
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

142

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

Abstract: Over the past few years, malware attacks have risen

in huge numbers on the Android platform. Significant threats are

posed by these attacks which may cause financial loss,

information leakage, and damage to the system. Around 25

million smartphones were infected with malware within the first

half of 2019 that depicts the seriousness of these attacks. Taking

into account the danger posed by the Android malware to the

users' community, we aim to develop a static Android malware

detector named SFDroid that analyzes manifest file components

for malware detection. In this work, first, the proposed model

ranks the manifest features according to their frequency in

normal and malicious apps. This helps us to identify the

significant features present in normal and malware datasets.

Additionally, we apply support thresholds to remove the

unnecessary and redundant features from the rankings. Further,

we propose a novel algorithm that uses the ranked features, and

several machine learning classifiers to detect Android malware.

The experimental results demonstrate that by using the Random

Forest classifier at 10% support threshold, the proposed model

gives a detection accuracy of 95.90% with 36 manifest

components.

Keywords: Mobile Malware Detection, Mobile Network,

Mobile Privacy, Mobile Security.

I. INTRODUCTION

Similar to computers, mobile phones are developed on a

mobile OS that, nowadays, has advanced computational

power and connectivity, and hence their demand has

outperformed the desktops [1]. Amongst different mobile

OS, Android is the best market seller due to its open

architecture and a large number of apps in the Play Store [2].

This clearly shows the popularity of Android over other

mobile OS. App downloads on the Android platform are

made easier by the availability of the application stores such

as Google Play and other third-party app markets. However,

all apps available on these markets are not safe. Normal

operations of mobile phones are interrupted by some

applications known as malware. They may cause damage to

the system, collection, and leakage of sensitive information,

and may even cause a financial loss by sending SMS in the

background without users’ knowledge.

Manuscript received on May 06, 2021.

Revised Manuscript received on May 15, 2021.

Manuscript published on May 30, 2021.
* Correspondence Author

Gourav Garg, Student, Department of Applied Mathematics, Delhi

Technological University, Delhi, India. Email: gauravgarg4000@gmail.com
Ashutosh Sharma*, Student, Department of Applied Mathematics,

Delhi Technological University, Delhi, India. Email:

ashutosh8110@gmail.com
Anshul Arora, Assistant Professor, Department of Applied

Mathematics, Delhi Technological University, Delhi, India. Email:
anshul15arora@gmail.com

According to a report [3], in 2018, 5.3 million malicious

mobile installation packages were detected. Moreover, 66.4

million attacks were using malicious mobile apps in 2017

which then almost doubled to 116.5 million in 2018 [3].

In 2019, 25 million Android smartphones were infected

by malware named Agent Smith [4]. In general, there are

three ways by which malicious applications can get into

smartphones: (i) Repackaging in Google Play Store, (ii)

Update Attacks, and (iii) Drive-by-Downloads.

A. Motivation

Taking into account the danger posed by the Android

malware to the users' community, in this work, we aim to

propose a static detection mechanism that combines Android

manifest file features for malware detection. Static features

like permissions, intents, hardware components, content

providers, broadcast receivers, etc., are present within the

manifest file of any Android app. Permissions' access is one

of the security control mechanisms provided by Android,

which constraints certain operations that an app can perform.

For the app to execute smoothly, permissions must be

granted. Permissions are granted when the app is installed by

the user (on devices running Android 5.1 and lower) or while

the app is running (on devices running Android 6.0 and

higher). Intent feature in the manifest file declares the types

of intents that an activity or service responds to. Its parent

component’s properties and abilities, i.e., what an activity or

service can perform and what types of broadcasts a receiver

can manage, are declared by the intent-filter. Hardware

component declares a hardware feature by the developer that

the application is using. Content providers provide structured

access to application-managed information. Intents that are

broadcasted by other applications or the system are received

by broadcast receivers. A broadcast receiver can be made

known to the system by two methods: one by declaring it in

the manifest file, the second is to create the receiver in code

dynamically. A Service is a component where the visual user

interface is absent. Long-running background operations are

implemented by a service. Service is unbounded to the

activity's lifecycle. Operations like Internet downloads,

checking for new data, data processing, and updating content

providers use services.

Whenever a new application is installed on the mobile

phones by the users, a list of features is prompted for access,

which is mostly ignored and access is granted to the

application by the user.

This weakness is exploited by malware developers and

dangerous features from manifest files are integrated to

generate malicious activity.

SFDroid: Android Malware Detection using

Ranked Static Features
Gourav Garg, Ashutosh Sharma, Anshul Arora

mailto:gauravgarg4000@gmail.com
mailto:xyz2@blueeyesintlligence.org
mailto:anshul15arora@gmail.com

SFDroid: Android Malware Detection using Ranked Static Features

143

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

Because manifest file features are needed to be declared

explicitly by malicious app developers for their attacks’

execution, hence, in this study, we have focused on analyzing

manifest file components for Android malware detection.

There exist several related works that have analyzed manifest

file components for Android malware detection such as [5],

[6], [7], [8], [9], [10], [11], etc. In comparison to all these

related works, our objective is to find a minimal set of

manifest file features that gives better detection accuracy. We

rank the manifest features according to their frequency in

malware and normal dataset. We aim to use only the

top-ranked features instead of using all the features for

detection. We get two separate feature rankings: one

representing the features that are significantly present in

malware apps; and the second representing the features that

are significantly present in the normal dataset. To the best of

our knowledge, no other work has used such manifest feature

rankings for malware detection.

B. Contributions

The main contributions of the proposed SFDroid model are

summarized below:

1. We ranked the manifest file components based upon

their frequency in the normal and malware dataset.

2. We constructed two feature rankings: one for

significant features present in malware apps, and the

other for significant features present in normal apps.

3. Further, we applied support thresholds to eliminate

the lower-ranked features.

4. We proposed a novel algorithm to detect Android

malware that applies several machine learning

classifiers on two feature rankings.

C. Organization

The rest of the paper is organized as follows. In Section 2,

we discuss the related work in the field of Android malware

detection. We explain our proposed SFDroid model in

Section 3. Section 4 reviews the results obtained from the

proposed approach, and we conclude with future work

redirections in Section 5.

II. RELATED WORK

In this section, we review the research works put forward

in the field of detection of Android malware. Static,

Dynamic, and Hybrid detections are three different

categories in which the related works are classified. In the

upcoming subsections, we review each of the detection types.

A. Static Detection

In the static solutions, malware samples are identified in

Android devices without installing the apps. It makes them

faster and relatively less expensive in comparison to dynamic

methods. Static features including manifest file components

and API calls are used in this technique.

