
International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-10 Issue-1, May 2021 

 

 
246 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.A59000510121 
DOI: 10.35940/ijrte.A5900.0510121 

 

Relative Deadline Analysis in Multitasking RTS 

using RM & EDF Scheduling 

Sandeep S Chapalkar, K. Karibasappa 

Abstract: In embedded systems the time required for any 

process to complete its execution in multitasking environment is 

an important factor to understand the performance of Real Time 

System (RTS) and its ability fulfill the deadline requirement of 

each process under different process load conditions. Even 

though some non-critical systems provide flexibility over 

deadlines, the hard real time systems are to be designed to meet 

the deadline requirement of all processes under peak process 

load condition. The number of processes available in scheduling 

queue may vary with time, the dynamic load on processing unit 

also changes proportionately which in turn affects the relative 

deadlines of each process. The scheduling policies considered 

are widely used scheduling policies like Rate Monotonic (RM) 

and Earliest Deadline First (EDF) to analyze and understand 

the impact on relative deadline with respect to number of 

scheduled processes. The real time execution timings of each 

process is observed on Raspberry Pi 3b+ processing unit 

operating at standard frequency of 700 MHz in multitasking 

mode of operation. The results obtained will decisively conclude 

the suitable scheduling policy for a set of processes under 

different process load conditions. 

Keywords: Embedded, Dynamic load, load estimation, 

Multitasking, Optimization, Rate monotonic, Earliest Deadline 

First, Real time systems, Absolute deadline, Relative deadline 

I. INTRODUCTION 

Embedded systems have been an integral part of life 

from few decades and is expected to play more prominent 

role in future days. The ever changing requirement and 

needs of end users leads more complex systems and in turn 

is going to increase in number of processes to be executed. 

And new applications demands systems capable of handling 

more complex operations. Therefore it’s important to 

identify the most efficient scheduling method for 

implementation of efficient product. As the processes 

associated with the application may be event triggered or 

user initiated, the number of processes scheduled in the 

system may vary continuously with time. This change in the 

number of processes significantly affects the relative 

deadlines of each process and it’s important to design 

systems adopt the right scheduling methods to deliver 

efficient performance. 

 

 

 
 

Manuscript received on May 17, 2021. 

Revised Manuscript received on May 24, 2021. 

Manuscript published on May 30, 2021.  
* Correspondence Author 

Sandeep S Chapalkar*, Assistant Professor, Department of 
Electronics and Communication Engineering, Dayananda Sagar College of 

Engineering, Bengaluru (Karnataka), India, E-mail: 

sandeepsc.ece@gmail.com   

K. Karibasappa, Professor, Department of Electronics and 

Communication Engineering, Dayananda Sagar Academy of Technology 

and Management, Bengaluru (Karnataka), India, E-mail: 
karibasappably@gmail.com 

 

The objective of this work is to understand the effect of 

scheduling policies on relative deadlines of different 

processes in the system. The relative deadlines needs to be 

recalculated with every new process in the system. In 

multitasking systems, the processes can be triggered by 

different methods such as events triggered, human interfaces 

or periodic.  Therefore, the number of active processes in the 

system keeps varying with respect to time and condition.  

In some systems the processes which will be executing 

continuously or periodically are priory known. Depending 

on execution time of these processes developer can estimate 

the static load on the processing unit and select appropriate 

processing unit to meet the deadline requirements. However, 

in some systems the processes may be triggered during 

operational phase depending on event or human interaction, 

under such circumstances the relative deadlines of the 

processes need to be recalculated. The hard-real time 

systems need to be designed to fulfil all the deadline 

requirements under its peak load.  

To observe the real time execution period of the 

processes we are using Raspberry pi 3b+ which has an 

ARM11J6JZF-S-v6 operating at a standard frequency of 

700MHz. Structural unit in a processor are analyzed for 

efficient usage and power utilization. Various peripherals 

are interfaced to operate in multitasking mode to note the 

change in relative deadlines for selected scheduling 

methods. 

The microphone and camera interfaced with raspberry pi 

samples the respective inputs repeatedly to evaluate the 

execution time of each process at different frequencies. The 

camera is programmed to capture both still image as well as 

video sample, hence three processes are instantiated multiple 

times for experimental purpose. 

