
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

216

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58490510121

DOI: 10.35940/ijrte.A5849.0510121

Abstract: Software tests must be repeated frequently

throughout development cycles to attain certain quality. Every

time program code is changed software assessments need to be

repeated. Once created, automated tests may be run repeatedly at

no extra value and they may be tons quicker than manually

conducted test and free from human errors. Automated software

program testing can lessen the time to run repetitive tests from

days to hours. Test automation can easily run thousands of

different complex test cases in each test run, so there is no manual

testing involved. But Automation testing has its own disadvantages

one of it is that the testers should come from a programming

background. To eliminate this dependency over programmers

Scriptless automation testing tools are emerging. There are many

Scriptless GUI automation testing tools in the market that use

various methods to achieve the goal, this paper proposes a new

record and playback method to achieve the same using Selenium

framework and JavaScript for web application.

Keywords: GUI Automation Testing, Scriptless, Locators,

Data-Driven Architecture.

I. INTRODUCTION

Traditionally, automated testing requires the

development of complex scenarios, and these scenarios

usually require strong technical skills. In addition, these test

cases are usually "fragile", which means they will be

interrupted if the application changes or the application is

launched on another device. Hence the call for Scriptless

automation platforms, which provide companies with a

simple and inexpensive way to take advantage of automated

testing capabilities without the complexity or cost of

scripting.

GUI testing is a method of testing GUI software to

identify errors that have been overlooked during the design

and development stages. It tests the functionality of the GUI

according to the specifications and according to the

technology used. GUI testing also organizes third party

developers or users to evaluate controls, such as menus,

buttons, icons, text boxes, lists, dialog boxes, layouts, colors,

font sizes, text formats, etc. It is used to run attribute values

for each GUI element and perform GUI operations, such as:

Press a key or click the mouse.

Manuscript received on May 12, 2021.

Revised Manuscript received on May 22, 2021.

Manuscript published on May 30, 2021.
* Correspondence Author

Kamble Namita Mohan*, Department of Computer Science and
Engineering, Rashtreeya Vidyalaya College of Engineering, Bengaluru

(Karnataka), India. Email: kamblenamita20@gmail.com
Dr. Ramakanth Kumar P*, Department of Computer Science and

Engineering, Rashtreeya Vidyalaya College of Engineering, Bengaluru

(Karnataka), India. Email: ramakanthkp@rvce.edu.in

In this modern era of GUI automation testing, tools are

very high maintenance as they generate scripts and store

them. Auto generated codes are a problem because small

changes to the test cases require that all the test scripts need to

be updated or recorded. Remote execution, parameterization,

configuration, image comparison, blinking control

identification, test management integration are few of the

features you can use to create highly reliable and affordable

automation. Unfortunately, most recording and playback

tools lack most of these features. In this paper a new method

to perform the GUI testing is proposed that does not require

any programming skills. The proposed architecture is

data-driven framework that does not generate any scripts

hence no storage or maintenance issues arise.

Following are the main features of the proposed Scriptless

GUI Test Automation Tool.

User can record actions performed on the test application.

Users can re-run the recorded actions. Generate basic reports

with screenshots in MS-Word for each re-run. Browse and

execute the recorded Test case. Re-run multiple recorded test

cases. Perform assertions like Image Comparison.

II. RELATED WORK

Panchuri Ramya, et al. They show that automation is the

easiest way to test an application. One of the best advantages

of test automation is that the software is reusable and all test

scripts can be easily documented and kept up to date. [1] The

Selenium web driver/controller for testing web applications is

very efficient, simple and the results obtained are more

accurate. It supports the use of other tools like construction

tools etc besides itself for ease of use and precision.

Toshiyuki Kurabayashi, et al. Suggested a method to

automatically generate test scripts from source code and test

targets to solve the problem that test scripts take time to create

manually. The method meets the following three

requirements. Set up and operate the tool. View the screen

transition for the test script that could not be auto-generated

for the user.[6] Testing of all screen transitions with

automatically generated tests and manually supported tests.

We confirm by evaluation that the method reduces the number

of man-hours by approximately 61% compared to a method

that generates test scripts using the traditional capture and

play method.

Rakesh Kumar Lenka, et al., state that the automation

testing tool is really useful for dynamically changing web

applications. It reduces the time spent by the tester for writing

the test cases.

Scriptless GUI Automation Testing Tool for Web

Applications

Kamble Namita Mohan, Ramakanth Kumar P

mailto:kamblenamita20@gmail.com
mailto:ramakanthkp@rvce.edu.in

Scriptless GUI Automation Testing Tool for Web Applications

217

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58490510121

DOI: 10.35940/ijrte.A5849.0510121

Automation testing tool is the best way to improve the

productivity, effectiveness, and coverage of software testing.