(i) Manifest File-Based Detection

In this subsection, we discuss the related works that have

studied different features in the manifest file for Android

malware analysis and detection. Taheri et al. [5] applied

hamming distance to obtain the similarity between the benign

and malware apps based on features like permissions, APIs,

and intents. Qiu et al. [6] applied multi-label classification

models on the collection of extracted features like API calls,

network addresses, permissions, etc., intending to detect

zero-day malware. In [7], the model named FAMD (Fast

Android Malware Detector) was proposed that extracted

Dalvik code sequences and permissions from the samples and

applied CatBoost classifier to detect malware apps. In [8], the

authors extracted various static features from source code and

manifest files, and a linear SVM algorithm was applied to

detect malicious apps. Similarly, the authors in [9] applied

machine learning algorithms on several static features and

manifest components for detection. In some other works like

[10], and [11] malware detection is performed by extraction

of static features on the Android platform. The identification

of the most important permissions to differentiate malware

from benign apps is done by the SIGPID model presented in

[12]. The authors applied pruning with association rules

mining for ranking and identifying the important

permissions.

The dangerous and harmful patterns of permissions within

the malicious apps were analyzed by Moonsamy et al. [13].

The authors in [14] combined permissions and intents for

detection using PCA and machine learning techniques. The

authors in [15] used permissions for malware detection using

gain ratio, J48, Multilayer Perceptron, Sequential Minimal

Optimization (SMO), and Randomizable filtered classifiers.

Permissions and intents were ranked with information gain

in [16] and further, that ranking was applied to detect

malicious apps. Likewise, in [17] and [18], authors applied

various machine learning algorithms on manifest

components for malware detection. In [19], factorization

machine architecture was applied by the authors on the

collection of manifest features for malware detection in apps.

The malign score was further used for malware detection.

Some recent techniques like [20] and [21] have also

examined manifest features for malware detection. However,

none of the above-mentioned works have aimed to find the

best set of manifest features for effective Android malware

detection. In this work, we aim to find the best set of

manifest features which can give better accuracy in the

detection of malicious apps.

(ii) API Calls Based Detection

Static API calls have been used by some researchers to

detect malicious apps in Android devices. In [22], the authors

analyzed the sensitive APIs and user-trigger dependence in

malicious apps, and in [23], the authors designed the API

calls dependency graphs and classified the malicious apps

into their corresponding malware families based on similarity

metrics. In [24], the authors proposed a model named

Apposcopy which analyzed data-flow and control-flow

properties from API calls of malicious apps. Wang et al. [25]

analyzed structural features like API calls, intents and

permissions to detect malware. Similarly in [26], the

proposed work analyzed API calls and their call graphs for

malicious app detection. Vu et al. [27] constructed an

adjacency matrix for each application from its APK source

code.

API calls were used to convert APK source code into

call-graphs which were further used to train CNN to detect

malicious apps. Chen at al. [28] applied API invocation

sequences to detect malware.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

144

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

However, these API calls are not used in our proposed

malware detection technique because they may result in noise

if they are not combined with any permission or other

manifest file component.

B. Dynamic Detection

Android applications are not executed in static detection

techniques, hence, malicious content that gets downloaded at

run-time / update time may remain undetected in these types

of solutions. Therefore, some authors have proposed dynamic

solutions for malware detection. These solutions can be

further divided in two categories: OS-based and Network

Traffic based detection.

(i) OS-Based Detection

Research works that have used Android OS-based

features for malware detection are discussed in this

subsection. In [28], the authors analyzed the APIs and system

calls for Android malicious app detection. A behavioral

signature-based detector named MADAM model was

presented in [29] that extracted features at four levels: kernel,

package, user, and application-level and implemented

parallel classifiers to detect malicious apps. Feng et al. [30]

examined dynamic system-level behavior traces along with

application-level behaviors like premium service approval,

theft of personal details, and dangerous service

communication to detect malicious activities at run time. In

[31], the authors distinguished benign and malware apps by

analyzing the system calls of apps. Iqbal et al. [32] analyzed

several dynamic features like memory consumption, CPU

usage, and system call events for malware detection. The

authors in [33] used features that depict the utilization of

mobile run-time resources like memory, processor, battery,

and network traffic for malware detection. Extraction of

dynamic features like system calls is computationally

complex and has large overheads in comparison to static

methods, therefore, a static malware detection model is

presented in this paper.

(ii) Network Traffic Based Detection

Now, we review the related works that have used Internet

traffic features for Android malware detection. Wang et al.

[34] implemented Natural Language Processing methods on

headers of the HyperText Transfer Protocol (HTTP) for

malware detection. Network-level features were extracted by

authors in [35] and multiple classifiers were applied to detect

malicious features in the network traffic. Patterns of 14

features from headers of TCP/IP of benign and malware

traffic files were observed by Igor et al. in [36] for malicious

network traffic detection. Similarly, in [36], [37], and [38],

the authors proposed models based upon analysis of network

traffic to detect Android malware apps. All related works

discussed above can be used to detect those malicious

features that produce a significant amount of network traffic.

But, fail for those who do not generate any network traffic;

for instance, a malware app that only sends messages.

Therefore, network traffic-based detection is not taken into

account in this proposed work.

C. Hybrid Detection

Some hybrid solutions do exist in the literature so that

advantages of both static and dynamic techniques can be

combined. Deep artificial neural networks were implemented

for malware detection by authors in [39] on both static and

dynamic layers like static permissions, intents, and dynamic

API calls. Features like permissions, apps ratings, dynamic

API calls, and count of users downloaded were extracted by

Mahindru et al. [40], and machine learning techniques were

applied for malware detection. Android actions like the

Internet connections, installing packages on the device, file

uploading to a server, etc. were analyzed by the AdDroid

model presented in [41] to detect malicious activities. Zhu et

al. [42] inspected permissions, run-time system-related

events, and sensitive APIs for malware detection in Android.

Static features like permissions and dynamic features like

network traffic packets were analyzed by the authors in [43]

to detect malicious activities in apps. Apart from this, in [44]

and [45], the authors introduced two distinct hybrid detection

methodologies by joining the network traffic with

permissions. Similarly, in [46] and [47], the combinations of

static and dynamic features were analyzed for malware

detection. Because both static and dynamic features are

involved in hybrid detection techniques, similar to dynamic

mechanisms, computational overheads are also involved in

hybrid ones. Therefore, a static detection method is proposed

in our model.

III. PROPOSED METHODOLOGY

Now, we discuss the proposed SFDroid model. The

detailed methodology is classified into several stages as

summarized in Figure 1. We explain all the stages in the

following subsections.