The system supports an SD card interface to load 

required operating system and programs. 16GB SD card is 

installed to make adequate memory availability for system 

and system has 512MB SDRAM for runtime memory 

requirement along with two levels of cache memory system 

for better performance. 

Display module is interfaced through HDMI port 

available on Raspberry board. The installed operating 

system provides GUI for working. The OS provides and 

interface to program using python programming language, 

however some programs are executed through terminal and 

output is observed. 

 

 

 

 

 

 

mailto:sandeepsc.ece@gmail.com
mailto:karibasappably@gmail.com


 

Relative Deadline Analysis in Multitasking RTS using RM & EDF Scheduling 

 

 
247 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.A59000510121 
DOI: 10.35940/ijrte.A5900.0510121 

 

II. LITERATURE SURVEY 

A sensitivity analysis is provided for task deadlines in the 

context of dynamic-priority, pre-emptive, uniprocessor 

scheduling. The paper present a deadline minimization 

method that computes the shortest deadline of a periodic 

task. Real-time systems are often designed using a set of 

periodic tasks whose periods are usually governed by the 

application requirement and system is developed 

accordingly, the system performance can be improved by 

modifying deadlines wherever possible while still satisfying 

the requirements. Sensitivity analysis in real-time systems 

can be focused on changes in task computation times, using 

fixed priority analysis [1]. The paper proposes sensitivity 

analysis for deadline modification under EDF scheduling for 

periodic tasks in real time systems. In case of event driven 

applications sporadic tasks are well suited that periodic as 

they have an upper bound on their rate of occurrences [2].  

Liu and Layland introduced Earliest Deadline First 

scheduling algorithm in 1973 which is widely used in 

systems with dynamic priority allocation [3]. Quick 

convergence Processor demand Analysis (QPA) algorithm 

determines an optimal system parameter by a single run. 

QPA algorithm provides efficient and exact sensitivity 

analysis real-time systems and using various starting values 

intends to improve the implementation of this sensitivity 

analysis [4].  

The EDF algorithm is more efficient if the preemption is 

allowed compared to non-preemptive systems. The EDF 

scheduling is similar to FCFS method if the deadlines are 

deterministic. An analytical method for approximating the 

fractions of job or processes missing the deadline is useful 

to define the boundary within which the system can be 

operated using respective scheduling algorithm. If the 

system is user interfaced, then number of customers 

operating at any given time affects the rate at which the 

processes may exceed the defined deadline. In such cases 

and optimality property of EDF algorithm can be used to 

estimate the loss rate [5]. The feasibility analysis in EDF is 

most often based on processor demand. Once the processes 

are scheduled according to deadlines then at end of every 

deadlines processor demand of all processes in queue needs 

to be checked again to identify any new instances. Under 

multitasking situations the processes are executed based on 

their priority, hence there is possibility of missing the 

deadline of lower priority processes in uniprocessor system, 

Hence the processor handover the higher priority processes 

to respective accelerator which are usually designed to 

perform a specific task at much higher rate and core 

processor makes itself free for lower priority process 

establishing an parallel execution environment. This method 

of implementation is used only if the cost of development 

and implementation has enough flexibility as the 

introduction of accelerator proportionately increases the cost 

of the system [6]. 

The CPU utilization factor may continuously vary in case 

of multitasking systems bounded to be less than unity. There 

will always be a trade-off between flexibility and system 

overheads as implementation of flexible systems includes 

more exception handling modules and a greater number of 

service routines, the most common overhead under such 

situation is context switching time which increases overall 

turnaround time of the processes. An experimental using 

polynomial time complexity algorithm show increase in 

acceptance ratio. Both backward and forward iterations need 

to be carried out in order to check deadline requirements as 

process requests may be random in real time [7]. In many 

multitasking systems the number of processes in to be 

scheduled may change continuously. However the hard real 

time systems are to be designed to satisfy the deadline 

requirement under worst case execution time [8]. 

