snippet starting point in seconds>",

 "ends": "<snippet ending point in seconds>",

 "timestamp": "<the timestamp of data ingestion>",

 "Datanode_HDFS": "<the name of the datanode where snippet is

stored>",

 "Url_HDFS": "<the url/path where the snippet is stored>",

 "is_annotated": "<flag that marks if data is annotated>",

 "annotator_id": "List of annotators",

 "annotation_file": "<the url/path where corresponding annotation

file is stored>",

 "annotation_summary": "<type of events that refer to the

corresponding snippet>",

 "additional_events": "extra annotation events",

 "Augmentation": {

 "is_augmented": "<flag that marks if snippet is

augmented>",

 "augmentation_method": "<Enumarator that points to the

augmentation technique>"

 },

 "Anonymization": {

 "is_anonymized": "<flag that marks if data is

anonymized>",

 "anonymization_method": "<Enumarator that points to the

anonymized method>"

 }

 }

]

 }

},

"audio-video": {

 "audio-video_metadata": {

 "video_resolution": "<the video resolution>",

 "video_fps": "<video frames per seconds>",

 "audio_bitrate": "<the audio bitrate>",

 "audio_sampling": "<sampling frequency in Hz>",

 "annotation_type": {

 "annotation_video_software": "the sofware type used for video

annotation",

 "annotation_audio_software": "the sofware type used for audio

annotation",

 "annotation_video_ontology": "the ontology used for video annotation",

 "annotation_audio_ontology": "the ontology used for audio annotation"

 },

 "device_id": "<points to file the gives device info>",

 "Location": {

 "latitude": "<the latitude of the recording>",

 "longitude": "<the longitude of the recording>"

 },

 "duration": "<audio-video duration in seconds>",

 "total_snippets": "<the total number of snippets>",

 "snippet": [

 {

 "id": "<snippet unique identifier>",

 "publication_date": "<Date of data creation>",

 "duration": "<snippet duration in seconds>",

 "starts": "<snippet starting point in seconds>",

 "ends": "<snippet ending point in seconds>",

 "timestamp": "<the timestamp of data ingestion>",

 "Datanode_HDFS": "<the name of the datanode where snippet is

stored>",

 "Url_HDFS": "<the url/path where the snippet is stored>",

 "is_annotated": "<flag that marks if data is annotated>",

 "annotator_id": "List of annotators",

 "annotation_files": "a list of annotation files",

 "annotation_summary": "<type of events that refer to the

corresponding snippet>",

 "additional_events": "extra annotation events",

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 59 - 31 December, 2021

 "Augmentation": {

 "is_augmented": "<flag that marks if snippet is

augmented>",

 "augmentation_method": "<Enumerator that points to the

augmentation technique>"

 },

 "Anonymization": {

 "is_anonymized": "<flag that marks if data is

anonymized>",

 "anonymization_method": "<Enumerator that points to the

anonymized method>"

 }

 }

]

 }

}

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 60 - 31 December, 2021

Appendix B

CATFlow output

{

 "msg_ver": "1.0.0",

 "app_ver": "1.0.0",

 "type": "vehicle-cam",

 "id": "6e389259-657e-4002-96c1-e4079db1d867",

 "sent_ts": "2021-11-17T13:02:21.144054+01:00",

 "sys_name": "Greenroads",

 "sys_id": "greenroads",

 "node_id": "ABC",

 "seq_id": "20211117130216-greenroads-streams1-stream1",

 "seq_no": 1,

 "location": {

 "name": "Mgarr - iz-Zebbiegh",

 "uuid": "f630a888-6f40-4784-b377-e1c75f2b849b",

 "lat": "35.91877777777778",

 "lon": "14.376527777777778"

 },

 "camera": {

 "type": "CAM",

 "group_id": "Mgarr iz-Zebbiegh",

 "loc_id": "Mgarr - iz-Zebbiegh",

 "cam_id": "greenroads-streams1-stream1",

 "cam_name": "greenroads-streams1-stream1",

 "cam_uuid": "af19f507-5306-4e19-9f30-f271b4971c9f",

 "lat": "35.91877777777778",

 "lon": "14.376527777777778"