A. Training Phase

The main aim of the training phase is to rank the static

manifest file features so that we can use the top-ranked

distinctive features for malicious app detection. The static

features required by any Android application are defined in

its manifest file that can be extracted using apktool. All static

features required by each app from their manifest files were

extracted using the python script. This phase is further

subdivided into two phases, as discussed below.

(i) Features Ranking: We extract six manifest features,

i.e., permissions, intents, hardware components, content

providers, broadcast receivers, and services from benign and

malicious apps. Benign Matrix, B and Malware matrix, M are

used to represent the extracted features from benign and

malware apps respectively. In matrices B and M, the columns

represent the six manifest features and rows represent

Android applications. Either 0 or 1, are the elements in the

matrices. The value of any index [i, j] is 1 if the jth

permission exists in the ith app, else the value is 0.

As the benign and malware applications may differ in the

count, unbalanced matrices may give asymmetrical results.

So balanced matrices are created by calculating the relative

frequency of each static feature in both the matrices.

To obtain the relative frequency of a feature, the

frequency of that feature in benign apps is divided by the total

number of benign apps and similarly, the frequency of that

feature in malware apps is divided by the total number of

malware apps. The relative frequency is calculated using the

equations mentioned below, where Pj and Qj represent the

relative frequency of a feature in benign and malware

datasets respectively.

SFDroid: Android Malware Detection using Ranked Static Features

145

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

Relative Frequency (Pj) = (∑ Bij) / sizeof (Bj) (1)

Relative Frequency (Qj) = (∑ Mij) / sizeof (Mj) (2)

We need to obtain those significant features which are

present in benign apps but not in malware ones and

vice-versa. Those static features which are significantly

present in malware apps are denoted using the term,

dangerous features. Likewise, those static features which are

significantly present in benign apps, are denoted by the term

clean features. A score is calculated for every feature using

the following equation to get the clean and dangerous feature

set.

R(Fj) = Qj – Pj (3)

The value of R(Fj) will lie in the interval [-1, 1], for each

feature. The value of R(Fj) as 1, for any feature Fj, denotes

that static feature is present only in malicious apps and thus it

is the most dangerous feature. Whereas the value of R(Fj) as

-1 denotes the most clean feature. Furthermore, we rank all

the features using their scores obtained. For all the features,

two rank lists were formed, one in increasing and the other in

decreasing order of their scores, represented by AList and

DList respectively. The topmost feature in the AList of each

category is the one that is frequently present in benign apps.

And similarly, the topmost feature in the DList represents the

one that is frequently present in the malware apps. Note that,

for our experiments, first we rank the six features

individually, i.e., we have separate rankings for permissions,

intents, hardware components, content providers, services,

and broadcast receivers. Then, we merge all the features and

generate a common ranking consisting of all the manifest

components.

(ii) Features Threshold: There are numerous features in

the Android Manifest file out of which some features may

decrease the detection accuracy. Thus, in our model, features

were ranked to remove the lower-ranked features from both

AList and DList, for each of the feature sets. Threshold values

vary from 0% to 50% in the intervals of 5%. A threshold

value of x% in the interval [0, 50] denotes that only those

features which are present in at least x% of both benign and

malware apps will be considered in the experiment and the

remaining ones will be eliminated. The model is evaluated

on each of the threshold values ranging in [0, 50].

B. Testing Phase

In this phase, the proposed model for detecting malicious

apps is discussed. Algorithm 1 explains the steps involved in

the detection method. After applying the k% support

threshold on the ranked lists AList and DList, Algorithm 1 is

applied to find the best feature set to get the highest accuracy

for malware detection. Now, to test any app, we extract all of

its static features from all categories - hardware, intents,

permissions, providers, receivers, and services. Let us

consider AList first, its topmost feature is selected, and then

machine learning algorithms are applied to get the detection

accuracy, say x%. Then the first feature is added in the Best

Set. Further, the top two features of AList are merged to get

the detection accuracy, say y%. If y > x, it means the merging

of features gives better results in comparison to the individual

ones. Hence, both features are put into Best Set, otherwise, if

y < x, the second feature is not added into the Best Set.

Similarly, a feature is added to the Best Set if it improves

accuracy, otherwise, Algorithm 1 moves on to the next

feature and the process continues for all features in AList to

get its Best Set. The same procedure is followed to get the

alternative Best Set on other ranked list DList. Three machine

learning classifiers are used for our evaluation: Naive Bayes,

Random Forest, and SVM.

The Best sets obtained from both the lists at several

thresholds are discussed in the Results section.

Algorithm 1 - Detection Algorithm that Returns Best Set of

Permissions

1: Input: Testing Dataset (TSet), Ranked Features Lists

(AList and DList)

2: Output: Best Set of Features (BestSetA) and (BestSetD),

and Highest Detection Accuracy (MaxAccA) and

(MaxAccD) obtained from AList and DList respectively

3: Parameters Initialization: BestSetA ← φ, BestSetD ←

φ, MaxAccA ← 0, MaxAccD ← 0, PSetA ← φ PSetD ← φ

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

146

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

4: Let the number of features in AList and DList be

represented by PA and PD after applying the k% support

threshold.

5: for i = 1− > PA do

6: PSetA ← Pi

7: Apply ML Algorithms using the features present in PSetA

and find detection accuracy D

8: if D > MaxAccA then

9: MaxAccA ← D

10: BestSetA ← PSetA

11: else

12: PSetA ← PSetA − Pi

13: end if

14: end for

15: for j = 1− > PD do

16: PSetD ← Pj

17: Apply ML Algorithms using the features present in

PSetD and find detection accuracy D

18: if D > MaxAccD then

19: MaxAccD ← D

20: BestSetD ← PSetD

21: else

22: PSetD ← PSetD − Pj

23: end if

24: end for

25: Return BestSetA and BestSetD

IV. RESULTS AND DISCUSSION

Now, we discuss the results obtained from the proposed

approach. For our experiments, we get the malware samples

from three different sources namely Drebin [8], Genome

[48], and Koodous [49]. And we downloaded the benign apps

from the official Google Play Store. Moreover, we checked

these benign apps with Virus Total that contains multiple

anti-virus scanners, to make sure that none of the apps

downloaded from Play Store is malicious. Firstly, we review

the ranking of different features, obtained from the

methodology, summarizing the significant features. Then, we

highlight the detection results obtained from the SFDroid

model.

