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Abstract: Over the past few years, malware attacks have risen 

in huge numbers on the Android platform. Significant threats are 

posed by these attacks which may cause financial loss, 

information leakage, and damage to the system. Around 25 

million smartphones were infected with malware within the first 

half of 2019 that depicts the seriousness of these attacks. Taking 

into account the danger posed by the Android malware to the 

users' community, we aim to develop a static Android malware 

detector named SFDroid that analyzes manifest file components 

for malware detection. In this work, first, the proposed model 

ranks the manifest features according to their frequency in 

normal and malicious apps. This helps us to identify the 

significant features present in normal and malware datasets. 

Additionally, we apply support thresholds to remove the 

unnecessary and redundant features from the rankings. Further, 

we propose a novel algorithm that uses the ranked features, and 

several machine learning classifiers to detect Android malware. 

The experimental results demonstrate that by using the Random 

Forest classifier at 10% support threshold, the proposed model 

gives a detection accuracy of 95.90% with 36 manifest 

components.  

Keywords: Mobile Malware Detection, Mobile Network, 

Mobile Privacy, Mobile Security. 

I. INTRODUCTION 

Similar to computers, mobile phones are developed on a 

mobile OS that, nowadays, has advanced computational 

power and connectivity, and hence their demand has 

outperformed the desktops [1]. Amongst different mobile 

OS, Android is the best market seller due to its open 

architecture and a large number of apps in the Play Store [2]. 

This clearly shows the popularity of Android over other 

mobile OS.  App downloads on the Android platform are 

made easier by the availability of the application stores such 

as Google Play and other third-party app markets. However, 

all apps available on these markets are not safe. Normal 

operations of mobile phones are interrupted by some 

applications known as malware. They may cause damage to 

the system, collection, and leakage of sensitive information, 

and may even cause a financial loss by sending SMS in the 

background without users’ knowledge.  
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According to a report [3], in 2018, 5.3 million malicious 

mobile installation packages were detected. Moreover, 66.4 

million attacks were using malicious mobile apps in 2017 

which then almost doubled to 116.5 million in 2018 [3]. 

In 2019, 25 million Android smartphones were infected 

by malware named Agent Smith [4]. In general, there are 

three ways by which malicious applications can get into 

smartphones: (i) Repackaging in Google Play Store, (ii) 

Update Attacks, and (iii) Drive-by-Downloads. 

A. Motivation 

Taking into account the danger posed by the Android 

malware to the users' community, in this work, we aim to 

propose a static detection mechanism that combines Android 

manifest file features for malware detection. Static features 

like permissions, intents, hardware components, content 

providers, broadcast receivers, etc., are present within the 

manifest file of any Android app. Permissions' access is one 

of the security control mechanisms provided by Android, 

which constraints certain operations that an app can perform. 

For the app to execute smoothly, permissions must be 

granted. Permissions are granted when the app is installed by 

the user (on devices running Android 5.1 and lower) or while 

the app is running (on devices running Android 6.0 and 

higher). Intent feature in the manifest file declares the types 

of intents that an activity or service responds to. Its parent 

component’s properties and abilities, i.e., what an activity or 

service can perform and what types of broadcasts a receiver 

can manage, are declared by the intent-filter. Hardware 

component declares a hardware feature by the developer that 

the application is using. Content providers provide structured 

access to application-managed information. Intents that are 

broadcasted by other applications or the system are received 

by broadcast receivers. A broadcast receiver can be made 

known to the system by two methods: one by declaring it in 

the manifest file, the second is to create the receiver in code 

dynamically.  A Service is a component where the visual user 

interface is absent. Long-running background operations are 

implemented by a service. Service is unbounded to the 

activity's lifecycle. Operations like Internet downloads, 

checking for new data, data processing, and updating content 

providers use services.  

Whenever a new application is installed on the mobile 

phones by the users, a list of features is prompted for access, 

which is mostly ignored and access is granted to the 

application by the user.  

This weakness is exploited by malware developers and 

dangerous features from manifest files are integrated to 

generate malicious activity.  
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Because manifest file features are needed to be declared 

explicitly by malicious app developers for their attacks’ 

execution, hence, in this study, we have focused on analyzing 

manifest file components for Android malware detection. 

There exist several related works that have analyzed manifest 

file components for Android malware detection such as [5], 

[6], [7], [8], [9], [10], [11], etc. In comparison to all these 

related works, our objective is to find a minimal set of 

manifest file features that gives better detection accuracy. We 

rank the manifest features according to their frequency in 

malware and normal dataset. We aim to use only the 

top-ranked features instead of using all the features for 

detection. We get two separate feature rankings: one 

representing the features that are significantly present in 

malware apps; and the second representing the features that 

are significantly present in the normal dataset. To the best of 

our knowledge, no other work has used such manifest feature 

rankings for malware detection.  

B. Contributions 

The main contributions of the proposed SFDroid model are 

summarized below: 

1. We ranked the manifest file components based upon 

their frequency in the normal and malware dataset. 

2. We constructed two feature rankings: one for 

significant features present in malware apps, and the 

other for significant features present in normal apps. 

3. Further, we applied support thresholds to eliminate 

the lower-ranked features. 