 },

 "vehicle": {

 "type": "car",

 "name": "Car",

 "entry": {

 "ts": "2021-11-17T13:02:17.863805+01:00",

 "carriageway_name": "Mgarr - Triq iz-Zebbiegh",

 "carriageway_uuid": "ba2baff8-4e9d-4cee-8b05-6ae0662b42bf",

 "lane_name": "Mgarr - Triq iz-Zebbiegh - Eastwards",

 "lane_uuid": "a55a5b77-ecca-47fc-850a-ed0bcab28574",

 "lane_type": "general",

 "lane_flow_uuid": "ecab2998-f218-4413-b3bf-e403c244eeb4",

 "uuid": "a66a40d5-0f97-4290-a9ad-fe88f0714eab",

 "midpoint": {

 "x": 0.5848,

 "y": 0.4259

 }

 },

 "exit": {

 "ts": "2021-11-17T13:02:19.393100+01:00",

 "carriageway_name": "Mgarr - Triq iz-Zebbiegh",

 "carriageway_uuid": "ba2baff8-4e9d-4cee-8b05-6ae0662b42bf",

 "lane_name": "Mgarr - Triq iz-Zebbiegh - Eastwards",

 "lane_uuid": "a55a5b77-ecca-47fc-850a-ed0bcab28574",

 "lane_type": "general",

 "uuid": "11c6e77a-0d84-4ff2-8cd6-343b7e430ceb",

 "midpoint": {

 "x": 0.218,

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 61 - 31 December, 2021

 "y": 0.7685

 },

 "lane_flow_uuid": "ecab2998-f218-4413-b3bf-e403c244eeb4"

 },

 "distance_meters": 15,

 "time_seconds": 1.529295,

 "speed_kmh": 35.310388120016086,

 "trajectory_points": [

 [

 0.5471354166666667,

 0.42592592592592593

],

 [

 0.18671875,

 0.6842592592592592

]

]

 }

}

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 62 - 31 December, 2021

Appendix C

SED output

{

 "results": [

 {

 "onset": 2.0,

 "offset": 4.0,

 "label": "car"

 },

 {

 "onset": 3.0,

 "offset": 5.0,

 "label": "car"

 },

 {

 "onset": 4.0,

 "offset": 6.0,

 "label": "car"

 },

[…]

}

AVCC data

 {
 "Data" : {

 "Frame" : 0,

 "predicted_count" : "23.0",

 "image_paths" :

"../data/sample_crowd/Video_for_Crowd_counting/frames/0.jpg",

 "audio_paths" :

"../data/sample_crowd/Video_for_Crowd_counting/audio/0.wav",

 "density_paths" : null,

 "inference_time" : "3.05",

 "description" : "Crowd counting detection",

 "id" : "303d3f27-1f77-4d74-b573-3080d733d7ac",

 "type" : "MediaEvent",

 "eventType" : "CrowdCountingEvent",

 "mediaSource" : {

 "filename" :

"../data/sample_crowd/Video_for_Crowd_counting/greenroads-streams1-

stream12021-11-16_06-27-45+0000.mkv",

MARVEL D5.1 H2020-ICT-2018-20/№ 957337

MARVEL - 63 - 31 December, 2021

 "creationTime" : "2021-12-10T11:39:12+0000",

 "name" : "AVCC - Audio Visual Crowd Counting"

 },

 "dateCreated" : "2021-12-16 07:30:05 ",

 "Heatmap" : [

[…]

]

}

	Executive Summary
	1 Introduction
	1.1 Purpose and scope of this document
	1.2 Intended readership
	1.3 Contribution to WP5 and project objectives
	1.4 Relation to other WPs and deliverables
	1.5 Structure of the document

	2 Continuous Integration
	3 MVP Specification
	3.1 Definition of the MVP
	3.2 Use case selection
	3.2.1 Rationale
	3.2.2 GRN Use case 4 – Junction Traffic Trajectory

	3.3 Components
	3.3.1 CATFlow
	Overview
	Technologies
	Role in the MVP

	3.3.2 DatAna
	Overview
	Technologies
	Role in the MVP

	3.3.3 Data Fusion Bus
	Role in the MVP

	3.3.4 GRNEdge
	Overview
	Technologies
	Role in the MVP

	3.3.5 Karvdash
	Overview
	Technologies
	Role in the MVP

	3.3.6 Sound event detection
	3.3.7 MEMS microphone IM69D130
	3.3.8 Visual crowd counting
	Audio-visual crowd counting component

	3.3.9 MARVEL Data Corpus
	3.3.10 SmartViz
	Overview
	Technologies
	Role in the MVP

	4 Integration and deployment
	4.1 Architecture
	4.1.1 Runtime and deployment view for the GRN4-UJ1: CATFlow inference
	4.1.2 Runtime and deployment view for the GRN4-UJ2: Sound events and crowd counting
	4.1.3 Runtime and deployment view for the GRN4-UJ3: MARVEL Data Corpus
	4.1.4 Data management platform architecture

	4.2 Infrastructure
	PSNC cloud infrastructure

	4.3 Components’ deployment and integration

	5 Demonstration
	5.1 The Decision-Making Toolkit
	5.2 User journeys for GRN Use Case 4
	5.2.1 User Journey 1: Vehicle and Bicycle Trajectories, and Vehicle counting
	5.2.2 User Journey 2: Sound Events and Crowd counting
	5.2.3 User Journey 3: Populating the MARVEL Data Corpus

	6 Contribution to MARVEL goals
	7 Conclusions
	Bibliography
	Appendix A
	Appendix B
	Appendix C