A. Features Ranking

In this subsection, we discuss the ranking of all manifest

file components. First, we review the ranking of permissions

obtained from the proposed methodology, in both increasing

and decreasing order in Table 1. As summarized in the Table

1, Wake Lock is the most clean permission, i.e., appearing in

the majority of the normal apps and not present in much of

the malicious apps. On similar lines, Read Phone State is the

most dangerous permission, present in the majority of the

malicious apps. For every permission, Table 1 also

summarizes the score obtained for that permission, i.e., the

difference in relative frequencies for that permission in

malware and normal dataset. This ranking helps us to identify

the significant permissions present in normal and malware

dataset. This list of top permissions is obtained at 0% support

threshold. Next, we review the ranking of intents, in both

increasing and decreasing order. Table 2 summarizes the top

clean and top dangerous intents. As Table 2 summarizes,

Browsable and Boot Completed are the top clean and

dangerous intents respectively, i.e., appearing in the majority

of normal and malware apps respectively. Again, for every

intent, Table 2 also highlights the difference in relative

frequencies for that intent in normal and malware dataset.

Ascending Order (Top

Clean Permissions)

Descending Order (Top

Dangerous Permissions)

Permission Score Permission Score

Wake Lock -0.427 Read Phone State 0.608

Read External

Storage

-0.328 Read SMS 0.553

Camera -0.166 Send SMS 0.500

Access Network

State

-0.158 Write SMS 0.444

Foreground

Service

-0.125 Receive SMS 0.444

Table 1. Top 5 Permissions in Ascending and Descending

Order

Ascending Order (Top

Clean Intents)

Descending Order (Top

Dangerous Intents)

Intent Score Intent Score

Browsable -0.486 Boot Completed 0.389

View -0.477 User Present 0.271

Default -0.370 Sig Str 0.207

My Package

Replaced

-0.172 Battery Changed

Action

0.175

Leanback

Launcher

-0.118 Input Method

Changed

0.163

Table 2. Top 5 Intents in Ascending and Descending

Order

Now, we review the ranking of hardware components, in

both increasing and decreasing order. Table 3 summarizes the

top clean and top dangerous hardware components. As Table

3 summarizes, Touch Screen and Refinish Receiver are the

top clean and dangerous hardware components respectively.

Table 3 highlights the significant hardware components

present in normal and malware dataset. Further, we review

the ranking of content providers, in both increasing and

decreasing order. Table 4 summarizes the top clean and top

dangerous content providers. As Table 4 summarizes,

Firebase Init and Launcher are the top clean and dangerous

content providers respectively. Table 4 highlights the

significant content providers present in normal and malware

dataset.

Ascending Order (Top Clean

Hardware Components)

Descending Order (Top

Dangerous Hardware

Components)

Hardware

Component

Score Hardware

Component

Score

Touch Screen -0.249 Refinish

Receiver

0.0011

Camera -0.179 Wake Activity 0.0011

Touch Screen Multi

Touch

-0.178 Screen Service 0.0011

Touch Screen Multi

Touch Distinct

-0.172 Screen Receiver 0.0011

Location GPS -0.128 Releases 0.0011

Table 3. Top 5 Hardware components in Ascending and

Descending Order

SFDroid: Android Malware Detection using Ranked Static Features

147

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

Ascending Order (Top Clean

Providers)

Descending Order (Top

Dangerous Providers)

Content Provider Score Content

Provider

Score

Firebase Init -0.635 Launcher 0.024

Internal Facebook

Init

-0.359 Downloads 0.004

Android Crash

Analytics

-0.335 Interface Stats 0.003

Support V4 Content -0.284 Download Task 0.002

Mobile Ads Init -0.232 RCMD Config

Provider

0.002

Table 4. Top 5 Content providers in Ascending and

Descending Order

Next, we review the ranking of broadcast receivers, in

both increasing and decreasing order. Table 5 summarizes the

top clean and top dangerous broadcast receivers. As Table 5

summarizes, Firebase Instance and Update Receiver are the

top clean and dangerous broadcast receivers respectively.

Table 5 highlights the significant broadcast receivers present

in normal and malware dataset.

Next, we review the ranking of services, in both

increasing and decreasing order. Table 6 summarizes the top

clean and top dangerous services. As Table 6 summarizes,

Firebase Instance Service and Update Service are the top

clean and dangerous services respectively. Table 6 highlights

the significant services present in normal and malware

dataset. As can be seen from Tables 1-6, none of the manifest

file components gets the score of +1 or -1, i.e., no manifest

feature exists that is present in only one type of the dataset.

Because no single distinguishing feature exists, hence, we

aim to find the best set of distinguishing features.

Ascending Order (Top Clean

Services)

Descending Order (Top

Dangerous Services)

Service Score Service Score

Firebase Instance

Service

-0.594 Update Service 0.117

App Measurement

Service

-0.587 Custom First

Service

0.106

App Measurement Job

Service

-0.562 Custom Third

Service

0.106

Component Discovery -0.520 Custom Second

Service

0.106

Firebase Messaging -0.488 Custom Fourth

Service

0.105

Table 5. Top 5 Broadcast Receivers in Ascending and

Descending Order

Ascending Order (Top Clean

Receivers)

Descending Order (Top

Dangerous Receivers)

Broadcast Receiver Score Broadcast

Receiver

Score

Firebase Instance -0.640 Update

Receiver

0.117

App Measurement -0.587 Custom Base

Broadcast

0.106

App Measurement

Install

-0.578 Adservice 0.026

Access Token

Expiration

-0.279 Battery Base

Broadcast

0.025

Analytics Receiver -0.252 Boot Receiver 0.024

Table 6. Top 5 Services in Ascending and Descending Order

B. Features Ranking with Individual Features

In this subsection, we discuss the detection results with

the proposed SFDroid model. We analyze the results from

different machine learning classifiers at different support

thresholds. The proposed model aims to find the best set of

manifest features that gives better detection accuracy.

However, before analyzing the best set of manifest features,

we first study the detection results with individual manifest

features.

Results with Permissions: Firstly, we review the results

if we use permissions alone for detection. We use the

permissions’ ranking (both increasing and decreasing order)

in the proposed detection algorithm to get the best set of

permissions that gives better accuracy. Tables 7 and 8

summarize the detection results with permissions at different

support thresholds. Table 7 shows the results when

permissions are ranked in ascending order. We get the

accuracy of 85.66% at 0% threshold with Naive Bayes

classifier, and this accuracy is achieved at best set of 15

permissions. On similar lines, we can observe the other

entries of the table. With permissions ranked in ascending

order, we get the best accuracy of 93.85% at 0% threshold

with SVM classifier and this accuracy is achieved at best set

of 42 permissions. Similarly, from Table 8, when permissions

are ranked in descending order, we get the best accuracy of

94.49% with Random Forest classifier at 0% threshold and

this accuracy is achieved at best set of 31 permissions. Hence,

we can conclude that when we use permissions for detection,

we get the best accuracy of 94.49% with Random Forest

classifier at best set of 31 permissions.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 15 85.66 46 92.57 42 93.85

5 4 79.39 7 88.09 8 88.48

10 4 80.03 6 82.84 6 83.74

15 3 75.42 3 81.69 3 81.69

20 3 75.42 3 81.69 3 81.69

25 3 75.42 3 81.69 3 81.69

Table 7. Detection Results with Permissions Ranked in

Ascending Order.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 16 86.43 31 94.49 23 92.83

5 4 83.10 4 86.04 4 86.04

10 5 85.28 4 85.53 4 85.53

15 4 85.53 4 85.53 4 85.53

20 2 81.82 2 81.82 2 81.82

25 2 81.82 2 81.82 2 81.82

Table 8. Detection Results with Permissions Ranked in

Descending Order.