4. We proposed a novel algorithm to detect Android 

malware that applies several machine learning 

classifiers on two feature rankings. 

C. Organization 

The rest of the paper is organized as follows. In Section 2, 

we discuss the related work in the field of Android malware 

detection. We explain our proposed SFDroid model in 

Section 3. Section 4 reviews the results obtained from the 

proposed approach, and we conclude with future work 

redirections in Section 5. 

II. RELATED WORK 

In this section, we review the research works put forward 

in the field of detection of Android malware. Static, 

Dynamic, and Hybrid detections are three different 

categories in which the related works are classified. In the 

upcoming subsections, we review each of the detection types. 

A. Static Detection 

In the static solutions, malware samples are identified in 

Android devices without installing the apps. It makes them 

faster and relatively less expensive in comparison to dynamic 

methods. Static features including manifest file components 

and API calls are used in this technique.  

(i) Manifest File-Based Detection 

In this subsection, we discuss the related works that have 

studied different features in the manifest file for Android 

malware analysis and detection. Taheri et al. [5] applied 

hamming distance to obtain the similarity between the benign 

and malware apps based on features like permissions, APIs, 

and intents. Qiu et al. [6] applied multi-label classification 

models on the collection of extracted features like API calls, 

network addresses, permissions, etc., intending to detect 

zero-day malware. In [7], the model named FAMD (Fast 

Android Malware Detector) was proposed that extracted 

Dalvik code sequences and permissions from the samples and 

applied CatBoost classifier to detect malware apps. In [8], the 

authors extracted various static features from source code and 

manifest files, and a linear SVM algorithm was applied to 

detect malicious apps. Similarly, the authors in [9] applied 

machine learning algorithms on several static features and 

manifest components for detection. In some other works like 

[10], and [11] malware detection is performed by extraction 

of static features on the Android platform. The identification 

of the most important permissions to differentiate malware 

from benign apps is done by the SIGPID model presented in 

[12]. The authors applied pruning with association rules 

mining for ranking and identifying the important 

permissions.  

The dangerous and harmful patterns of permissions within 

the malicious apps were analyzed by Moonsamy et al. [13]. 

The authors in [14] combined permissions and intents for 

detection using PCA and machine learning techniques. The 

authors in [15] used permissions for malware detection using 

gain ratio, J48, Multilayer Perceptron, Sequential Minimal 

Optimization (SMO), and Randomizable filtered classifiers. 

Permissions and intents were ranked with information gain 

in [16] and further, that ranking was applied to detect 

malicious apps.  Likewise, in [17] and [18], authors applied 

various machine learning algorithms on manifest 

components for malware detection. In [19], factorization 

machine architecture was applied by the authors on the 

collection of manifest features for malware detection in apps. 

The malign score was further used for malware detection.  

Some recent techniques like [20] and [21] have also 

examined manifest features for malware detection. However, 

none of the above-mentioned works have aimed to find the 

best set of manifest features for effective Android malware 

detection. In this work, we aim to find the best set of 

manifest features which can give better accuracy in the 

detection of malicious apps. 

(ii) API Calls Based Detection 

Static API calls have been used by some researchers to 

detect malicious apps in Android devices. In [22], the authors 

analyzed the sensitive APIs and user-trigger dependence in 

malicious apps, and in [23], the authors designed the API 

calls dependency graphs and classified the malicious apps 

into their corresponding malware families based on similarity 

metrics. In [24], the authors proposed a model named 

Apposcopy which analyzed data-flow and control-flow 

properties from API calls of malicious apps. Wang et al.  [25] 

analyzed structural features like API calls, intents and 

permissions to detect malware. Similarly in [26], the 

proposed work analyzed API calls and their call graphs for 

malicious app detection. Vu et al. [27] constructed an 

adjacency matrix for each application from its APK source 

code.  

API calls were used to convert APK source code into 

call-graphs which were further used to train CNN to detect 

malicious apps. Chen at al. [28] applied API invocation 

sequences to detect malware.  
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However, these API calls are not used in our proposed 

malware detection technique because they may result in noise 

if they are not combined with any permission or other 

manifest file component. 

B. Dynamic Detection 

Android applications are not executed in static detection 

techniques, hence, malicious content that gets downloaded at 

run-time / update time may remain undetected in these types 

of solutions. Therefore, some authors have proposed dynamic 

solutions for malware detection. These solutions can be 

further divided in two categories: OS-based and Network 

Traffic based detection.  

(i) OS-Based Detection 

Research works that have used Android OS-based 

features for malware detection are discussed in this 

subsection. In [28], the authors analyzed the APIs and system 

calls for Android malicious app detection. A behavioral 

signature-based detector named MADAM model was 

presented in [29] that extracted features at four levels: kernel, 

package, user, and application-level and implemented 

parallel classifiers to detect malicious apps. Feng et al. [30] 

examined dynamic system-level behavior traces along with 

application-level behaviors like premium service approval, 

theft of personal details, and dangerous service 

communication to detect malicious activities at run time. In 

[31], the authors distinguished benign and malware apps by 

analyzing the system calls of apps. Iqbal et al. [32] analyzed 

several dynamic features like memory consumption, CPU 

usage, and system call events for malware detection. The 

authors in [33] used features that depict the utilization of 

mobile run-time resources like memory, processor, battery, 

and network traffic for malware detection. Extraction of 

dynamic features like system calls is computationally 

complex and has large overheads in comparison to static 

methods, therefore, a static malware detection model is 

presented in this paper. 