John Lehoczky, Lui Sha and Ye Ding states that Rate 

monotonic scheduling is optimal fixed priority algorithm in 

which the processes having least period is assigned highest 

priority. There are many advantages of Rate Monotonic 

scheduling algorithm in practical implementation and have 

gained importance accordingly [9] [10] [11]. The 

comparison of RM and EDF reveal the misconceptions 

related to EDF and RM policies [12]. The detailed 

comparison shows that the performance of EDF is better in 

many scenarios. Statistical study done by Lehoczky in 1989 

shows the processor utilization in RM is about 88% for 

randomly generated task parameters [13]. 

Cervin proves that EDF scales the period if there is 

permanent overload in the system but RM may block lower 

priority tasks or processes [14]. The software embedded 

inside the system should support optimal scheduling for the 

application. Along with the hardware, programming part 

also plays important role in deciding the performance of the 

system. A good platform and application can improve the 

efficiency and aids envelopment of better systems. 

Programming languages are important for both control over 

real time aspects along with performance enhancement [15]. 

III. SYSTEM BLOCK DIAGRAM AND 

WORKING PRINCIPLE 

The real time multitasking system developed to 

understand the performance and operation under different 

load conditions. Raspberry Pi3b+ processing unit is used as 

hardware platform to develop porotype. This is an ARM7 

core-based processor having CPU operating at 700 Mhz 

standard frequency. It also consists and separate GPU and 

other supporting I/O peripheral units required for the 

application. 

The Raspberry Pi has standard Raspbian operating 

system to maintain the performance efficiently which 

recommends minimum of 8GB SD card for OS installation. 

But having 16GB provides enough space and flexibility to 

upgrade and system and also install additional required tools 

& packages. The system is interfaced with peripherals 

required to execute the intended processes. Often it is 

operated as headless computer with prior configuration, but 

it can also be operated using generic USB computer 

keyboard or mouse. With appropriate device driver installed 

on underlying operating system virtually any other device / 

component compatible with USB can be interfaced. 

 

 

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-10 Issue-1, May 2021 

 

 
248 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.A59000510121 
DOI: 10.35940/ijrte.A5900.0510121 

 

Figure 1: Raspberry Pi3b+ Block Diagram 

 

 
Figure 2: Hardware setup 

 

New Out of Box Software (NOOBS) is used as an 

operating system platform to implement the code required 

for the application. The coding is done using Python and 

executed using Thonny compiler which is an in build cross 

compiler integrated along with Raspbian operating system 

or NOOBS. 

A real time embedded system consisting N number of 

processes with TiExe execution time of any process X. The 

absolute deadline TAD of any process is defined as the time 

consumed by the process from the instance when process is 

arrived in the process queue i.e the time difference between 

the arrival time TA to completion of the execution, which 

includes expected waiting period TW and execution period 

TiExe as shown in equation 1.  The waiting period is 

introduced to include context switching time in multitasking 

environment and can be excluded otherwise.  

TAD=TW+TiExe                                                             (1) 

Then the relative deadline of any process depends on the 

absolute deadlines of all higher priority processes in the 

process scheduling queue of the system as shown in 

equation 2. The relative deadline TRD is defined as the 

summation of TAD of all higher priority processes in the 

queue at any given instant of time. 

TRD= ∑ TiAD  for i=0 to N - (X-1)              (2) 

TRD= ∑ (TiW + TiExe)  for i=0 to N – (X-1)             (3) 

Average relative deadline TRD is defined as the arithmetic 

mean of relative deadlines of each process. 

TRDavg =
(∑ (N – (X−1))+ TiExe)

(N – (X−1))
     for i=0 to X-1          (4) 

Where N – (X-1) are the number of processes having 

higher priority in the scheduled process queue. Hence to 

calculate relative deadline, the arithmetic mean of all the 

scheduled processes are considered. 

The worst-case scenario is considered for the system 

design i.e when all processes available in the system raise 

the request and scheduled in system process queue. The 

processing unit is expected to work at its best performance 

to meet the system requirements and satisfy the deadlines of 

every process. The scheduling algorithm implemented plays 

a crucial role in determining if all the processes are executed 

within the desired time duration. To satisfy this requirement, 

the turnaround time of every process should be less than its 

absolute deadline.  The total turnaround time TT for the 

process is given by cumulative addition of individual 

process turnaround time TTi having higher priority in 

scheduling queue. 