Results with Intents: Now, we review the results if we

use intents alone for detection. We use the intents’ ranking

(both increasing and decreasing order) in the proposed

detection algorithm to get the best set of intents that gives

better accuracy.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

148

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

Tables 9 and 10 summarize the detection results with

intents. Table 9 shows the results when intents are ranked in

ascending order. We get the best accuracy of 85.53% at 0%

threshold with SVM classifier at best set of 21 intents.

Similarly, from Table 10, when intents are ranked in

descending order, we get the best accuracy of 83.35% with

Random Forest classifier at best set of 28 intents. Hence, we

can conclude that when we use intents for detection, we get

the best accuracy of 85.53% with SVM classifier at best set of

21 intents. We also observe that the best accuracy with intents

alone is lower than obtained with permissions alone.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 19 83.48 20 85.15 21 85.53

5 3 75.42 3 79.13 3 79.13

10 1 69.40 3 73.62 3 73.62

15 1 69.40 3 73.62 3 73.62

20 1 69.40 3 73.62 3 73.62

25 1 69.40 3 73.62 3 73.62

Table 9. Detection Results with Intents Ranked in

Ascending Order.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 16 75.80 28 83.35 24 82.71

5 4 75.16 7 78.87 7 79.00

10 3 72.47 4 73.50 4 73.50

15 3 72.47 4 73.50 4 73.50

20 3 72.47 4 73.50 4 73.50

25 3 72.47 4 73.50 4 73.50

Table 10. Detection Results with Intents Ranked in

Descending Order.

Results with Hardware Components: Next we review

the results if we use hardware components alone for

detection. Tables 11 and 12 summarize the detection results

with components. Table 11 shows the results when

components are ranked in ascending order. We get the best

accuracy of 76.31% at 0% threshold with SVM classifier at

best set of 17 hardware components. Similarly, from Table

12, when hardware components are ranked in descending

order, we get the best accuracy of 76.06% with SVM

classifier at 0% threshold at best set of 35 hardware

components. Hence, we can conclude that when we use

hardware components for detection, we get the best accuracy

of 76.31% with SVM classifier at best set of 17 components.

We also observe that the best accuracy with hardware

components alone is lower than obtained with permissions

and intents.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 10 74.90 15 75.42 17 76.31

5 9 73.24 14 74.39 18 75.03

10 9 73.24 14 74.39 18 75.03

15 13 72.47 14 72.60 20 73.75

20 13 72.47 14 72.60 20 73.75

25 13 72.47 14 72.60 20 73.75

Table 11. Detection Results with Hardware Components

Ranked in Ascending Order.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 22 59.15 34 75.29 35 76.06

5 22 59.15 33 74.01 34 74.65

10 22 59.15 33 74.01 34 74.65

15 22 59.15 32 72.47 33 73.11

20 22 59.15 32 72.47 33 73.11

25 22 59.15 32 72.47 33 73.11

Table 12. Detection Results with Hardware Components

Ranked in Descending Order.

Results with Content Providers: Next we review the

results if we use content providers alone for detection. Tables

13 and 14 summarize the detection results with content

providers. Table 13 shows the results when content providers

are ranked in ascending order. We get the best accuracy of

91.29% with SVM classifier at best set of 26 content

providers. Similarly, from Table 14, when content providers

are ranked in descending order, we get the best accuracy of

89.76% with SVM classifier at best set of 59 content

providers. Hence, we can conclude that when we use content

providers for detection, we get the best accuracy of 91.29%

with SVM classifier at best set of 26 content providers. We

also observe that the best accuracy with content providers

alone is lower than obtained with permissions and higher than

obtained with intents and hardware components.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 14 89.76 12 89.50 26 91.29

5 19 87.71 16 87.20 34 89.63

10 19 87.71 16 87.20 34 89.63

15 19 87.71 16 87.20 34 89.63

20 19 87.71 16 87.20 34 89.63

25 19 87.71 16 87.20 34 89.63

Table 13. Detection Results with Content Providers

Ranked in Ascending Order.

SFDroid: Android Malware Detection using Ranked Static Features

149

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 7 51.22 58 89.50 59 89.76

5 7 51.22 57 87.20 58 87.71

10 7 51.22 57 87.20 58 87.71

15 7 51.22 57 87.20 58 87.71

20 7 51.22 57 87.20 58 87.71

25 7 51.22 57 87.20 58 87.71

Table 14. Detection Results with Content Providers

Ranked in Descending Order.

Results with Broadcast Receivers: Further, we review

the results if we use broadcast receivers alone for detection.

Tables 15 and 16 summarize the detection results with

broadcast receivers at different support thresholds. Table 15

shows the results when broadcast receivers are ranked in

ascending order. We get the best accuracy of 89.63% with

SVM classifier at best set of 25 broadcast receivers.

Similarly, from Table 16, when broadcast receivers are

ranked in descending order, we get the best accuracy of

83.61% with SVM classifier at every threshold. This

accuracy is achieved at best set of 62 broadcast receivers.

Hence, we can conclude that when we use broadcast

receivers for detection, we get the best accuracy of 89.63%

with SVM classifier at best set of 25 broadcast receivers. We

also observe that the best accuracy with broadcast receivers

alone is lower than obtained with permissions and content

providers, and higher than obtained with intents and

hardware components.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 23 88.86 20 88.86 25 89.63

5 25 88.48 23 88.99 27 89.63

10 10 78.75 30 83.99 36 84.89

15 10 78.75 30 83.99 36 84.89

20 10 78.75 30 83.99 36 84.89

25 10 78.75 30 83.99 36 84.89

Table 15. Detection Results with Broadcast Receivers

Ranked in Ascending Order.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 62 82.97 59 83.10 62 83.61

5 62 82.97 59 83.10 62 83.61

10 62 82.97 59 83.10 62 83.61

15 62 82.97 59 83.10 62 83.61

20 62 82.97 59 83.10 62 83.61

25 62 82.97 59 83.10 62 83.61

Table 16. Detection Results with Broadcast Receivers

Ranked in Descending Order.

