Pratik Jain, Ravikant Kholwal, Muskan Patidar

Abstract: The Intrusion Detection System sends alerts when it detects doubtful activities while monitoring the network traffic and other known threats. In today's time in the field of Cyber security Intrusion Detection is considered a brilliant topic that could be objective. But it might not remain objectionable for a longer period. For understanding Intrusion Detection, the meaning of Intrusion must be clear at first. According to the oxford's learners dictionary "Intrusion is the act of entering a place that is private or where you may not be wanted". For this article, here it defines intrusion as any un-possessed system or network festivity on one (or more) computer(s) or network(s). Here is the example of a faithful user trying to access the system taking more than the usual trial counts to complete his access to the particular account or trying to connect to an unauthorized remote port of a server. The ex-employee who was being fired lately can provoke intrusion or any authentic worker can also provoke intrusion or any other person from the outside world could perform it. In this clause, the average data is found as the attack which is considered as the case of false positive. In this paper, the main focus is on the illustration and a solution offered for the same problem. Here we are using the KDD CUP 1999 data set. According to the outcome, the anomaly class is the one that has a higher number of counts than this class. Even if it is the true user trying to get access but the outcome is an anomaly due to the high number of counts in the class. This paper introduces a solution for the detection of a true person and eradicates the false positive.

Keywords: Data Mining, Anomaly Detection System (ADS), K-Means, Ensemble, Detection Rate, False Alarm Rate, False Positive, Clustering.

Manuscript received on April 28, 2021.

Revised Manuscript received on May 03, 2021. Manuscript published on May 30, 2021.

\* Correspondence Author

Pratik Jain\*, Department of Computer Science, IPS Academy, Institute of Science, Indore, India. Engineering and Email: pratikjain@ipsacademy.org

Ravikant Kholwal, Department of Computer Science, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India. Email: rkant4112@gmail.com

Muskan Patidar, Department of Computer Science, IPS Academy, Institute of Engineering and Science, Indore, India. Email: alkapatidar19@gmail.com

## I. INTRODUCTION

In 20 years, the technology has evolved a lot and with it, the threat of intrusion is increased too, so the safety of network systems has become a more critical issue. As this took place several times that people have abused the computer technology in various part of the world, this led to network penetration almost every day in previous some years. It has become essential to find the central way to secure the data as it has very crucial information. Nowadays several ways to secure data like VPN, firewall, and data encryption. But they are not much effective when it comes to data intrusion, they lack in identifying the intrusion by an attacker. But the intrusion detection is more dynamic in protecting the network and also inspects the intrusion and slug/counter-attack. Network Intrusion Detection System (NIDS) generally sticks to one of the three design models which are: Signature-based Detection System, Anomaly-based, and Protocol modeling. Each of the models has its capabilities and weaknesses and various devices have a combination of the three models.

Signature-Based NIDS

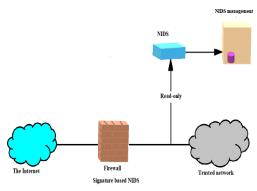


Figure I. (a) Signature-based NIDS



Retrieval Number: 100.1/ijrte.A57550510121 DOI: 10.35940/ijrte.A5755.0510121

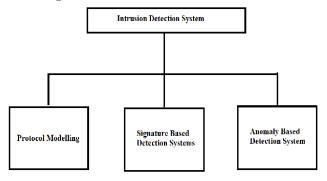
Published By:

and Sciences Publication

To some degree roughly all NIDS devices have a stable dependency on signature-based detection, this a very general design which is shown in figure I.(a). These technology exposition packets for limited patterns related to familiar attacks. It is relatively suitable to unzip, observe and update, and also appropriate for correctly identifying known attacks. Although it is much effective have one drawback that it may not detect the unknown or the modified attack.

## **Categories of Intrusion Detection System**

The below-given figure I.(b) describes the categories in which we can bifurcate IDS (Intrusion Detection System): Protocol modeling, signature-based detection system, Anomaly-based detection system. The Intrusion Detection System sends alerts when it detects doubtful activities while monitoring the network traffic and other known threats.



catagories of Intusion Detection System

## Figure I.(b) shows categories of the intrusion detection system.

#### **A. Protocol Modeling**

It is implemented by observing network burden for unusual protocol trafficking and alarming traffic with conclusive appointed protocols that are unknown to the system. For the depiction of normal activity, the protocol modeling depends on multiple data sources. The entire analysis of normal network traffic, protocol specification RFCs, and logical applications that use the same protocol can be considered as the general sources for data.

#### **B. Signature-Based Detection Systems**

Signature-Based Detection Systems (SBIDS) based on the recognized signature. This kind of detection is concerned with a regular update of signature as it is much forceful as oppose to known invasion. And also, it's not suitable to detect unusual intrusions and new attacks it is a general drawback. It has a suitable sublime exalted rate than anomaly intrusion detection [3].

#### C. Anomaly-Based Detection System

An anomaly-based intrusion detection system (ABIDS) has drawn numerous researchers because of its competence in discovering novel/fiction attacks. For some of the unnoticed attack which is not considered in the machine-learning area is not conscious while training. ABIDS has two major advantages over SBIDS, the first one is the ability to identify extrinsically and "zero-day" invasion. The process involves the comparison of similar activities and discrete activities from similar ones. The second advantage is the normal activity profile which is customized for a system, network, and hereupon building it strong for the intruder to know with assurance what activities it can take away without

getting noticed [8]. The capability of the system can be determined by two factors, those are how well they are instrumented and whether all protocols are tested or not. Delimiting the rule-set is the major drawback of anomaly detection.