TT= ∑ TTi   where i=0 to X-1                                   (5) 

Rate Monotonic (RM) Scheduling Analysis:  The 

priorities in RM scheduling is decided depending on their 

frequency of arrival [13]. Hence the processes may take 

more time than their actual execution time due to 

preemption by higher priority processes. Accordingly the 

total turnaround time will determine if the processes are 

executed within the specified deadline. 

Earliest Deadline First (EDF) Scheduling 

Analysis: The priority of the process is decided based on 

the absolute deadlines defined for the processes [7]. 

The five processes considered for the analysis are listed 

in the table 1 below with respective time slots in seconds 

and deadlines and related details required for scheduling. 

The scheduling period of 30 time slots is decided based on 

LCM of all deadlines. 

 The actual LCM is 24 but scheduling is done for 1.25 

times of their LCM to accommodate more number of 

processes. The execution time shown in table 1 indicated 

time consumed by the process when it’s executed 

independently and no other process in scheduled. However 

the total turnaround time of process changes when these 

processes are executed in multitasking environment. 

 

 

 

 

 

 



 

Relative Deadline Analysis in Multitasking RTS using RM & EDF Scheduling 

 

 
249 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.A59000510121 
DOI: 10.35940/ijrte.A5900.0510121 

 

 The total turnaround time depends on type of 

scheduling, hence both RM and EDF scheduling methods 

are used to illustrate the effect of scheduling on process 

turnaround time.  

IV. RESULTS AND DISCUSSION 

For real time implementation and experimental analysis 

five processes are considered and their respective 

significance is explained below in this application. The 

scheduling process is carried out for both scheduling 

algorithm i.e. RM & EDF for comparative analysis, based 

on the results the better algorithm can be concluded under 

specific dynamic process load. The scheduling time slots 

considered for scheduling is 1 second under both the 

policies. 

Video Capturing (P1): The camera is used for 

capturing still images as well as video capturing is RCM0M 

SY101S-A-E305654 -V2.1. CSI-2 (Camera Sensor 

Interface) is an interface between camera and host processor 

that allows the use of specially designed Raspberry Pi 

Camera Module to capture both image and video. A 15 cm 

flat ribbon cable (FRC) is used to connect the Camera 

module to CSI port of Raspberry pi module. Once connected 

then the data can be accessed using Multi Media Abstraction 

Layer (MMAL) or Video for Linux (V4L) Application 

programmer Interface (APIs) which runs over OpenMAX. 

The video capture duration is 5 seconds with sufficient 

high resolution. The average execution time (4 executions) 

of the code is V(TEavg) = 5.1255 seconds when executed 

independently under single process execution mode and in 

multitasking mode the average execution time is V(TEavg) 

= 5.1299 seconds, the process takes little more time due to 

context switch and other overheads.  

Video Play (P2): The video_play process is invoking 

video player at the background as another independent 

process. The video captured for 5 secs is played back using 

the display interfaced through HDMI port. NOOBS 

operating system by default includes omx player and same is 

used in application. The omx player compatible with .h264 

format is invoked as sub process to share the display for 

play time. 

The 5 seconds video captured for experimental analysis 

and execution time of this process is 0.0078 seconds and 

hence the total process duration is calculated by adding 

period of video and process execution time. The video_play 

process is consuming 5.0078 seconds to complete 5 seconds 

video playing. 

Image Capturing (P3): The camera interfaced is 

enabled to capture still image on every run in .jpg format. 

The camera used for video capturing and still image are of 

same specifications and are used by both the processes on 

shared resource concept. Average execution time (3 

executions) for single image capturing under independent 

execution mode I(TEavg) = 2.0216 seconds. 

Audio Capture (P4): Audio is recorded for 2 seconds 

using the microphone interfaced through USB connector. 

Sampling frequency for recording is configured to fs = 

44100 through program. The average execution time of this 

process observed is ACap(TEavg) = 3.5204 seconds. 

Therefore audio capture time for any duration can be 

calculated by adding 0.5204 to actual capturing duration. 

Audio Play (P5): The recorded audio is played using 

3.2mm jack connector. The configuration for audio 

capturing is done using pcm.mic API and audio play can be 

configured using pcm.speaker. On board speaker is used 

instead of another peripheral interface. Audio is played at 

44000 hzwith 4096 buffer memory which is used to store 

the data to be played for seamless streaming. 