Results with Services: Next, we review the results if we

use services alone for detection. Tables 17 and 18 summarize

the detection results with services at different support

thresholds. Table 17 shows the results when services are

ranked in ascending order. We get the best accuracy of

89.76% with SVM classifier at best set of 23 services.

Similarly, from Table 18, when services are ranked in

descending order, we get the best accuracy of 83.48% with

SVM classifier at best set of 61 services. Hence, we can

conclude that when we use services for detection, we get the

best accuracy of 89.76% with SVM classifier at best set of 23

services. We also observe that the best accuracy with services

alone is lower than obtained with permissions and content

providers, and higher than obtained with intents and

hardware components.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 23 89.76 22 89.37 23 89.76

5 23 89.37 21 89.12 23 89.37

10 22 88.61 21 88.22 22 88.61

15 23 87.58 19 86.68 23 87.58

20 32 84.63 30 83.99 32 84.63

25 32 84.63 30 83.99 32 84.63

Table 17. Detection Results with Services Ranked in

Ascending Order.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 61 83.35 59 83.23 61 83.48

5 61 83.35 59 83.23 61 83.48

10 61 83.35 59 83.23 61 83.48

15 61 83.35 59 83.23 61 83.48

20 61 83.35 59 83.23 61 83.48

25 61 83.35 59 83.23 61 83.48

Table 18. Detection Results with Services Ranked in

Descending Order.

From the above results, we can conclude that we get the

highest accuracy of 94.49% with 31 permissions. Moreover,

we find that SVM and Random Forest classifiers gave

relatively better accuracy than Naive Bayes, for all the

individual features.

C. Detection Results with Combined Features

In this subsection, we analyze the results when we

combine all the manifest file components, rank them all in

ascending and descending order, and then apply the proposed

detection algorithm. The proposed approach aims to find the

best set consisting of all the manifest components that give

relatively better accuracy than any other set of features. We

summarize the detection results with combined manifest

components in Tables 19 and 20.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

150

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

Table 19 highlights the detection results when we arrange

all the manifest file components in increasing order of their

relative frequencies. We observe that we get the best

accuracy of 95.90% at 10% support threshold with 36

manifest features. In this best set of 36 features, there are 10

permissions, 5 intents, 6 services, 4 broadcast receivers, 7

content providers, and 4 hardware components. We analyze

that eliminating the features (ranked in ascending order) at

the 10% threshold increases the accuracy as compared to the

0% threshold (where no feature is eliminated). Hence, we can

argue that eliminating the irrelevant features with a support

threshold helps in improving the detection accuracy. From

Table 20, where features are ranked in descending order of

their relative frequencies, we observe that the proposed

approach gives the highest accuracy of 94.70% with SVM

classifier at support thresholds of 10%, 15% and 20%. This

accuracy is obtained with 58 manifest features. However, this

accuracy is lower than obtained with features ranked in

increasing order of frequencies.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 35 90.56 32 94.48 36 94.39

5 35 90.56 31 94.21 39 95.13

10 36 90.78 33 94.89 36 95.90

15 36 90.78 33 94.89 38 95.90

20 39 91.46 33 94.89 33 95.39

25 35 90.56 33 94.89 33 95.39

Table 19. Detection Results with Combined Manifest

Components Ranked in Ascending Order.

Threshold

(in %)

Different Machine Learning Classifiers

Naive Bayes Random Forest SVM

Best

Set

Accuracy

(in %)

Best

Set

Accuracy (in

%)

Best

Set

Accuracy

(in %)

0 45 89.66 52 93.28 56 93.79

5 45 89.66 51 93.28 59 93.23

10 47 89.88 53 93.26 58 94.70

15 47 89.88 53 93.26 58 94.70

20 49 90.68 53 93.26 58 94.70

25 55 89.26 53 93.26 53 93.70

Table 20. Detection Results with Combined Manifest

Components Ranked in Descending Order.

To summarize the detection results, Table 21 highlights

the highest accuracies obtained with individual features and

all the features combined. As can be seen from the table, we

observe that combining the manifest features gives better

detection accuracy than individual manifest features.

Features Used

for Detection

Highest

Accuracy

(in %)

Best Set of Features

Permissions 94.49 31 Permissions

Intents 85.53 21 Intents

Hardware

Components

76.31 17 Components

Content

Providers

91.29 26 Providers

Services 89.76 23 Services

Broadcast

Receivers

89.63 25 Receivers

All Manifest

Features

95.90 36 Features (10

permissions, 5 intents, 6

services, 4 broadcast

receivers, 7 content

providers, and 4 hardware

components)

Table 21. Comparison of Detection Results.

D. False Result Analysis

 In this section, we review the false positives, i.e., normal

apps detected as malware and false negatives, i.e., malware

apps detected as normal. Because we have got the highest

accuracy of 95.90% with SVM classifier on all manifest

features combined, we discuss the false results with reference

to this highest accuracy achieved. We observe that many

normal apps with the functionality of blocking phone calls

and SMS have been detected as malicious. For instance,

normal apps available on Play Store such as Calls

Blacklist-Call Blocker, AntiNuisance- Call Blocker and SMS

Blocker, Call Control, etc., have been detected as malicious

because of the presence of dangerous functionalities of

blocking phone calls and SMS. Hence, to correctly detect

such apps, we need to analyze, in addition to manifest

components, the Java source code and the API calls being

generated within the code. Furthermore, some malicious apps

such as AnserverBot, and BaseBridge have been detected as

normal because such apps download malicious components

at run time. The proposed method is a static approach, hence,

the method does not analyze the run time behavior of the

apps. To correctly detect such apps, we need to include

dynamic analysis as well, such as observing dynamic calls or

network traffic of the apps. However, this will increase the

computational complexity of the detection model.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a static model named SFDroid to

detect malicious Android applications by analyzing manifest

file components. The proposed model aimed to rank each of

the manifest component using the concept of relative

frequency, i.e., by comparing its frequency in both malware

and normal dataset.

We constructed, for each of the manifest components, two

rankings, one highlighting the features significantly present

in malware apps and the other representing the features

significantly present in normal apps. Thereafter, we proposed

a novel algorithm to find the best set of manifest features that

gives highest detection accuracy. The proposed detection

algorithm applied several machine learning classifiers on the

ranked list of manifest features to get their best set. We

achieved the accuracy of 95.90% with the proposed model on

the best set of 36 features. In our future work, we will

analyze, in addition to the manifest components, the Java

source code and API calls of the apps to further improve the

detection accuracy.