## **II. LITERATURE TRACERY**

The paper is comparing the annexation of entropy of network features and resources vector machine both with individual methods are defined as hybrid technique. Anomaly traffic detection system based on comparison of entropy of network features and Support Vector Machine (SVM) [1]. The paper shows that Symbolic dynamic filtering (SDF) can be described as the algorithm which exploits the reduction algorithm [2]. The paper describes about the intrusion data classification, the feature election and illustrated swarn optimization uses a hybrid intrusion detection system which is using intelligence dynamic swarn based rough set (IDR-IR) [3]. B. The paper describes, the data reduction and Fussy Adaptive Resonance Theory (Fussy ART) for the classification, the Anomaly network intrusion detection method which is based on the Principal Component Analysis (PCA) is used [4]. In SDF, to become a feature for pattern taxonomy fabrication of probabilistic finite-state automata (PFSA) is done after time series data are differentiated for generating symbol sequences [5]. The author explains about cluster analysis is used for anomaly detection which uses Simple K-mean clustering Procedure 2. K-mean clustering is considered to be a simple, flagrant, and well-known algorithm that is mostly used for the huge data set as its computer-profound [6]. Here the author by the use of 1999 KDD cup data and focusing on the data mining techniques combined with Embattle tree and the countenance direct machines in his research, represented the outcome of his experiment which displays SVM in detecting anomaly and false alarm rate using 1999 KDD cup data has less ability than the C4.5 Algorithm [7]. In this paper the author uses reduction in false alarm rate and amended detection rate are the objectives with the major method in bunding analysis, he uses hybrid view for IDS rooted on data mining [8]. The paper explains about the two reasons why the high dimension dataset containing the definitive number of clusters provided by the user are not up to the mark evaluated because they lead to impractical data and various irregular data which makes deviation in the evaluation process [9]. For the convenience of the unsupervised anomaly detection the paper offers a new density-based clustering algorithm and a grid-based clustering algorithm [10]. The paper justifies that bunching techniques and data mining taxonomy are the two factors on which hybrid detection framework depends [11]. This paper illuminates, the ability to produce desired output is measured with three matrices: recall, precision, and max rule confidence. The change in the ability to extract accurate rules could be due to the behavior of the leaving method when the noise enhances [12]. The paper provides how the identification of different intrusion can be done; they provide works on spacious comparatively study of several anomaly detection programs [13].

Published By: Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

111



which is technically called false positive. This data set is

The author clarifies that, the present outcome is practically used for decision making in production management. It is the practical algorithm for the building of the astir network based on work order data [14]. In this paper, it shows the description of all the algorithm used in weka tool [15].

## **III. PROBLEM RECOGNIZANCE**

The word intrusion detection can be divided from the intrusion detection system in which the phased intrusion is considered to be unauthorized access which is not at all a common pattern. The security of the network and identification of uncommon activities are monitored by the detection system. There are two categories in which the techniques to identify the anomalous activities can be separated: -

## **A. Predefined Normal Behaviour**

In this technique, the opposite of the given is done. Instead of a malicious pattern, the normal behaviour is recorded and if any recognizable deviation from the normal behaviour is observed then, it identifies it as anomalous activity [7],[2],[5].

## **B.** Predefined intrusion behaviour

In this kind of intrusion behaviour primarily the patterns of intrusion or malicious activities are being observed and are recorded then they are compared with the acquired pattern and the predetermined patterns which also the main cause of higher precision and rate.

The willingness to keep the detection rate and false alarm rate low and transform the false detection as normal one is being used in Intrusion Detection System. Usually, the performance of IOS is measured in terms of accuracy (AC), detection rate (DR), and false alarm rate (FAR) is below in the formula: -(1) Accuracy = (TP+TN) / (TP+TN+FP+FN) (2) Detection Rate = (TP) / (TP+FP) (2) False Alarm Pata = (TP) / (TP+TN)

(3) False Alarm Rate = (FP) / (FP+TN)

TABLE 1: General Behaviour of Intrusion Detection Data

| Prediction              | Actual |           |  |
|-------------------------|--------|-----------|--|
|                         | Normal | Intrusion |  |
| Predicted Normal        | TN     | FN        |  |
| Predicted<br>Intrusions | FP     | ТР        |  |

1. True positive (TP) implies that intrusion is recognized as an intrusion.

- 2. True negative (TN) implies that normal is recognized as normal.
- 3. False-positive (FP) implies that normal is recognized as an intrusion.
- 4. False-negative (FN) implies that intrusion is recognized as normal.