It automatically generates a customized report, easy to

analyze, easy to understand the bugs, less maintenance. There

are a wide variety of tools available to test the software in

terms of performance, service testing, functioning, load,

security and stress testing of web applications. [5]

III. INTRODUCTION TO KEY TECHNOLOGY

A. Scriptless automation Tool

A Scriptless test automation tool provides an abstraction of

the underlying test automation code so that building a test

focuses more on validating the business logic. The human

effort involved in creating a test is drastically reduced:

instead of writing code, it is simply indicated which steps

need to be taken. The Scriptless Tool then internally

translates these easy-to-use steps into the actual running code

behind the scenes during test execution. The end result: a

highly accessible interface that allows you to define your

tests without writing any code. Ideally, a Scriptless test tool

should have the following functions; easily generate test

steps in a test case. Save reusable elements or objects Record

test cases. Execute test cases. Execute test cases in multiple

browsers / versions. Report test results and integrate them

into our other tools.

B. Data-Driven Architecture

Data-Driven architecture, conceptualizes an automatic

framework where testing is triggered on a group of

information stored in databases. This framework resolves

time-consuming and the protracted method of making

individual tests for every test case execution.

Data-Driven Tool constitutes of a methodology where a

sequence of test steps structured in test code as reusable test

logic are machine-controlled to run repeatedly for various

permutations of information picked up from data sources so

as to match actual and expected results for validations.

Following are sequence of actions that occur in

Data-Driven architecture while running a test case. Firstly,

Retrieving test data from a storage facility such as file or a

database. Second, Execution of the test logic that's capable of

reading this data, passing it through needed layers of the code

that then mechanically triggers simulation of actions. Third,

storing the retrieved results so to retrospect the results in

terms of what was expected and what was truly obtained.

C. Selenium C# Webdriver

When cross-browser testing comes into picture, Selenium

is a widely used set of tools. Selenium cannot automatically

execute desktop applications. It can only be used in a

browser. It is considered as one of the most popular toolkits

for automated web application testing because it supports

popular web browsers. The versatile web browser

compatibility makes it very powerful. It is compatible with a

number of browsers (Google Chrome 12+, Internet Explorer

7, 8, 9, 10, Safari 5.1+, Opera 11.5, and Firefox) and

operating systems (Mac, Windows, Linux/Unix). To run test

cases in different browsers Selenium Webdriver is a well

known and widely adapted framework. The tool can

automate the testing of web applications to ensure that they

work as expected.

IV. MODULE DESCRIPTION

A. Test Case Creation Module

When recording is started by clicking on record button, the

timers start running and the timers start detecting the

elements wherever the mouse hovers. The automation

framework has inbuilt features that help to generate the

DOM Html tree structure in other words the xpath; that is the

path of the element on the application under test. When we

hover over the element, the element gets highlighted and it

captures the details of the Element (control) like name, id,

xpath, class. Once the user has performed the action on the

element the details pertaining to the action is also captured in

the form of string with required delimiters and saved into the

database.

B. Saving of Test case Data Module

In the first module the Test case Data is collected that is the

element properties and the action performed on the element.

This data is saved in the form of string. This string is further

divided into events; events are nothing but the substrings of

the string, and each event like mouse click action or keyboard

strokes are separated and stored as individual events in the

database. Each event contains again more detailed

information of that event.

C. Test case execution and Test case Data retrieval

Module

When a user clicks on the play button, he is prompted to

choose the test case he would like to execute. From the

database, the details with respect to the events of the selected

test case are retrieved and stored in an object. If it encounters

mouse event another function will select the window and

goes inside window. UI Automation Framework has methods

that retrieve the Tree-view data using which the element is

selected inside the window. Findby Descendents method

searches for the element inside the application window and

the method returns the automation id of the element. Once the

automation id of the element has been retrieved the method

checks whether the element has parent id or child id and if so

the desired action is performed on the element for example

mouse click action is performed on the button element.

V. IMPLEMENTATION DETAILS

This section explains detailed design specifications for the

sub modules / components of Automation Tool. Hardware

requirements for the system are as follows, Intel compatible

processor with a clock frequency of at least 860 MHz, with

minimum 8 GB of RAM. Minimum hard disk space shall be 5

GB. The front end structure of the tool is developed as a WPF

application using C# Language in Microsoft Visual Studio

4.5. The structure is designed in such a way that it can be

extended to support windows application also. Following is

the System architecture depicting the major components and

data flow of the application.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

218

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58490510121

DOI: 10.35940/ijrte.A5849.0510121

Figure1. System Architecture

The method of retrieving the locator of the web elements

and capturing the action performed on the web element has

been achieved using JavaScript. The data with respect to

every test data is saved in database. The database used is

SQLite database and is stored in the form of string along with

delimiters.

1.1 Record Test case – Design

This module records actions performed on

the test application.

1.1.1 Responsibilities/ Functionality

Capture user actions (Mouse & Keyboard)

performed on test application.

Create or add assertions events.

Save recorded test case data to database.

With the help of test case data saved in the database for

example testcase id, testcase name, action performed, web

page url etc all this data is used at the time of execution.