(ii) Network Traffic Based Detection 

Now, we review the related works that have used Internet 

traffic features for Android malware detection.  Wang et al. 

[34] implemented Natural Language Processing methods on 

headers of the HyperText Transfer Protocol (HTTP) for 

malware detection. Network-level features were extracted by 

authors in [35] and multiple classifiers were applied to detect 

malicious features in the network traffic. Patterns of 14 

features from headers of TCP/IP of benign and malware 

traffic files were observed by Igor et al. in [36] for malicious 

network traffic detection. Similarly, in [36], [37], and [38], 

the authors proposed models based upon analysis of network 

traffic to detect Android malware apps. All related works 

discussed above can be used to detect those malicious 

features that produce a significant amount of network traffic. 

But, fail for those who do not generate any network traffic; 

for instance, a malware app that only sends messages. 

Therefore, network traffic-based detection is not taken into 

account in this proposed work.  

C. Hybrid Detection 

Some hybrid solutions do exist in the literature so that 

advantages of both static and dynamic techniques can be 

combined. Deep artificial neural networks were implemented 

for malware detection by authors in [39] on both static and 

dynamic layers like static permissions, intents, and dynamic 

API calls.   Features like permissions, apps ratings, dynamic 

API calls, and count of users downloaded were extracted by 

Mahindru et al. [40], and machine learning techniques were 

applied for malware detection. Android actions like the 

Internet connections, installing packages on the device, file 

uploading to a server, etc. were analyzed by the AdDroid 

model presented in [41] to detect malicious activities. Zhu et 

al. [42] inspected permissions, run-time system-related 

events, and sensitive APIs for malware detection in Android. 

Static features like permissions and dynamic features like 

network traffic packets were analyzed by the authors in [43] 

to detect malicious activities in apps. Apart from this, in [44] 

and [45], the authors introduced two distinct hybrid detection 

methodologies by joining the network traffic with 

permissions. Similarly, in [46] and [47], the combinations of 

static and dynamic features were analyzed for malware 

detection. Because both static and dynamic features are 

involved in hybrid detection techniques, similar to dynamic 

mechanisms, computational overheads are also involved in 

hybrid ones. Therefore, a static detection method is proposed 

in our model. 

III. PROPOSED METHODOLOGY 

Now, we discuss the proposed SFDroid model. The 

detailed methodology is classified into several stages as 

summarized in Figure 1. We explain all the stages in the 

following subsections.  

A. Training Phase 

The main aim of the training phase is to rank the static 

manifest file features so that we can use the top-ranked 

distinctive features for malicious app detection. The static 

features required by any Android application are defined in 

its manifest file that can be extracted using apktool. All static 

features required by each app from their manifest files were 

extracted using the python script. This phase is further 

subdivided into two phases, as discussed below. 

(i) Features Ranking: We extract six manifest features, 

i.e., permissions, intents, hardware components, content 

providers, broadcast receivers, and services from benign and 

malicious apps. Benign Matrix, B and Malware matrix, M are 

used to represent the extracted features from benign and 

malware apps respectively. In matrices B and M, the columns 

represent the six manifest features and rows represent 

Android applications. Either 0 or 1, are the elements in the 

matrices. The value of any index [i, j] is 1 if the jth 

permission exists in the ith app, else the value is 0.  

As the benign and malware applications may differ in the 

count, unbalanced matrices may give asymmetrical results. 

So balanced matrices are created by calculating the relative 

frequency of each static feature in both the matrices.  

To obtain the relative frequency of a feature, the 

frequency of that feature in benign apps is divided by the total 

number of benign apps and similarly, the frequency of that 

feature in malware apps is divided by the total number of 

malware apps. The relative frequency is calculated using the 

equations mentioned below, where Pj and Qj represent the 

relative frequency of a feature in benign and malware 

datasets respectively. 
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Relative Frequency (Pj) = (∑ Bij) / sizeof (Bj)   (1) 

Relative Frequency (Qj) = (∑ Mij) / sizeof (Mj)   (2) 

We need to obtain those significant features which are 

present in benign apps but not in malware ones and 

vice-versa. Those static features which are significantly 

present in malware apps are denoted using the term, 

dangerous features. Likewise, those static features which are 

significantly present in benign apps, are denoted by the term 

clean features. A score is calculated for every feature using 

the following equation to get the clean and dangerous feature 

set.  

R(Fj) = Qj – Pj  (3) 

The value of R(Fj) will lie in the interval [-1, 1], for each 

feature. The value of R(Fj) as 1, for any feature Fj, denotes 

that static feature is present only in malicious apps and thus it 

is the most dangerous feature. Whereas the value of R(Fj) as 

-1 denotes the most clean feature. Furthermore, we rank all 

the features using their scores obtained. For all the features, 

two rank lists were formed, one in increasing and the other in 

decreasing order of their scores, represented by AList and 

DList respectively. The topmost feature in the AList of each 

category is the one that is frequently present in benign apps. 