In this paper, work is done on the KDD cup 1999 data. MIT Lincoln Labs prepared and managed a program in 1998 called DARPA Intrusion Detection Evaluation Program. This paper focuses on the survey and the evaluation/results of the research in intrusion detection. Here we are working on the problem where the normal data is treated as the intrusion provided with the military network environment in which many intrusions are created to examine the results and this is treated as the standard set of data for examining during this research. A version of the same data set is used in the 1999 KDD Intrusion Detection contest. It is found that there are 41 attributes which on comparing the anomaly class and normal classes determines whether the input belongs to a normal class or an anomaly class. 41 attributes are :- Attribute represented as A1, Attribute 2:protocol type 1:duration represented as A2, Attribute 3:service represented as A3, Attribute 4:flag represented as A4, Attribute 5:src bytes represented as A5, Attribute 6:dst bytes represented as A6, Attribute 7:land represented A7. Attribute as 8:wrong\_fragment represented as A8, Attribute 9:urgent represented as A9, Attribute 10:hot represented as A10, Attribute 11:num\_failed\_logins represented as A11, Attribute 12:logged\_in represented as A12, Attribute 13:num compromised represented as A13, Attribute 14:root\_shell represented as A14, Attribute 15:su\_attempted represented as A15, Attribute 16:num\_root represented as A16, Attribute 17:num\_file\_creations represented as A17, Attribute 18:num\_shells represented as A18, Attribute 19:num\_access\_files represented as A19, Attribute 20:num\_outbound\_cmds represented as A20, Attribute 21:is\_host\_login represented as A21, Attribute 22:is\_guest\_login represented as A22, Attribute 23: 'count' represented as A23, Attribute 24:srv count represented as A24, Attribute 25:serror rate represented as A25, Attribute represented 26:srv serror rate as A26, Attribute 27:rerror rate represented as A27. Attribute 28:srv rerror rate represented A28. Attribute as 29:same\_srv\_rate Attribute A29, represented as 30:diff\_srv\_rate represented as A30, Attribute 31:srv\_diff\_ host\_rate represented as A31, Attribute 32:dst\_host\_count represented as A32, Attribute 33:dst\_host\_srv\_count represented as A33, Attribute 34:dst\_host\_ same\_srv\_rate represented as A34, Attribute 35:dst\_host\_diff\_srv\_rate represented as A35, Attribute 36:dst host same src port rate represented as A36, Attribute 37:dst\_host\_srv\_diff\_host\_rate represented as A37, Attribute 38:dst\_host \_serror\_rate represented as A38, Attribute 39:dst\_host\_srv\_serror\_rate represented as A39, Attribute 40:dst\_host\_ rerror\_rate represented as A40, Attribute 41:dst\_host\_srv\_rerror\_rate represented as A41,

Class: Class A: normal, Class B: anomaly

Now, by these 41 attributes it will be decided whether the data is normal or anomaly. For example: Let us consider four data of the KDD Cup 1999 dataset.



Published By: Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

| Attributes | Example 1 | Example 2 | Example 3 | Example 4 |
|------------|-----------|-----------|-----------|-----------|
| A1         | 0         | 0         | 0         | 0         |
| A2         | Udp       | tcp       | tcp       | Тср       |
| A3         | other     | http      | finger    | Private   |
| A4         | SF        | SF        | SO        | SO        |
| A5         | 146       | 232       | 0         | 0         |
| A6         | 0         | 8153      | 0         | 0         |
| A7         | 0         | 0         | 0         | 0         |
| A8         | 0         | 0         | 0         | 0         |
| A9         | 0         | 0         | 0         | 0         |
| A10        | 0         | 0         | 0         | 0         |
| A11        | 0         | 0         | 0         | 0         |
| A12        | 0         | 1         | 0         | 0         |
| A13        | 0         | 0         | 0         | 0         |
| A14        | 0         | 0         | 0         | 0         |
| A15        | 0         | 0         | 0         | 0         |
| A16        | 0         | 0         | 0         | 0         |
| A17        | 0         | 0         | 0         | 0         |
| A18        | 0         | 0         | 0         | 0         |
| A19        | 0         | 0         | 0         | 0         |
| A20        | 0         | 0         | 0         | 0         |
| A21        | 0         | 0         | 0         | 0         |
| A22        | 0         | 0         | 0         | 0         |
| A23        | 13        | 5         | 0         | 48        |
| A24        | 1         | 5         | 24        | 16        |
| A25        | 0.00      | 0.20      | 12        | 1.00      |
| A26        | 0.00      | 0.20      | 1.00      | 1.00      |
| A27        | 0.00      | 0.00      | 1.00      | 0.00      |
| A28        | 0.00      | 0.00      | 0.00      | 0.00      |
| A29        | 0.08      | 1.00      | 0.00      | 0.14      |
| A30        | 0.15      | 0.00      | 0.50      | 0.06      |
| A31        | 0.00      | 0.00      | 0.00      | 0.00      |
| A32        | 255       | 255       | 255       | 255       |
| A33        | 1         | 30        | 59        | 15        |
| A34        | 0.00      | 1.00      | 0.23      | 0.06      |
| A35        | 0.60      | 0.00      | 0.04      | 0.07      |
| A36        | 0.88      | 0.03      | 0.00      | 0.00      |
| A37        | 0.00      | 0.04      | 0.00      | 0.00      |
| A38        | 0.00      | 0.03      | 1.00      | 1.00      |
| A39        | 0.00      | 0.01      | 1.00      | 1.00      |
| A40        | 0.00      | 0.00      | 0.00      | 0.00      |
| A41        | 0.00      | 0.01      | 0.00      | 0.00      |
| Class      | Normal    | Normal    | Anomaly   | Anomaly   |

The 41 attributes are important to keep in consideration and also the time taken by then to detect the malicious or anomalous behaviour. The number of attributes should be reduced to increase efficiency. But before reshuffling any of the attributes the aim of increasing efficiency and the proper detection is kept in mind. As there are 41. attributes to find out the anomalous behaviour. The anomaly is dependent on the comparison with the mean value, if several values deviate from the mean value then the data is anomalous. The false-positive problem in the IDS can be solved y removing the count attribute. The problem is that it is needed to find out an attack before time.

