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   Abstract: The designing of maximum power point tracking 

(MPPT) controller is an integral part of the PV array system to 

ensure a continuous supply of energy in dynamic environmental 

conditions. The most challenging part here is to design a model 

that can track the maximum point irrespective of variations in 

environmental conditions and its parametric variations. The 

model designed in this article combats both the challenges as it is 

based on reinforcement learning with fractional-order. The 

application of Deep Q-learning makes the model parametric free 

and once the model trained can be implanted in a different 

scenario and run effectively. The amalgamation of fractional-

order aids in the process by reducing the tracking time, 

oscillation around the peak, and total harmonic distortions. The 

model is well tested on standard conditions and has successfully 

achieved the desired results. Also, the proposed design is 

compared against various existing comparative algorithms to 

showcase its effectiveness in tracking time, THD, and maximum 

power. The design is also tested on the real data set, from the 

solcast where the test region is New Delhi, the capital of India. 

This region is taken as it faces one of extreme climatic condition 

and also being the second-highest most populated state faces an 

acute shortage of power throughout the year. The results have 

demonstrated that the model can produce maximum power even 

in the least solar irradiance conditions.  

    Keywords: fractional order factor; Reinforcement learning; 

Deep Q learning network; Maximum power point tracking 

(MPPT); Photovoltaic system; Real operating conditions (ROC) 

I. INTRODUCTION 

Energy is a vital source of survival and development 

for humans, it’s demand has upshot over the years globally. 

This has raised concerns about environmental issues and 

aroused interest in other renewable energy sources. The 

amalgamation of renewable energy with the different sectors 

of energy has become an important factor for reducing the 

environmental effect and dependency on fossil fuels [1]. 

The main source of energy is the sun and this has been 

widely used due to its abundance especially in the desert 

regions [2].  The extraction of maximum energy from a PV 

generator is a trivial task. To achieve this Maximum Power 

Point Tracking (MPPT) algorithms are implemented to 

control a DC/DC converter to optimize the power transfer to 

the load. Also, they must continuously transmit maximum 

power available to the load irrespective of the conditions, 

this control problem is coined as Maximum Power Point 

Tracking (MPPT) [3].  
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MPPT is to control the change in output voltage as 

produced due to a change in the PV power. Moreover, PV 

systems endure a nonlinear relation between output current 

and voltage, this can result in remarkable losses. There have 

been many approaches from the most conventional to the 

traditional MPPT control techniques that have been 

proposed over time. Few of designed approaches are a 

modified incremental conduction maximum power point 

tracking (MPPT) algorithm with fuzzy controller [4], a 

software and hardware for hill-climbing (HC) modified 

fuzzy-logic (FL) maximum power point tracking (MPPT) 

control scheme used in photovoltaic (PV) power systems 

[5], a hybrid MPPT control that combines a modified P&O 

and an enhanced PSO [6]. There have been many 

approaches using heuristic methods like the novel 

Maximum Power Point Tracking (MPPT) method suitable 

for any application in which very fast-changing using 

Artificial Neural Network (ANN) [7], Most of these 

approaches are model-based and thus they try to modulate 

the different PV systems. However, obtaining a precision 

model of the PV systems and its parameters can be a cure 

for some issues, challenging when PV panels get 

interconnected in different configurations. This motivates 

the author to look for a model-free approach. 

Reinforcement Learning (RL) is an important branch of 

artificial intelligence, machine learning, and robotics. This 

approach has the advantage of having self-learning ability 

and can interactively resolve much real-time application 

with trial and error approach. They have been widely 

applied in many applications like robots, games, industrial 

control, and other fields. It has bridged the gap between the 

traditional optimal controls, various nature-inspired 

algorithms, and the adaptive control theory [8]. RL learning 

is through experience where an agent continuously interacts 

with the surroundings through a set of actions. These actions 

are followed with rewards (positive feedback for right 

action) or punishment (negative feedback for the wrong 

action). Hence, iteratively RL algorithm learns how to 

behave in an optimal way which ensures the growth and 

survival of an RL agent [9]. The most important advantage 

of RL is that it does not require any model of the system or 

its dynamics to mimic it. This makes it insensitive to the 

model parameters.  