And similarly, the topmost feature in the DList represents the 

one that is frequently present in the malware apps. Note that, 

for our experiments, first we rank the six features 

individually, i.e., we have separate rankings for permissions, 

intents, hardware components, content providers, services, 

and broadcast receivers. Then, we merge all the features and 

generate a common ranking consisting of all the manifest 

components. 

(ii) Features Threshold: There are numerous features in 

the Android Manifest file out of which some features may 

decrease the detection accuracy. Thus, in our model, features 

were ranked to remove the lower-ranked features from both 

AList and DList, for each of the feature sets. Threshold values 

vary from 0% to 50% in the intervals of 5%.  A threshold 

value of x% in the interval [0, 50] denotes that only those 

features which are present in at least x% of both benign and 

malware apps will be considered in the experiment and the 

remaining ones will be eliminated.  The model is evaluated 

on each of the threshold values ranging in [0, 50]. 

B. Testing Phase 

In this phase, the proposed model for detecting malicious 

apps is discussed. Algorithm 1 explains the steps involved in 

the detection method. After applying the k% support 

threshold on the ranked lists AList and DList, Algorithm 1 is 

applied to find the best feature set to get the highest accuracy 

for malware detection. Now, to test any app, we extract all of 

its static features from all categories - hardware, intents, 

permissions, providers, receivers, and services. Let us 

consider AList first, its topmost feature is selected, and then 

machine learning algorithms are applied to get the detection 

accuracy, say x%. Then the first feature is added in the Best 

Set. Further, the top two features of AList are merged to get 

the detection accuracy, say y%. If y > x, it means the merging 

of features gives better results in comparison to the individual 

ones. Hence, both features are put into Best Set, otherwise, if 

y < x, the second feature is not added into the Best Set. 

Similarly, a feature is added to the Best Set if it improves 

accuracy, otherwise, Algorithm 1 moves on to the next 

feature and the process continues for all features in AList to 

get its Best Set. The same procedure is followed to get the 

alternative Best Set on other ranked list DList. Three machine 

learning classifiers are used for our evaluation: Naive Bayes, 

Random Forest, and SVM.  

The Best sets obtained from both the lists at several 

thresholds are discussed in the Results section.  

Algorithm 1 - Detection Algorithm that Returns Best Set of 

Permissions 

1: Input: Testing Dataset (TSet), Ranked Features Lists 

(AList and DList) 

2: Output: Best Set of Features (BestSetA) and (BestSetD), 

and Highest Detection Accuracy (MaxAccA) and 

(MaxAccD) obtained from AList and DList respectively 

3: Parameters Initialization: BestSetA ← φ, BestSetD ← 

φ, MaxAccA ← 0, MaxAccD ← 0, PSetA ← φ PSetD ← φ 
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4: Let the number of features in AList and DList be 

represented by PA and PD after applying the k% support 

threshold. 

5: for i = 1− > PA do 

6: PSetA ← Pi 

7: Apply ML Algorithms using the features present in PSetA 

and find detection accuracy D 

8: if D > MaxAccA then 

9:  MaxAccA ← D 

10:  BestSetA ← PSetA 

11: else 

12:  PSetA ← PSetA − Pi 

13: end if 

14: end for 

15: for j = 1− > PD do 

16: PSetD ← Pj 

17: Apply ML Algorithms using the features present in 

PSetD and find detection accuracy D 

18: if D > MaxAccD then 

19:  MaxAccD ← D 

20:  BestSetD ← PSetD 

21: else 

22:  PSetD ← PSetD − Pj 

23: end if 

24: end for 

25: Return BestSetA and BestSetD 

IV. RESULTS AND DISCUSSION 

Now, we discuss the results obtained from the proposed 

approach.  For our experiments, we get the malware samples 

from three different sources namely Drebin [8], Genome 

[48], and Koodous [49]. And we downloaded the benign apps 

from the official Google Play Store. Moreover, we checked 

these benign apps with Virus Total that contains multiple 

anti-virus scanners, to make sure that none of the apps 

downloaded from Play Store is malicious. Firstly, we review 

the ranking of different features, obtained from the 

methodology, summarizing the significant features. Then, we 

highlight the detection results obtained from the SFDroid 

model.  

A. Features Ranking  

In this subsection, we discuss the ranking of all manifest 

file components. First, we review the ranking of permissions 

obtained from the proposed methodology, in both increasing 

and decreasing order in Table 1. As summarized in the Table 

1, Wake Lock is the most clean permission, i.e., appearing in 

the majority of the normal apps and not present in much of 

the malicious apps. On similar lines, Read Phone State is the 

most dangerous permission, present in the majority of the 

malicious apps. For every permission, Table 1 also 

summarizes the score obtained for that permission, i.e., the 

difference in relative frequencies for that permission in 

malware and normal dataset. This ranking helps us to identify 

the significant permissions present in normal and malware 

dataset. This list of top permissions is obtained at 0% support 

threshold. Next, we review the ranking of intents, in both 

increasing and decreasing order. Table 2 summarizes the top 

clean and top dangerous intents. As Table 2 summarizes, 

Browsable and Boot Completed are the top clean and 

dangerous intents respectively, i.e., appearing in the majority 

of normal and malware apps respectively. Again, for every 

intent, Table 2 also highlights the difference in relative 

frequencies for that intent in normal and malware dataset. 