## IV. EXPERIMENT AND RESULTS

The count attribute causes an increment in the false-positive rates. For the up-gradation of the system, the main focus is on the two factors for performance, which are detection rate and false alarm rate. The total number of normal instances identified as intrusion divided by the total number of normal instances is termed as false the rate the number of divided intrusions pattern identified by the system down into the total number of intrusion patterns existing in the data set is termed as detection rate. How many mistakes does it does in detection and measurement of what percentage of intrusion the system can detect properly are the two points that indicate good execution? To scale the performance, we can calculate these values on the sample data.

The count attribute has not been used so we can remove the count attribute and replace it with OTP or a one-time password. So, it can improve problems of authentication by giving OTP on the E-mail address contact number of the user. OTP is the top way to which could easily solve this problem.

## Algorithm 1: Registration

1. Begin

2. Enter details in a registration form and complete all mandatory fields.

3. If all mandatory information is not filled in the registration form.

display "error message" in a dialogue box 4. Else Registered successfully.

5. End

Published By:



Retrieval Number: 100.1/ijrte.A57550510121 DOI: 10.35940/ijrte.A5755.0510121

113

Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

## **Algorithm 2: Login**

Weka Explore

1. Begin

2. Fill the username and password field and also complete CAPTCHA or I am not a Robot checkbox

- 3. If both the details are valid then login successful.
- 4. Else (for i=1 to i=10)

// (i represent how many times the user can attempt to login)

Repeat step 1 and 2

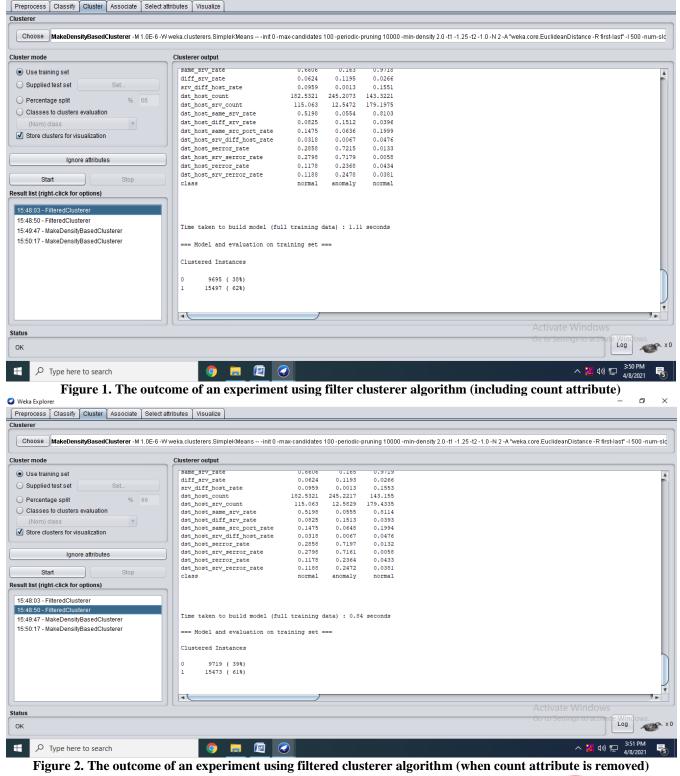
5. One-time password is generated and sent to the user's email address or mobile number.

٥

X

## 6. If OTP matches

Repeat steps 1 and 4.





Published By:

and Sciences Publication

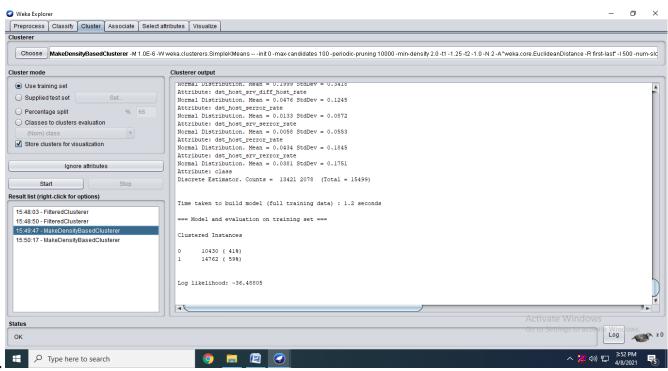


Figure 3. The outcome of an experiment using Make Density-Based Clustering algorithm (including count attribute)