The average execution time (4 executions) for this 

process is Aplay (TEavg) = 2.1646 seconds. The execution 

is for audio play of 2 Seconds duration. It’s observed that 

the additional execution time taken by process is 0.1646 

secs. Therefore we can calculate the execution time for any 

audio play duration by just adding 0.1646 secs to actual play 

time. If 3 seconds of audio play is considered then the total 

execution time will be 3.1646 seconds. 

 

Figure 3: Real time measurement of execution time of 

processes 

Table 1: Process Description 

Process 

Process 

TExe (Seconds) T*Req TAD Fp 

P1 5.1255 06 12 30 

P2  5.0078 06 12 15 

P3 1.3442 02 04 05 

P4 3.5204 04 08 10 

P5 3.1646 04 08 30 

 

T*Exe – Actual execution time ceiled to nearest integer to 

include context switching and other overheads time. 

TReq – Time slots required to execute 

D – Deadline in Seconds 

Fp – Frequency of the Process 

Rate Monotonic (RM) Scheduling Analysis:  The 

process scheduling is implementation using RM 

scheduling algorithm is shown in table 2.  

 

 

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-10 Issue-1, May 2021 

 

 
250 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.A59000510121 
DOI: 10.35940/ijrte.A5900.0510121 

 

Table 2: RM - Process Turnaround Time 

Process Priority TReq TAD TRD TExe(RM) Comment 

P1 5 06 12 22 NS* Miss 

P2 3 06 12 12 30 Miss 

P3 1 02 04 02 02 Meet 

P4 2 04 08 06 08 Miss 

P5 4 04 08 16 NS* Miss 

NS*: Non-schedulable as they cannot complete the 

execution within the total scheduling period of 30 time slots. 

The higher priority processes will continuously interrupt and 

these processes will never get sufficient time to complete 

their execution. The only way to address such issue is to 

reduce the frequency of higher priority process while 

operating hardware processing unit and its frequency is 

assumed to be constant. It’s can be observed that for a 

required deadline periods the processes are not completely 

schedulable. Three processes out of five are missing the 

deadline as they are not getting sufficient number of slots 

for execution due to preemption of higher priority processes. 

Earliest Deadline First (EDF) Scheduling 

Analysis: The process scheduling is implemented using 

EDF scheduling method is shown in table 3.  

Table 3: EDF Process Turnaround Time 

Process Priority TReq TAD TRD TExe(EDF) Comment 

P1 5 06 12 22 NS* Miss 

P2 4 06 12 16 PS# Miss 

P3 1 02 04 04 02 Meet 

P4 2 04 08 06 08 Miss 

P5 3 04 08 10 19 Miss 

PS#: Partially scheduled 

In EDF scheduling as well it can be observed that the 

processes are not able to satisfy the required deadlines 

limitations. Only three out of five has met the deadline and 

one is not able to schedule due to lack of time slots in total 

scheduling period. 

 

 
Figure 4: Comparison of Execution times using RM & 

EDF algorithms 

V. CONCLUSION 

In this work it can be observed that even though 

processes included in the multitasking embedded system are 

not able to satisfy the deadline requirements under both RM 

and EDF scheduling methods. But EDF performance is 

better compared to RM as it’s able to successfully schedule 

60% of the total processes and also partially complete fourth 

process. Hence the deadline relaxation required in case of 

EDF scheduling is lesser than that of RM.  

The performance of the system can be improved and 

required deadlines can be met by implementing dynamic 

frequency scaling in processing unit. The Raspberry Pi also 

facilitates frequency scaling up to 1.4GHz. However it also 

important to note that the power consumption also increases 

in proportionate to operating frequency. Therefore proper 

cooling system need to be incorporated when processors are 

operated at its highest permitted operating frequency. 