Firstly the URL is retrieved and the webpage is loaded in the

browser. Next the web element is located on the web page

with help of locators example xpath. Further check is

performed for the action on the web element. If the action

saved in the database is ‘KB’ that is keyboard action then it

retrieves the necessary data like the text to be entered,

example ‘ABBC’ and perform the keyboard strokes on the

web element such as ‘Textbox’. When all the events of the

test case are performed successfully then the test case is

marked as passed and the result for each test case execution is

saved in the database.

1.2 Test case Re-run – Design

This module performs automated actions on the test

application, as recorded by the user.

1.2.1 Responsibilities/ Functionality

Get recorded test case actions from the database.

Perform automated actions.

Generate report.

Figure2. Data Flow Diagram for Re-run process

VI. EXPERIMENTAL RESULTS

Manual Testing was performed on the Proposed Tool to

measure the performance of the tool with respect to the

response time and maintenance cost. The other open-source

tools in the market like Katalon Studio and Ranorex exhibit

same execution time but these tools come with High

Maintenance cost. The proposed tool cannot automate

windows application whereas Ranorex supports both desktop

and web application. Ranorex requires prior advanced

scripting knowledge to use the tool whereas the proposed is

completely Scriptless that is no prior knowledge of

programming is required neither any scripts are auto

generated when recording the test cases. The following table

depicts the detailed performance analysis of the proposed

tool.

Proposed

sytem

Overall

passed

test

case

rate

(%)

Overall

failed

test

case

rate

(%)

No.

of

test

cases

Execution

Time

(hrs.)

Mai

nten

ance

Cost

Data-Driven

Selenium
based

architecture

97.41 3.68 20 3.3 Low

VII. CONCLUSION

The proposed Data-Driven architecture in combination

with Selenium Webdriver framework makes this GUI

Testing Tool not only machine-handled that is automatic but

also makes it script free and low maintenance due to low

storage requirements. This solution is Unique and very cost

effective.

The proposed system does not generate scripts for every

test case instead the same data-driven logic is executed for

various test cases that is for different test case data.

Scriptless GUI Automation Testing Tool for Web Applications

219

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58490510121

DOI: 10.35940/ijrte.A5849.0510121

Selenium Webdriver adds feather to the cap by

identifying the web elements on the browser application

faster and accurately. Xpath is the best locator to identify the

web elements. The actions are performed on the controls that

is on the web elements irrespective of their screen

co-ordinates or the changing positions of the controls on the

web application under development.

Further work can be done to integrate support for

automating windows application using UI Automation

framework.

ACKNOWLEDGMENT

This study and research is carried out in R.V. College of

Engineering, Bengaluru, Department of Computer Science

and Engineering, under the guidance of Head of the

Department Dr. Ramakanth Kumar P. I also thank the

principal of the institution, Dr. K N Subramanya for

providing us all the required facilities and suitable

environment to successfully complete this research.

REFERENCES

1. Paruchuri Ramya, Vemuri Sindhuri, P Vidya Sagar, “Testing using
Selenium Web Driver”, Second International Conference on Electrical,

Computer and Communication, pp. 1-7, 2017.

2. Takamasa Tanaka, Hidekazu Niibori, Li Shiyingxue, Shimpei Nomura,
Tadayoshi Nakao, Kazuhiko Tsuda, “Selenium based Testing Systems

for Analytical Data Generation of Website User Behavior”, IEEE
International Conference on Software Testing, pp. 1-6, 2020.

3. Vidroha Debroy, Lance Brimble, Matthew Yost, Archana Erry,

“Automating Web Application Testing from the Ground Up:
Experiences and Lessons Learned in an Industrial Setting”, IEEE 11th

International Conference on Software Testing, pp.1-9, 2018.
4. Nicey Paul, Robin Tommy, “An Approach of Automated Testing on

Web Based Platform Using Machine Learning and Selenium”, IEEE

Xplore Compliant Part Number:CFP18N67-ART;
ISBN:978-1-5386-2456-2, pp. 1-6, 2018.

5. Rakesh Kumar Lenka, Utkalika Satapathy, Meenu Dey, “Comparative
Analysis on Automated Testing of Web based Application”,

International Conference on Advances in Computing, Communication

Control and Networking, pp. 1-6, 2018.
6. Toshiyuki Kurabayashi, Muneyoshi Iyama, Hiroyuki Kirinuki, Haruto

Tanno, “Automatically Generating Test Scripts for GUI Testing”, IEEE
International Conference on Software Testing, pp. 1-5, 2018.

AUTHORS PROFILE

Kamble Namita Mohan, is a Master in Technology

student at Department of Computer Science and

Engineering, Rashtreeya Vidyalaya College of
Engineering, Bengaluru, Karnataka, India.

Dr. Ramakanth Kumar P, is Professor and Head of

the Department at Department of Computer Science

and Engineering, Rashtreeya Vidyalaya College of

Engineering, Bengaluru, Karnataka, India.