| ster mode                           |                                                                                       |                               |
|-------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|
|                                     | Clusterer output                                                                      |                               |
| Use training set                    | Normai Distribution. Mean = 0.1994 Studev = 0.3414                                    |                               |
| -                                   | Attribute: dst_host_srv_diff_host_rate                                                |                               |
| Supplied test set Set               | Normal Distribution. Mean = 0.0476 StdDev = 0.1246                                    |                               |
| Percentage split % 66               | Attribute: dst_host_serror_rate<br>Normal Distribution. Mean = 0.0132 StdDev = 0.0872 |                               |
| Classes to clusters evaluation      | Attribute: dst host srv serror rate                                                   |                               |
| (Nom) class                         | Normal Distribution, Mean = 0.0058 StdDev = 0.0553                                    |                               |
|                                     | Attribute: dst host rerror rate                                                       |                               |
| Store clusters for visualization    | Normal Distribution. Mean = 0.0433 StdDev = 0.1845                                    |                               |
|                                     | Attribute: dst_host_srv_rerror_rate                                                   |                               |
| Ignore attributes                   | Normal Distribution. Mean = 0.0381 StdDev = 0.1752                                    |                               |
|                                     | Attribute: class                                                                      |                               |
| Start Stop                          | Discrete Estimator. Counts = 13421 2054 (Total = 15475)                               |                               |
| ult list (right-click for options)  |                                                                                       |                               |
| uit list (right-click for options)  | Time taken to build model (full training data) : 1.08 seconds                         |                               |
| 5:48:03 - FilteredClusterer         |                                                                                       |                               |
| 5:48:50 - FilteredClusterer         | === Model and evaluation on training set ===                                          |                               |
| 5:49:47 - MakeDensityBasedClusterer |                                                                                       |                               |
| 5:50:17 - MakeDensityBasedClusterer | Clustered Instances                                                                   |                               |
|                                     | 0 10509 (42%)                                                                         |                               |
|                                     | 1 14683 (58%)                                                                         |                               |
|                                     | 1 1000 ( 000)                                                                         |                               |
|                                     |                                                                                       |                               |
|                                     | Log likelihood: -30.50868                                                             |                               |
|                                     |                                                                                       |                               |
|                                     |                                                                                       |                               |
|                                     |                                                                                       |                               |
| us                                  | Activ                                                                                 | vate Windows                  |
| us                                  | Go to                                                                                 | Settings to activate Windows. |

Figure 4. The outcome of an experiment using Make Density-Based Clustering algorithm (removing the count attribute)

Figure 1 displays the outcome of a system using the Filter clusterer algorithm including the count attribute. It shows that the algorithm takes 1.55 seconds to complete the clustering.

Figure 2 displays the outcome of a system using the Filter clusterer algorithm excluding the count attribute. It shows that the algorithm takes 0.64 seconds to complete the clustering.

Figure 3 displays the outcome of a system using the Make Density-Based Clustering algorithm including the count attribute. It shows that the algorithm takes 1.5 seconds to complete the clustering.

Figure 4 displays the outcome of a system using the Make Density-Based Clustering algorithm excluding the count attribute. It shows that the algorithm takes 0.94 seconds to complete the clustering.



Retrieval Number: 100.1/ijrte.A57550510121 DOI: 10.35940/ijrte.A5755.0510121 Published By: Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

| Attribute                | Final cluster centroids of d<br>Full data(25192.0) | cluster#0         |                    |
|--------------------------|----------------------------------------------------|-------------------|--------------------|
| Attribute                | Fun data(25172.0)                                  | (9695.0)          | (15497.0)          |
| A1                       | 305.0541                                           | 305.0541          | 162.3509           |
| A2                       | Тср                                                | Тср               | tcp                |
| A3                       | http                                               | Private           | http               |
| A4                       | SF                                                 | S0                | SF                 |
| A5                       | 24330.6282                                         | 39374.1000        | 14919.37572        |
| A6                       | 3491.8472                                          | 115.1045          | 5604.3541          |
| A7                       | 0                                                  | 0                 | 0                  |
| A8                       | 0.0237                                             | 0.0175            | 0.0275             |
| A9                       | 0                                                  | 0                 | 0.0010             |
| A10                      | 0.198                                              | 0.0018            | 0.3208             |
| A11                      | 0.0012                                             | 0.0002            | 0.0018             |
| A12                      | 0                                                  | 0                 | 1                  |
| A13                      | 0.2279                                             | 0                 | 0.3704             |
| A14                      | 0.0015                                             | 0.0001            | 0.0025             |
| A15                      | 0.0013                                             | 0.0002            | 0.0021             |
| A16                      | 0.2498                                             | 0.0005            | 0.4058             |
| A17                      | 0.0147                                             | 0.001             | 0.0233             |
| A18                      | 0.0004                                             | 0                 | 0.0006             |
| A19                      | 0.0043                                             | 0                 | 0.007              |
| A20                      | 0                                                  | 0                 | 0                  |
| A21                      | 0                                                  | 0                 | 0                  |
| A22                      | 0                                                  | 0                 | 0                  |
| A23                      | 84.5912                                            | 166.3895          | 33.4178            |
| A23                      | 27.6988                                            | 9.9234            | 38.8191            |
| A25                      | 0.2863                                             | 0.7253            | 0.0117             |
| A25                      | 0.2838                                             | 0.7212            | 0.0101             |
| A20                      | 0.1186                                             | 0.7212            | 0.0385             |
| A27<br>A28               | 0.1203                                             | 0.2486            | 0.0385             |
| A28<br>A29               | 0.1205                                             | 0.163             | 0.04               |
| A29<br>A30               | 0.0624                                             | 0.105             | 0.0266             |
| A30<br>A31               | 0.0959                                             | 0.0013            | 0.1551             |
|                          |                                                    |                   |                    |
| A32                      | 182.5321                                           | 245.2073          | 143.3221           |
| A33<br>A34               | 0.5198                                             | 12.5472<br>0.0554 | 179.1975<br>0.8103 |
| A34<br>A35               | 0.0825                                             |                   | 0.0396             |
| A35<br>A36               | 0.0825                                             | 0.1512<br>0.0636  | 0.1999             |
| A36<br>A37               | 0.0318                                             | 0.0067            | 0.1999             |
|                          |                                                    |                   |                    |
| A38                      | 0.2858                                             | 0.7215            | 0.0133             |
| A39                      | 0.2798                                             | 0.7179            | 0.0058             |
| A40                      | 0.1178                                             | 0.2368            | 0.0434             |
| A41                      | 0.1188                                             | 0.2478            | 0.0381             |
| Class                    | Normal                                             | Anomaly           | normal             |
|                          | l (full training data) : 1.11                      | seconds           |                    |
| === Model and evaluation | n on training set ===                              |                   |                    |
| Clustered Instances      | -                                                  |                   |                    |
| ) 9695 (38%)             |                                                    |                   |                    |
| 1 15497 (62%)            |                                                    |                   |                    |