 

 

 

 

 



 

Relative Deadline Analysis in Multitasking RTS using RM & EDF Scheduling 

 

 
251 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication  

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.A59000510121 
DOI: 10.35940/ijrte.A5900.0510121 

 

REFERENCES 

1. Patricia Balbastre, Ismael Ripoll, Alfons Crespo “Minimum deadline 

calculation for periodic real-time tasks in dynamic priority systems”, 

IEEE Transactions on Computers 2007 IEEE. 
2. Kevin Jeffay, David Becker, David Bennett, Shaun Bharrat, Timothy 

Gramling, Mark Housel “The Design, Implementation and Use of a 

Sporadic Tasking Model”, 27599-3175 USA April 1994. 
3. C. L. Liu, James W. Layland, “Scheduling Algorithms for 

Multiprogramming in a Hard- Real-Time Environment”, Journal of 

the Association for Computing Machinery, Vo|, 20, No. 1, January 
1973, pp. 46-61 

4. Fengxiang Zhang, Alan Burns, Sanjoy Baruah “Sensitivity analysis 

of arbitrary deadline real-time systems with EDF scheduling”, 
Springer Science Business Media, LLC 2011 

5. Mehdi Kargahi, Ali Movaghar”A Method for Performance Analysis 

of Earliest-Deadline-First Scheduling Policy”, Proceedings of the 
2004 International Conference on Dependable Systems and 

Networks (DSN’04) 0-7695-2052-9/04 © 2004 IEEE.  
6. Andrew Morton and Wayne M. Loucks “EDF Feasibility Analysis of 

Accelerated Tasks”, 0840-7789/07©2007 IEEE 

7. Michael Short Electronics & Control Group Teesside University, 
Middlesborough, UK “Improved schedulability analysis of implicit 

deadline tasks under limited preemption EDF scheduling” IEEE 

ETFA 2011. 
8. Fengxiang Zhang · Alan Burns · Sanjoy Baruah “Sensitivity analysis 

of arbitrary deadline real-time systems with EDF scheduling”, 

Springer Science Business Media, LLC 2011. 
9. J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling 

algorithm: Exact characterization and average case behavior”, in 

IEEE Real-Time Systems Symposium, 1989, pp. 166–171.  
10. Sprunt B, Kirk D, and L.Sha “Priority Driven Preemptive I/O 

Controllers for Real Time Systems”, Proceedings of 15th 

International Symposium on Computer Architecture (1998), 152-
159.  

11. Stronsnider J K, Marchok T and J Lehoczky “Advanced Real Time 

Scheduling using the IEEE 802.5 Token Ring”, Proceedings of the 
IEEE Real Time Systems Symposium (1988), 42-52. 

12.  Giorgio C. Buttazzo “Rate Monotonic vs. EDF: Judgment Day”, 

2005 Springer Science Business Media, Inc. Manufactured in the 
Netherlands. 

13. Lehoczky, J. P., Sha, L., and Ding, Y. “The rate-monotonic 

scheduling algorithm: exact characterization and average case 
behavior”, Proceedings of the IEEE Real-Time Systems Symposium 

1989, pp. 166–171. 

14. Chen Yao, Li Qiao, Li Zheng, Xiong Huagang “Efficient 
schedulability analysis for mixed-criticality systems under deadline-

based scheduling”, Chinese Journal of Aeronautics 2014 Ref CJA 

305.  
15. K. J. Ransom, C. D. Marlin and Wei Zhao, “An integrated 

environment for the development and analysis of hard real-time 

systems”, Design of Real-Time Systems, Copyright © IFAC Real 
Time Programming 1991. 

AUTHORS PROFILE 

Sandeep S Chapalkar, Ph.D Perusing in 
Embedded design and development area, 

Visvesvaraya technological University, Belagavi, 

Karnataka, India. M.Tech in Digital Electronics 
and Communication, Visvesvaraya technological 

University Belagavi, Karnataka, India. B.E in 

Electronics and Communication Engineering, 
Karnatak University Dharwad, Karnataka, India. 

IEEE member. 

 
 

K. Karibasappa, Ph.D -Machine Learning and 
Perception Using Cognitive Method, University 

College of Engineering, Burla, Orissa 

Sambalpur University, 2004, India • M.E-

Master of Electronics and Telecommunication 

Engineering, Jadavapur University, 1998, 

Calcutta, West Bengal, India • B.E-Electronics 

and Communication Engineering, Malnad 

College of Engineering, Hassan, Karnataka, 

India. Lifetime Member if ISTE 

 

  