SFDroid: Android Malware Detection using Ranked Static Features

151

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

ACKNOWLEDGMENT

The authors would like to thank the authors of Genome,

Drebin and Koodous malware datasets for providing us the

malware samples for our experiments.

REFERENCES

1. Desktop vs Mobile vs Tablet Market Share Worldwide, Available

Online.

https://gs.statcounter.com/platform-market-share/desktop-mobile-ta

blet/.

2. App Stores List(2020), Available Online.

https://www.businessofapps.com/guide/app-stores-list/

3. Critical Warning Issued Regarding 10 Million Samsung Phone

Updates, Available Online

.https://www.forbes.com/sites/daveywinder/2019/07/05/critical-war

ning-issued-regarding-10-million-samsung-phone-updates/.

4. Agent Smith virus hides in WhatsApp, infests 1.5 crore Android

phones in India, Available Online.

https://www.indiatoday.in/technology/news/story/agent-smith-virus-

whatsapp-infects-android-phones-in-india-what-is-it-1566668-2019-

07-11

5. R. Taheri et al., "Similarity-based Android malware detection using

Hamming distance of static binary features", Future Generation

Computer Systems, vol. 105, pp. 230-247, 2020.

6. J. Qiu et al., "A3CM: Automatic Capability Annotation for Android

Malware," IEEE Access, vol. 7, pp. 147156-147168, 2019.

7. H. Bai, N. Xie, X. Di and Q. Ye, “FAMD: A Fast Multifeature

Android Malware Detection Framework, Design, and

Implementation," IEEE Access, vol. 8, pp. 194729-194740, 2020.

8. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,

“DREBIN: Effective and Explainable Detection of Android Malware

in Your Pocket”, NDSS,2014.

9. H. Fereidooni, M. Conti, D. Yao and A. Sperduti, "ANASTASIA:

ANdroid mAlware detection using STatic analySIs of Applications,"

8th IFIP International Conference on New Technologies, Mobility

and Security (NTMS), Larnaca, 2016.

10. A. Firdaus, N.B. Anuar, A. Karim,and M. Razak, "Discovering

optimal features using static analysis and a genetic search based

method for Android malware detection", Frontiers of Information

Technology and Electronic Engineering, vol. 19, pp. 712–736, 2018.

11. M. Varsha, P. Vinod, and K. Dhanya, "Identification of malicious

android app using manifest and opcode features", Journal of

Computer Virology and Hacking Techniques, vol. 13, pp. 125–138,

2017.

12. J. Li et al., "Significant Permission Identification for

Machine-Learning-Based Android Malware Detection," IEEE

Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3216-3225,

2018.

13. V. Moonsamy, J. Rong, and S. Liu, ”Mining permission patterns for

contrasting clean and malicious android applications”, Future

Generation Computer Systems, vol. 36, pp. 122-132, 2014.

14. A. Sangal, and H. K. Verma, “A Static Feature Selection-based

Android Malware Detection Using Machine Learning Techniques”,

International Conference on Smart Electronics and Communication ,

2020.

15. S. K. Jhansi, et al., “Feature Selection and Evaluation of

Permission-based Android Malware Detection”, 4th International

Conference on Trends in Electronics and Informatics, 2020.

16. K. Khariwal, J. Singh and A. Arora, "IPDroid: Android Malware

Detection using Intents and Permissions," 4th IEEE WorldS4,

London, United Kingdom, pp. 197-202, 2020.

17. S. Feldman, D. Stadther and B. Wang, "Manilyzer: Automated

Android Malware Detection through Manifest Analysis," 11th IEEE

MASS, Philadelphia, PA, pp. 767-772, 2014.

18. M. Kumaran and W. Li, "Lightweight malware detection based on

machine learning algorithms and the android manifest file," IEEE

MIT Undergraduate Research Technology Conference (URTC),

Cambridge, MA, pp. 1-3, 2016.

19. C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang and H. Kinawi, "Android

Malware Detection Based on Factorization Machine," IEEE Access,

vol. 7, pp. 184008-184019, 2019.

20. T. Kim et al., ”A Multimodal Deep Learning Method for Android

Malware Detection Using Various Features”, IEEE Transactions on

Information Forensics and Security, vol. 14, 2019.

21. H. Zhua et al., ”DroidDet: Effective and robust detection of android

malware using static analysis along with rotation forest model”,

Neuro- computing, vol. 272, pp. 638-646, 2018.

22. K. Elish et al., ”Profiling user-trigger dependence for Android

malware detection”, Computers & Security, vol. 49, pp. 255-273,

2015.

23. M. Zhang et al., ”Semantics-Aware Android Malware Classification

Using Weighted Contextual API Dependency Graphs”, ACM CCS,

2014.

24. Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:

Semantics- based detection of android malware through static

analysis”, 22nd ACM SIGSOFT Symposium on Foundations of

Software Engineering, 2014.

25. W. Wang et al., "DroidEnsemble: Detecting Android Malicious

Applications With Ensemble of String and Structural Static

Features," IEEE Access, vol. 6, pp. 31798-31807, 2018.

26. H. Zhang, S. Luo, Y. Zhang and L. Pan, "An Efficient Android

Malware Detection System Based on Method-Level Behavioral

Semantic Analysis," IEEE Access, vol. 7, pp. 69246-69256, 2019.

27. L. N. Vu, and S. Jung, “AdMat: A CNN-on-Matrix Approach to

Android Malware Detection and Classification”, IEEE Access, vol.

9, pp. 39680-39694, 2021.

28. V.M. Afonso et al., ”Identifying Android malware using dynamically

obtained features”, Journal of Computer Virology and Hacking

Techniques, vol. 11, pp.9-17,2015.

29. A. Saracino, D. Sgandurra, G. Dini and F. Martinelli, "MADAM:

Effective and Efficient Behavior-based Android Malware Detection

and Preven- tion," in IEEE Transactions on Dependable and Secure

Computing, vol. 15, no. 1, pp. 83-97, 2018.

30. P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma, "A Novel Dynamic

Android Malware Detection System With Ensemble Learning,"

IEEE Access, vol. 6, pp. 30996-31011, 2018.

31. M. Jaiswal, Y. Malik and F. Jaafar, "Android gaming malware

detection us- ing system call analysis," 6th International Symposium

on Digital Forensic and Security (ISDFS), Antalya, pp. 1-5, 2018.

32. S. Iqbal and M. Zulkernine, "SpyDroid: A Framework for Employing

Multiple Real-Time Malware Detectors on Android," 13th

International Conference on Malicious and Unwanted Software

(MALWARE), Nan- tucket, MA, USA, pp. 1-8, 2018.