## Table 2: Final cluster centroids of data filtered with count attribute:

#### Table 3: Final cluster centroids of data filtered without count attribute:

| Attribute | Full data(25192.0) | cluster#0  | 1          |
|-----------|--------------------|------------|------------|
|           |                    | (9719.0)   | (15473.0)  |
| A1        | 305.0541           | 531.8419   | 162.6027   |
| A2        | Тср                | Тср        | Тср        |
| A3        | http               | Private    | http       |
| A4        | SF                 | S0         | SF         |
| A5        | 24330.6282         | 39277.0561 | 14942.3821 |



Retrieval Number: 100.1/ijrte.A57550510121 DOI: 10.35940/ijrte.A5755.0510121

116

Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

Published By:

| A6                           | 3491.8472 | 114.8202 | 5613.047 |
|------------------------------|-----------|----------|----------|
| A7                           | 0         | 0        | 0        |
| A8                           | 0.0237    | 0.021    | 0.0255   |
| A9                           | 0         | 0        | 0.0001   |
| A10                          | 0.198     | 0.0017   | 0.3213   |
| A11                          | 0.0012    | 0.0002   | 0.0018   |
| A12                          | 0         | 0        | 1        |
| A13                          | 0.2279    | 0        | 0.371    |
| A14                          | 0.0015    | 0.0001   | 0.0025   |
| A15                          | 0.0013    | 0.0002   | 0.0021   |
| A16                          | 0.2498    | 0.0005   | 0.4064   |
| A17                          | 0.0147    | 0.001    | 0.0233   |
| A18                          | 0.0004    | 0        | 0.0006   |
| A19                          | 0.0043    | 0        | 0.007    |
| A20                          | 0         | 0        | 0        |
| A21                          | 0         | 0        | 0        |
| A22                          | 0         | 0        | 0        |
| A23                          | 27.6988   | 9.9546   | 38.8443  |
| A24                          | 0.2863    | 0.7236   | 0.0117   |
| A25                          | 0.2838    | 0.7194   | 0.0101   |
| A26                          | 0.1186    | 0.2461   | 0.0386   |
| A27                          | 0.1203    | 0.248    | 0.04     |
| A28                          | 0.6606    | 0.165    | 0.9719   |
| A29                          | 0.0624    | 0.1193   | 0.0266   |
| A30                          | 0.0959    | 0.0013   | 0.1553   |
| A31                          | 182.5321  | 245.2217 | 143.115  |
| A32                          | 115.063   | 12.5829  | 179.4335 |
| A33                          | 0.5198    | 0.0555   | 0.8114   |
| A34                          | 0.0825    | 0.1513   | 0.0393   |
| A35                          | 0.1475    | 0.0648   | 0.1994   |
| A36                          | 0.0318    | 0.0067   | 0.0476   |
| A37                          | 0.2858    | 0.7197   | 0.0132   |
| A38                          | 0.2798    | 0.7161   | 0.0058   |
| A39                          | 0.1178    | 0.2364   | 0.0433   |
| A40                          | 0.1188    | 0.2472   | 0.0381   |
| Class                        | Normal    | anomaly  | Normal   |
| odel and evaluation on train | •         |          | 1        |

1 1573 (61%)

## Table 4: Final cluster centroids of make density with count attribute:

| Attribute | Full data(25192.0) | cluster#0  | 1          |
|-----------|--------------------|------------|------------|
|           |                    | (9695.0)   | (15497.0)  |
| A1        | 305.0541           | 305.0541   | 162.3509   |
| A2        | Тср                | Тср        | Тср        |
| A3        | http               | Private    | http       |
| A4        | SF                 | SO         | SF         |
| A5        | 24330.6282         | 39374.1009 | 14919.3572 |
| A6        | 3491.8472          | 115.1045   | 5604.3541  |
| A7        | 0                  | 0          | 0          |
| A8        | 0.0237             | 0.0175     | 0.0276     |



Retrieval Number: 100.1/ijrte.A57550510121 DOI: 10.35940/ijrte.A5755.0510121

117

Published By:

Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

## International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-10 Issue-1, May 2021

| A9                                    | 0                     | 0        | 0.0001   |
|---------------------------------------|-----------------------|----------|----------|
| A10                                   | 0.198                 | 0.0018   | 0.3208   |
| A11                                   | 0.0012                | 0.0002   | 0.0018   |
| A12                                   | 0                     | 0        | 1        |
| A13                                   | 0.2279                | 0        | 0.3704   |
| A14                                   | 0.0015                | 0.0001   | 0.0025   |
| A15                                   | 0.0013                | 0.0002   | 0.0021   |
| A16                                   | 0.2498                | 0.0005   | 0.4058   |
| A17                                   | 0.0147                | 0.001    | 0.0233   |
| A18                                   | 0.0004                | 0        | 0.0006   |
| A19                                   | 0.0043                | 0        | 0.007    |
| A20                                   | 0                     | 0        | 0        |
| A21                                   | 0                     | 0        | 0        |
| A22                                   | 0                     | 0        | 0        |
| A23                                   | 84.5912               | 166.3895 | 33.4178  |
| A24                                   | 27.6988               | 9.9234   | 38.8191  |
| A25                                   | 0.2863                | 0.7253   | 0.0117   |
| A26                                   | 0.2838                | 0.7212   | 0.0101   |
| A27                                   | 0.1186                | 0.2467   | 0.0385   |
| A28                                   | 0.1203                | 0.2486   | 0.04     |
| A29                                   | 0.6606                | 0.163    | 0.9718   |
| A30                                   | 0.0624                | 0.1195   | 0.0266   |
| A31                                   | 0.0959                | 0.0013   | 0.1551   |
| A32                                   | 182.5321              | 245.2073 | 143.3221 |
| A33                                   | 115.063               | 12.5472  | 179.1975 |
| A34                                   | 0.5198                | 0.0554   | 0.8103   |
| A35                                   | 0.0825                | 0.1512   | 0.0396   |
| A36                                   | 0.1475                | 0.0636   | 0.1999   |
| A37                                   | 0.0318                | 0.0067   | 0.0476   |
| A38                                   | 0.2858                | 0.7215   | 0.0133   |
| A39                                   | 0.2798                | 0.7179   | 0.0058   |
| A40                                   | 0.1178                | 0.2368   | 0.0434   |
| A41                                   | 0.1188                | 0.2478   | 0.0381   |
| Class                                 | Normal                | anomaly  | Normal   |
| ne taken to build model (full trainin | g data) : 1.2 seconds |          |          |
| ie unten to build model (fun damm     | 5 autu) - 1.2 seconds |          |          |

1 14762 (59%)

Log likelihood: -36.48805

## Table 5: Final cluster centroids of make density without count attribute:

| Attribute | Full data(25192.0) | cluster#0  | 1          |
|-----------|--------------------|------------|------------|
|           |                    | (9719.0)   | (15473.0)  |
| A1        | 305.0541           | 531.8419   | 162.6027   |
| A2        | Тср                | Тср        | Тср        |
| A3        | http               | Private    | http       |
| A4        | SF                 | S0         | SF         |
| A5        | 24330.6282         | 39277.0561 | 14942.3821 |



Retrieval Number: 100.1/ijrte.A57550510121 DOI: 10.35940/ijrte.A5755.0510121

118

Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

Published By:

| A6    | 3491.8472 | 114.8202 | 5613.047 |
|-------|-----------|----------|----------|
| A7    | 0         | 0        | 0        |
| A8    | 0.0237    | 0.021    | 0.0255   |
| A9    | 0         | 0        | 0.0001   |
| A10   | 0.198     | 0.0017   | 0.3213   |
| A11   | 0.0012    | 0.0002   | 0.0018   |
| A12   | 0         | 0        | 1        |
| A13   | 0.2279    | 0        | 0.371    |
| A14   | 0.0015    | 0.0001   | 0.0025   |
| A15   | 0.0013    | 0.0002   | 0.0021   |
| A16   | 0.2498    | 0.0005   | 0.4064   |
| A17   | 0.0147    | 0.001    | 0.0233   |
| A18   | 0.0004    | 0        | 0.0006   |
| A19   | 0.0043    | 0        | 0.007    |
| A20   | 0         | 0        | 0        |
| A21   | 0         | 0        | 0        |
| A22   | 0         | 0        | 0        |
| A23   | 27.6988   | 9.9546   | 38.8443  |
| A24   | 0.2863    | 0.7236   | 0.0117   |
| A25   | 0.2838    | 0.7194   | 0.0101   |
| A26   | 0.1186    | 0.2461   | 0.0386   |
| A27   | 0.1203    | 0.248    | 0.04     |
| A28   | 0.6606    | 0.165    | 0.9719   |
| A29   | 0.0624    | 0.1193   | 0.0266   |
| A30   | 0.0959    | 0.0013   | 0.1553   |
| A31   | 182.5321  | 245.2217 | 143.115  |
| A32   | 115.063   | 12.5829  | 179.4335 |
| A33   | 0.5198    | 0.0555   | 0.8114   |
| A34   | 0.0825    | 0.1513   | 0.0393   |
| A35   | 0.1475    | 0.0648   | 0.1994   |
| A36   | 0.0318    | 0.0067   | 0.0476   |
| A37   | 0.2858    | 0.7197   | 0.0132   |
| A38   | 0.2798    | 0.7161   | 0.0058   |
| A39   | 0.1178    | 0.2364   | 0.0433   |
| A40   | 0.1188    | 0.2472   | 0.0381   |
| Class | Normal    | anomaly  | Normal   |

0 10509 (42%)

1 14683 (58%)



Retrieval Number: 100.1/ijrte.A57550510121 DOI: 10.35940/ijrte.A5755.0510121

119

Blue Eyes Intelligence Engineering and Sciences Publication © Copyright: All rights reserved.