 
Ascending Order (Top 

Clean Permissions) 

Descending Order (Top 

Dangerous Permissions) 

Permission Score Permission Score 

Wake Lock -0.427 Read Phone State 0.608 

Read External 

Storage 

-0.328 Read SMS 0.553 

Camera -0.166 Send SMS 0.500 

Access Network 

State 

-0.158 Write SMS 0.444 

Foreground 

Service 

-0.125 Receive SMS 0.444 

Table 1. Top 5 Permissions in Ascending and Descending 

Order 

 

Ascending Order (Top 

Clean Intents) 

Descending Order (Top 

Dangerous Intents) 

Intent Score Intent Score 

Browsable -0.486 Boot Completed 0.389 

View -0.477 User Present 0.271 

Default -0.370 Sig Str 0.207 

My Package 

Replaced 

-0.172 Battery Changed 

Action 

0.175 

Leanback 

Launcher 

-0.118 Input Method 

Changed 

0.163 

Table 2. Top 5 Intents in Ascending and Descending 

Order 

 

Now, we review the ranking of hardware components, in 

both increasing and decreasing order. Table 3 summarizes the 

top clean and top dangerous hardware components. As Table 

3 summarizes, Touch Screen and Refinish Receiver are the 

top clean and dangerous hardware components respectively. 

Table 3 highlights the significant hardware components 

present in normal and malware dataset. Further, we review 

the ranking of content providers, in both increasing and 

decreasing order. Table 4 summarizes the top clean and top 

dangerous content providers. As Table 4 summarizes, 

Firebase Init and Launcher are the top clean and dangerous 

content providers respectively. Table 4 highlights the 

significant content providers present in normal and malware 

dataset. 
 

Ascending Order (Top Clean 

Hardware Components) 

Descending Order (Top 

Dangerous Hardware 

Components) 

Hardware 

Component 

Score Hardware 

Component 

Score 

Touch Screen -0.249 Refinish 

Receiver 

0.0011 

Camera -0.179 Wake Activity 0.0011 

Touch Screen Multi 

Touch 

-0.178 Screen Service 0.0011 

Touch Screen Multi 

Touch Distinct 

-0.172 Screen Receiver 0.0011 

Location GPS -0.128 Releases 0.0011 

Table 3. Top 5 Hardware components in Ascending and 

Descending Order 
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Ascending Order (Top Clean 

Providers) 

Descending Order (Top 

Dangerous Providers) 

Content Provider Score Content 

Provider 

Score 

Firebase Init -0.635 Launcher 0.024 

Internal Facebook 

Init 

-0.359 Downloads 0.004 

Android Crash 

Analytics 

-0.335 Interface Stats 0.003 

Support V4 Content -0.284 Download Task 0.002 

Mobile Ads Init -0.232 RCMD Config 

Provider 

0.002 

Table 4. Top 5 Content providers in Ascending and 

Descending Order 

 

Next, we review the ranking of broadcast receivers, in 

both increasing and decreasing order. Table 5 summarizes the 

top clean and top dangerous broadcast receivers. As Table 5 

summarizes, Firebase Instance and Update Receiver are the 

top clean and dangerous broadcast receivers respectively. 

Table 5 highlights the significant broadcast receivers present 

in normal and malware dataset.  

Next, we review the ranking of services, in both 

increasing and decreasing order. Table 6 summarizes the top 

clean and top dangerous services. As Table 6 summarizes, 

Firebase Instance Service and Update Service are the top 

clean and dangerous services respectively. Table 6 highlights 

the significant services present in normal and malware 

dataset. As can be seen from Tables 1-6, none of the manifest 

file components gets the score of +1 or -1, i.e., no manifest 

feature exists that is present in only one type of the dataset. 

Because no single distinguishing feature exists, hence, we 

aim to find the best set of distinguishing features. 
 

Ascending Order (Top Clean 

Services) 

Descending Order (Top 

Dangerous Services) 

Service Score Service Score 

Firebase Instance 

Service 

-0.594 Update Service 0.117 

App Measurement 

Service 

-0.587 Custom First 

Service 

0.106 

App Measurement Job 

Service 

-0.562 Custom Third 

Service 

0.106 

Component Discovery -0.520 Custom Second 

Service 

0.106 

Firebase Messaging -0.488 Custom Fourth 

Service 

0.105 

Table 5. Top 5 Broadcast Receivers in Ascending and 

Descending Order 

Ascending Order (Top Clean 

Receivers) 

Descending Order (Top 

Dangerous Receivers) 

Broadcast Receiver Score Broadcast 

Receiver 

Score 

Firebase Instance -0.640 Update 

Receiver 

0.117 

App Measurement -0.587 Custom Base 

Broadcast 

0.106 

App Measurement 

Install 

-0.578 Adservice 0.026 

Access Token 

Expiration 

-0.279 Battery Base 

Broadcast 

0.025 

Analytics Receiver -0.252 Boot Receiver 0.024 

Table 6. Top 5 Services in Ascending and Descending Order 

B. Features Ranking with Individual Features 

In this subsection, we discuss the detection results with 

the proposed SFDroid model. We analyze the results from 

different machine learning classifiers at different support 

thresholds. The proposed model aims to find the best set of 

manifest features that gives better detection accuracy. 