33. J. Ribeiro, F. B. Saghezchi, G. Mantas, J. Rodriguez, and R. A.

Abd-Alhameed, “HIDROID: Prototyping a Behavioral Host-Based

Intrusion Detection and Prevention System for Android”, IEEE

Access, vol. 8, pp. 23154-23168, 2020.

34. S. Wang, et al., ”Detecting Android Malware Leveraging Text

Semantics of Network Flows”, IEEE Transactions On Information

Forensics And Security, vol. 13, pp. 1096-1109, 2018.

35. J. Feng, L. Shen, Z. Chen, Y. Wang and H. Li, "A Two-Layer Deep

Learning Method for Android Malware Detection Using Network

Traffic," IEEE Access, vol. 8, pp. 125786-125796, 2020.

36. I. J. Sanz, M. A. Lopez, E. K. Viegas and V. R. Sanches, "A

Lightweight Network-based Android Malware Detection System,"

IFIP Networking Conference (Networking), Paris, France, pp.

695-703, 2020.

37. A. Arora, S. Garg, and S.Peddoju,”Malware detection using network

traffic analysis in android based mobile devices”, 8th IEEE

NGMAST,2014.

38. A. Arora, and S. Peddoju, ”Minimizing Network Traffic Features for

Android Mobile Malware Detection”, 18th ACM ICDCN, 2017.

39. S. Rahmat, Q. Niyaz, A. Mathur, W. Sun and A. Y. Javaid, "Network

Traffic-Based Hybrid Malware Detection for Smartphone and

Traditional Networked Systems," 10th Annual Ubiquitous

Computing, Electronics & Mobile Communication Conference, New

York City, NY, USA, pp. 0322-0328, 2019.

40. S. Imtiaz, S. Rehman, A. Javed, Z. Jalil, X. Liu, and W. Alnumay,

"DeepAMD: Detection and identification of Android malware using

high-efficient Deep Artificial Neural Network", Future Generation

Computer Systems, vol. 115, pp. 844 – 856, 2021.

41. A. Mahindru, A. Sangal, "MLDroid—framework for Android

malware detection using machine learning techniques", Neural

Computing & Applications, 2020.

42. A. Mehtab et al., "AdDroid: Rule-Based Machine Learning

Framework for Android Malware Analysis", Mobile Networks and

Applications, vol. 25, pp. 180–192, 2020.

https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/
https://www.businessofapps.com/guide/app-stores-list/
http://www.forbes.com/sites/daveywinder/2019/07/05/critical-warning-
http://www.forbes.com/sites/daveywinder/2019/07/05/critical-warning-
https://www.indiatoday.in/technology/news/story/agent-smith-virus-whatsapp-infects-android-phones-in-india-what-is-it-1566668-2019-07-11
https://www.indiatoday.in/technology/news/story/agent-smith-virus-whatsapp-infects-android-phones-in-india-what-is-it-1566668-2019-07-11
https://www.indiatoday.in/technology/news/story/agent-smith-virus-whatsapp-infects-android-phones-in-india-what-is-it-1566668-2019-07-11

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-10 Issue-1, May 2021

152

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.A58040510121

DOI: 10.35940/ijrte.A5804.0510121

43. H. Zhu et al., "HEMD: a highly efficient random forest-based

malware detection framework for Android," Neural Computing &

Applications, vol. 30, pp. 3353–3361, 2018.

44. Y. Shyong, T. Jeng and Y. Chen, "Combining Static Permissions and

Dynamic Packet Analysis to Improve Android Malware Detection,"

2nd International Conference on Computer Communication and the

Internet (ICCCI), Nagoya, Japan, pp. 75-81, 2020.

45. A. Arora, and S. Peddoju, ”NTPDroid: A Hybrid Android Malware

Detec- tor Using Network Traffic and System Permissions”, 17th

IEEE TrustCom, 2018.

46. A. Arora, S. Peddoju, V. Chauhan, and A. Chaudhary, ”Hybrid

Android Malware Detection by Combining Supervised and

Unsupervised Learn- ing”, 24th ACM MobiCom, 2018.

47. S. Arshad et al. "SAMADroid: A Novel 3-Level Hybrid Malware

Detection Model for Android Operating System," IEEE Access, vol.

6, pp. 4321-4339, 2018.

48. W. Zhang, H. Wang, H. He, and Peng Liu, “DAMBA: Detecting

Android Malware by ORGB Analysis”, IEEE Transactions on

Reliability, vol. 69, pp. 55-69, 2020.

49. Y. Zhou, and X. Jiang, ”Dissecting android malware:

Characterization and evolution”, IEEE Symposium on Security and

Privacy, 2012.

50. Koodous Malware Dataset, ”www.koodous.com”.

AUTHORS PROFILE

Gourav Garg, is a student at Delhi Technological
University, Delhi, India. He is pursuing Bachelor of

Technology in Mathematics and Computing branch from
the Department of Applied Mathematics. He has dsone

research work and published a paper in the field of

Mobile Security and Android Malware Detection, using
static components. He has done project work in the fields

of Machine Learning, Deep Learning, and Android App Development. He
has gained work experience at Paytm as an SDE intern. He has a creative

mind and is always eager to learn new skills and apply them to solve

problems that make people's lives easier and better.

Ashutosh Sharma, is a student at Delhi Technological
University. He is pursuing Bachelor of Technology in

Mathematics and Computing from the Department of

Applied Mathematics. He has immense interest in
software Development and research in mobile malware

Detection and Network Traffic Analysis. He is a tech

enthusiast and an innovative thinker who's always up to
learning new technologies which would improve the standard of life. He is a

quick learner and always ready to work on projects that requires technical
skills for solving real-life problems and Presentations skills such as

programming. His goal is to learn and evolve as much as possible.

Anshul Arora is currently working as Assistant

Professor in Discipline of Mathematics and Computing,

Delhi Technological University Delhi, India. He is
pursuing Ph.D. from Department of Computer Science

and Engineering, Indian Institute of Technology
Roorkee, India. Previously, he has done M.Tech in

Computer Science and Engineering from IIT Roorkee

and B.Tech in Computer Engineering from Kurukshetra. His areas of
research include Mobile Security, Mobile Malware Detection, and Network

Traffic Analysis. He has published several papers in the field of Android
malware detection. He is also a reviewer for various journals such as IEEE

Transactions on Information Forensics and Security, IEEE Access,

Computers and Security, Elsevier, etc.

http://www.koodous.com/
http://www.koodous.com/
http://www.koodous.com/