Published By:

Table 6: Outcome of filter clusterer algorithm & Make Density Based Clustering algorithm comparison.

| Time taken                   | Ou               | Output of Algorithms          |  |  |
|------------------------------|------------------|-------------------------------|--|--|
|                              | filter clusterer | Make Density Based clustering |  |  |
| Including<br>count attribute | 1.11 seconds     | 1.2 seconds                   |  |  |
| Excluding count attribute    | 0.84 seconds     | 1.08 seconds                  |  |  |

## V. CONCLUSION

This has become a common problem nowadays. As people have accounts on various platforms and it's very difficult to remember all the passwords. This leads to multiple attempts while accessing any account and in banks, after 3 attempts they are blocked by the bank website for 24 hours which has become trouble for some people. The solution is for this is provided in this paper by excluding the count attribute, this improves the performance positively and their difference can be seen in table 6. The filter clusterer value decreased from 1.11 to 0.84 just by excluding the count attribute and also the difference in make density can be seen as it decreased from 1.2 to 1.08. These differences surely increase the efficiency and reduce the time taken in detection, which leads to a decrease in the false alarm rate. This can be a great help to increase the security as the detection is fast, so there are fewer chances of a breach and delayed detection might lead to some harm to the system.

## REFERENCES

- 1. 1. Kapil Wankhade, Mrudula Gudadhe, Prakash Prasad, "A New Data Mining Based Network Intrusion Detection Model", In Proceedings of ICCCT 2010, IEEE, 2010, pp.731-735.
- 2. Dorothy E. Denning. 1986 IEEE "An Intrusion- Detection 2 Model" Computer Society Symposium on Research in Security and Privacy, pp 118-31.
- 3. Shu Wu, Member, and Shengrui Wang "Information-Theoretic Outlier Detection for Large-Scale Categorical Data" VOL. 25, NO. 3, MARCH 2013.
- Bhavani Thuraisingham "Data Mining for Malicious Code Detection 4 and Security Applications" 2009 IEEE/WIC/ACM 2009. S. K. Chaturvedil, Prof. Vineet R., Prof. Nirupama T. "Anomaly
- 5. Detection in Network using Data mining Techniques" International Journal ISSN 2250-2459 Volume 2, Issue 5, May 2012.
- T. Bhavani et al., "Data Mining for Security Applications," Proceedings of the 2008 IEEE/IFIP International Conference on 6. Embedded and Ubiquitous Computing Volume 02, IEEE Computer Society, 2008.
- 7. Francesco Mercaldo, "Identification of anomalies in processes of database alteration" IEEE 2013.
- M. Xue , C. Zhu, "Applied Research on Data Mining Algorithm in 8. Network Intrusion Detection," jcai, pp.275-277, 2009 International Joint Conference Artificial Intelligence, 2009.
- 9. Shih-Wei Lina, Kuo-Ching Yingb, Chou-Yuan Leec, Zne-Jung Leed "An intelligent algorithm with feature selection and decision rules applied toanomaly detection" Elsevier 2011.
- Jonathan J, Davis , Andrew J. Clark "Data preprocessing for anomaly 10. based network intrusion detection: A review "Elsevier 2011.
- V. Chandola, A. Banerjee, V. Kumar, "Anomaly detection as a survey" 11 ACM Comput. Surv.41(3)(2009)15:1-15:58.
- 12. UgoFiore, Francesco, Aniello "Network anomaly detection with the restricted Boltzmann machine" Neurocomputing 122 (2013) 13–23.
- Abdul Samad bin Haji Ismail "A Novel Method for Unsupervised 13 Anomaly Detection using Unlabeled Data" IEEE 2008.
- Bharat Singh, Nidhi Kushwaha and OP Vyas "Exploiting Anomaly 14 Detections for high Dimensional data using Descriptive Approach of Data mining" IEEE(ICCT) 2013.
- S. Gnanapriya, R. Adline Freeda, M. Sowmiya "Evaluation of Clustering Capability Using Weka Tool" International Journal of 15. Innovations in Engineering and Technology (IJIET)2017.

#### **AUTHORS PROFILE**





Pratik Jain, Completed his Master of Engineering from IPS Academy Institute of Engineering and science. Eight Papers are published in different journals.



Ravikant Kholwal, is a final year undergraduate student pursuing Computer Science and Engineering at the Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur. He has developed several projects in the field of Android Development One of his projects is Smart Parking. In this app, Users register their

accounts and can book parking slots before reaching their respective destination. They can also pay for their Parking slot using UPI. The frontend part is developed using XML and Java, and in the backend, Firebase is implemented. When the car comes to the parking slot, the sensor sends information to the NodeMCU which in turn sends information to the Firebase database.



Muskan Patidar, is a third-year Computer Science and Engineering student pursuing his undergraduate degree from IPS Academy, Institute of Engineering and Science (Indore). Her area of interest includes web development, web designing and machine learning. She has done an online certification course in python for the gaining more

skills in machine learning. She is currently looking forward to the project based on the agricultural problems and help them optimize the production.



Published By: Blue Eyes Intelligence Engineering

and Sciences Publication © Copyright: All rights reserved.

120