However, before analyzing the best set of manifest features, 

we first study the detection results with individual manifest 

features. 

Results with Permissions: Firstly, we review the results 

if we use permissions alone for detection. We use the 

permissions’ ranking (both increasing and decreasing order) 

in the proposed detection algorithm to get the best set of 

permissions that gives better accuracy. Tables 7 and 8 

summarize the detection results with permissions at different 

support thresholds. Table 7 shows the results when 

permissions are ranked in ascending order. We get the 

accuracy of 85.66% at 0% threshold with Naive Bayes 

classifier, and this accuracy is achieved at best set of 15 

permissions. On similar lines, we can observe the other 

entries of the table. With permissions ranked in ascending 

order, we get the best accuracy of 93.85% at 0% threshold 

with SVM classifier and this accuracy is achieved at best set 

of 42 permissions. Similarly, from Table 8, when permissions 

are ranked in descending order, we get the best accuracy of 

94.49% with Random Forest classifier at 0% threshold and 

this accuracy is achieved at best set of 31 permissions. Hence, 

we can conclude that when we use permissions for detection, 

we get the best accuracy of 94.49% with Random Forest 

classifier at best set of 31 permissions.  

 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 15 85.66 46 92.57 42 93.85 

5 4 79.39 7 88.09 8 88.48 

10 4 80.03 6 82.84 6 83.74 

15 3 75.42 3 81.69 3 81.69 

20 3 75.42 3 81.69 3 81.69 

25 3 75.42 3 81.69 3 81.69 

Table 7. Detection Results with Permissions Ranked in 

Ascending Order. 
 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 16 86.43 31 94.49 23 92.83 

5 4 83.10 4 86.04 4 86.04 

10 5 85.28 4 85.53 4 85.53 

15 4 85.53 4 85.53 4 85.53 

20 2 81.82 2 81.82 2 81.82 

25 2 81.82 2 81.82 2 81.82 

Table 8. Detection Results with Permissions Ranked in 

Descending Order. 

Results with Intents: Now, we review the results if we 

use intents alone for detection. We use the intents’ ranking 

(both increasing and decreasing order) in the proposed 

detection algorithm to get the best set of intents that gives 

better accuracy.  
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Tables 9 and 10 summarize the detection results with 

intents. Table 9 shows the results when intents are ranked in 

ascending order. We get the best accuracy of 85.53% at 0% 

threshold with SVM classifier at best set of 21 intents. 

Similarly, from Table 10, when intents are ranked in 

descending order, we get the best accuracy of 83.35% with 

Random Forest classifier at best set of 28 intents. Hence, we 

can conclude that when we use intents for detection, we get 

the best accuracy of 85.53% with SVM classifier at best set of 

21 intents. We also observe that the best accuracy with intents 

alone is lower than obtained with permissions alone. 

  

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 19 83.48 20 85.15 21 85.53 

5 3 75.42 3 79.13 3 79.13 

10 1 69.40 3 73.62 3 73.62 

15 1 69.40 3 73.62 3 73.62 

20 1 69.40 3 73.62 3 73.62 

25 1 69.40 3 73.62 3 73.62 

Table 9. Detection Results with Intents Ranked in 

Ascending Order. 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 16 75.80 28 83.35 24 82.71 

5 4 75.16 7 78.87 7 79.00 

10 3 72.47 4 73.50 4 73.50 

15 3 72.47 4 73.50 4 73.50 

20 3 72.47 4 73.50 4 73.50 

25 3 72.47 4 73.50 4 73.50 

Table 10. Detection Results with Intents Ranked in 

Descending Order. 

Results with Hardware Components: Next we review 

the results if we use hardware components alone for 

detection. Tables 11 and 12 summarize the detection results 

with components.  Table 11 shows the results when 

components are ranked in ascending order. We get the best 

accuracy of 76.31% at 0% threshold with SVM classifier at 

best set of 17 hardware components. Similarly, from Table 

12, when hardware components are ranked in descending 

order, we get the best accuracy of 76.06% with SVM 

classifier at 0% threshold at best set of 35 hardware 

components. Hence, we can conclude that when we use 

hardware components for detection, we get the best accuracy 

of 76.31% with SVM classifier at best set of 17 components. 

We also observe that the best accuracy with hardware 

components alone is lower than obtained with permissions 

and intents. 

 

 

 

 

 

 

 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 10 74.90 15 75.42 17 76.31 

5 9 73.24 14 74.39 18 75.03 

10 9 73.24 14 74.39 18 75.03 

15 13 72.47 14 72.60 20 73.75 

20 13 72.47 14 72.60 20 73.75 

25 13 72.47 14 72.60 20 73.75 

Table 11. Detection Results with Hardware Components 

Ranked in Ascending Order. 
 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 22 59.15 34 75.29 35 76.06 

5 22 59.15 33 74.01 34 74.65 

10 22 59.15 33 74.01 34 74.65 

15 22 59.15 32 72.47 33 73.11 

20 22 59.15 32 72.47 33 73.11 

25 22 59.15 32 72.47 33 73.11 

Table 12. Detection Results with Hardware Components 

Ranked in Descending Order. 

 

Results with Content Providers: Next we review the 

results if we use content providers alone for detection.  Tables 

13 and 14 summarize the detection results with content 

providers. Table 13 shows the results when content providers 

are ranked in ascending order. We get the best accuracy of 

91.29% with SVM classifier at best set of 26 content 

providers. Similarly, from Table 14, when content providers 

are ranked in descending order, we get the best accuracy of 

89.76% with SVM classifier at best set of 59 content 

providers. Hence, we can conclude that when we use content 

providers for detection, we get the best accuracy of 91.29% 

with SVM classifier at best set of 26 content providers. We 

also observe that the best accuracy with content providers 

alone is lower than obtained with permissions and higher than 

obtained with intents and hardware components. 

 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 14 89.76 12 89.50 26 91.29 

5 19 87.71 16 87.20 34 89.63 

10 19 87.71 16 87.20 34 89.63 

15 19 87.71 16 87.20 34 89.63 

20 19 87.71 16 87.20 34 89.63 

25 19 87.71 16 87.20 34 89.63 

Table 13. Detection Results with Content Providers 

Ranked in Ascending Order. 
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Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 7 51.22 58 89.50 59 89.76 

5 7 51.22 57 87.20 58 87.71 

10 7 51.22 57 87.20 58 87.71 

15 7 51.22 57 87.20 58 87.71 

20 7 51.22 57 87.20 58 87.71 

25 7 51.22 57 87.20 58 87.71 

Table 14. Detection Results with Content Providers 

Ranked in Descending Order. 

 

Results with Broadcast Receivers: Further, we review 

the results if we use broadcast receivers   alone for detection. 

Tables 15 and 16 summarize the detection results with 

broadcast receivers at different support thresholds. Table 15 

shows the results when broadcast receivers are ranked in 

ascending order. We get the best accuracy of 89.63% with 

SVM classifier at best set of 25 broadcast receivers. 

Similarly, from Table 16, when broadcast receivers are 

ranked in descending order, we get the best accuracy of 

83.61% with SVM classifier at every threshold. This 

accuracy is achieved at best set of 62 broadcast receivers. 

Hence, we can conclude that when we use broadcast 

receivers for detection, we get the best accuracy of 89.63% 

with SVM classifier at best set of 25 broadcast receivers. We 

also observe that the best accuracy with broadcast receivers 

alone is lower than obtained with permissions and content 

providers, and higher than obtained with intents and 

hardware components.  
 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 23 88.86 20 88.86 25 89.63 

5 25 88.48 23 88.99 27 89.63 

10 10 78.75 30 83.99 36 84.89 

15 10 78.75 30 83.99 36 84.89 

20 10 78.75 30 83.99 36 84.89 

25 10 78.75 30 83.99 36 84.89 

Table 15. Detection Results with Broadcast Receivers 

Ranked in Ascending Order. 

 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 62 82.97 59 83.10 62 83.61 

5 62 82.97 59 83.10 62 83.61 

10 62 82.97 59 83.10 62 83.61 

15 62 82.97 59 83.10 62 83.61 

20 62 82.97 59 83.10 62 83.61 

25 62 82.97 59 83.10 62 83.61 

Table 16. Detection Results with Broadcast Receivers 

Ranked in Descending Order. 

 

Results with Services: Next, we review the results if we 

use services alone for detection. Tables 17 and 18 summarize 

the detection results with services at different support 

thresholds. Table 17 shows the results when services are 

ranked in ascending order. We get the best accuracy of 

89.76% with SVM classifier at best set of 23 services. 

Similarly, from Table 18, when services are ranked in 

descending order, we get the best accuracy of 83.48% with 

SVM classifier at best set of 61 services. Hence, we can 

conclude that when we use services for detection, we get the 

best accuracy of 89.76% with SVM classifier at best set of 23 

services. We also observe that the best accuracy with services 

alone is lower than obtained with permissions and content 

providers, and higher than obtained with intents and 

hardware components. 

 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 23 89.76 22 89.37 23 89.76 

5 23 89.37 21 89.12 23 89.37 

10 22 88.61 21 88.22 22 88.61 

15 23 87.58 19 86.68 23 87.58 

20 32 84.63 30 83.99 32 84.63 

25 32 84.63 30 83.99 32 84.63 

Table 17. Detection Results with Services Ranked in 

Ascending Order. 
 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 61 83.35 59 83.23 61 83.48 

5 61 83.35 59 83.23 61 83.48 

10 61 83.35 59 83.23 61 83.48 

15 61 83.35 59 83.23 61 83.48 

20 61 83.35 59 83.23 61 83.48 

25 61 83.35 59 83.23 61 83.48 

Table 18. Detection Results with Services Ranked in 

Descending Order. 

 

From the above results, we can conclude that we get the 

highest accuracy of 94.49% with 31 permissions. Moreover, 

we find that SVM and Random Forest classifiers gave 

relatively better accuracy than Naive Bayes, for all the 

individual features. 

C. Detection Results with Combined Features 

In this subsection, we analyze the results when we 

combine all the manifest file components, rank them all in 

ascending and descending order, and then apply the proposed 

detection algorithm. The proposed approach aims to find the 

best set consisting of all the manifest components that give 

relatively better accuracy than any other set of features. We 

summarize the detection results with combined manifest 

components in Tables 19 and 20.  
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Table 19 highlights the detection results when we arrange 

all the manifest file components in increasing order of their 

relative frequencies. We observe that we get the best 

accuracy of 95.90% at 10% support threshold with 36 

manifest features. In this best set of 36 features, there are 10 

permissions, 5 intents, 6 services, 4 broadcast receivers, 7 

content providers, and 4 hardware components. We analyze 

that eliminating the features (ranked in ascending order) at 

the 10% threshold increases the accuracy as compared to the 

0% threshold (where no feature is eliminated). Hence, we can 

argue that eliminating the irrelevant features with a support 

threshold helps in improving the detection accuracy. From 

Table 20, where features are ranked in descending order of 

their relative frequencies, we observe that the proposed 

approach gives the highest accuracy of 94.70% with SVM 

classifier at support thresholds of 10%, 15% and 20%. This 

accuracy is obtained with 58 manifest features. However, this 

accuracy is lower than obtained with features ranked in 

increasing order of frequencies.  

 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 35 90.56 32 94.48 36 94.39 

5 35 90.56 31 94.21 39 95.13 

10 36 90.78 33 94.89 36 95.90 

15 36 90.78 33 94.89 38 95.90 

20 39 91.46 33 94.89 33 95.39 

25 35 90.56 33 94.89 33 95.39 

Table 19. Detection Results with Combined Manifest 

Components Ranked in Ascending Order. 
 

 

Threshold 

(in %) 

Different Machine Learning Classifiers 

Naive Bayes Random Forest SVM 

Best 

Set 

Accuracy 

(in %) 

Best 

Set 

Accuracy (in 

%) 

Best 

Set 

Accuracy 

(in %) 

0 45 89.66 52 93.28 56 93.79 

5 45 89.66 51 93.28 59 93.23 

10 47 89.88 53 93.26 58 94.70 

15 47 89.88 53 93.26 58 94.70 

20 49 90.68 53 93.26 58 94.70 

25 55 89.26 53 93.26 53 93.70 

Table 20. Detection Results with Combined Manifest 

Components Ranked in Descending Order. 

 

To summarize the detection results, Table 21 highlights 

the highest accuracies obtained with individual features and 

all the features combined. As can be seen from the table, we 

observe that combining the manifest features gives better 

detection accuracy than individual manifest features. 

 

Features Used 

for Detection 

Highest 

Accuracy 

(in %) 

Best Set of Features 

Permissions 94.49 31 Permissions 

Intents 85.53 21 Intents 

Hardware 

Components 

76.31 17 Components 

Content 

Providers 

91.29 26 Providers 

Services 89.76 23 Services 

Broadcast 

Receivers 

89.63 25 Receivers 

All Manifest 

Features 

95.90 36 Features (10 

permissions, 5 intents, 6 

services, 4 broadcast 

receivers, 7 content 

providers, and 4 hardware 

components) 

Table 21. Comparison of Detection Results. 

D. False Result Analysis 

 In this section, we review the false positives, i.e., normal 

apps detected as malware and false negatives, i.e., malware 

apps detected as normal. Because we have got the highest 

accuracy of 95.90% with SVM classifier on all manifest 

features combined, we discuss the false results with reference 

to this highest accuracy achieved. We observe that many 

normal apps with the functionality of blocking phone calls 

and SMS have been detected as malicious. For instance, 

normal apps available on Play Store such as Calls 

Blacklist-Call Blocker, AntiNuisance- Call Blocker and SMS 

Blocker, Call Control, etc., have been detected as malicious 

because of the presence of dangerous functionalities of 

blocking phone calls and SMS. Hence, to correctly detect 

such apps, we need to analyze, in addition to manifest 

components, the Java source code and the API calls being 

generated within the code. Furthermore, some malicious apps 

such as AnserverBot, and BaseBridge have been detected as 

normal because such apps download malicious components 

at run time. The proposed method is a static approach, hence, 

the method does not analyze the run time behavior of the 

apps. To correctly detect such apps, we need to include 

dynamic analysis as well, such as observing dynamic calls or 

network traffic of the apps. However, this will increase the 

computational complexity of the detection model. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a static model named SFDroid to 

detect malicious Android applications by analyzing manifest 

file components. The proposed model aimed to rank each of 

the manifest component using the concept of relative 

frequency, i.e., by comparing its frequency in both malware 

and normal dataset.  

We constructed, for each of the manifest components, two 

rankings, one highlighting the features significantly present 

in malware apps and the other representing the features 

significantly present in normal apps. Thereafter, we proposed 

a novel algorithm to find the best set of manifest features that 

gives highest detection accuracy. The proposed detection 

algorithm applied several machine learning classifiers on the 

ranked list of manifest features to get their best set. We 

achieved the accuracy of 95.90% with the proposed model on 

the best set of 36 features. In our future work, we will 

analyze, in addition to the manifest components, the Java 

source code and API calls of the apps to further improve the 

detection accuracy. 
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