The usage of RL to solve the problem of MPPT has 

gained immense popularity in recent years. A model based 

on RL was designed by [10] to bring variability in the wind 

speed energy conversion system. To solve the MPPT, 

especially for PV was carried out in [11].  
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Here, a simple RL-based MPPT method was conceived 

where the learning agent observed the environment 

conditions and then determined the perturbation to the PV 

array's operating voltage. This was translated in terms of 

actions and rewards. The rewards are encouraged to select a 

pair of (state, action) that would fetch maximum reward 

(positive value) and minimum (negative) if a wrong pair 

chosen. Through an iterative process of getting a reward, 

learning is done. Once the agent of RL MPPT has learned 

the strategy, it automatically will be able to adjust any 

change in PV voltage and obtain maximum power for that 

PV array design. Any RL system is governed through its 

learning process, which depends on the reward function. 

The reward function is normally classified into two 

categories that is either it is a dense function or a sparse. 

Sparse functions are easy to implement, but they provide 

less learning efficiency while the dense are difficult to 

design as the size of the state is too large in real domain 

applications. 

In recent years, with the required robustness and 

applicability the demand for non-conventional MPP tracking 

methods has attracted the attention of researchers. The 

fractional-order approach is one of them. Fractional 

derivatives are commonly applied to enhance the 

performance of tracking in varying environmental 

conditions. This fractional-order control (FOC) method 

applies the principle of fractional calculus. One of the 

challenges faced in applying FOC is to find the best order of 

the system and its gain. Some of the recent work 

investigated the fractional-order control of MPPT. 

Fractional order based on Incremental Conductance 

(FOINC)-MPPT is designed in [12].Radial Movement 

Optimization (RMO) is used by the author to optimize the 

various parameters of the fractional integrator. The next is 

an extremum seeking control (ESC) controller design where 

a high pass filter is replaced with an integrator and low pass 

filter [13]. On a similar technique, the other design proposed 

is incremental conductance algorithm (VFOINC) combined 

with extenics variable step size (EVSS) control into the 

MPPT scheme for photovoltaic (PV) [14].There are also a 

few fractional-order models designed on sliding mode 

principal for real-time applications like induction generator 

(DFIG)-based wind energy conversion system [15].There is 

another design on real atmospheric conditions it is a 

perturbation observer-based fractional-order sliding-mode 

controller (POFOSMC) [16]. There have been many 

Artificial Neural Network-based designs that have been 

tested on the real data to showcase the effectiveness of the 

model [17, 18]. 

This leads the author to jot down few research gaps that 

are answered using this article: 

1. The application of reinforcement learning in MPPT 

makes the problem simpler as it is a model-free 

approach and the sensitivity of model parameters on the 

model design is eliminated. Once the model is designed, 

it can be effectively used under different environmental 

conditions with remarkable accuracy without the need 

for remodeling and retuning the parameters. 

2. Q-learning is a model-free approach in the RL 

algorithm. Here, the agent is guided for a further course 

of action based on experience. This algorithm estimates 

the state-action value function for a designed target 

policy that would select an action with the highest 

value. This situation is under control till the size of the 

search space is limited.   

3. In the scenario where the search space is of high 

dimensionality then there is the need for storage of 

millions of records in a table in the program memory. 

This shortcoming is eliminated by using the concept of 

Deep Q-Learning where a neural network selects the 

action. 

4. Fractional order control methods are normally non-

integer based which get preferred over the integer due 

to the precision and more discrete space. Also, they 

provide a more flexible design and have better results in 

terms of robustness. Also, in the conventional methods 

of tracking MPP, the fixed amplitude perturbation is 

incorporated but due to a mismatch of change in 

amplitude and tracking speed step size there are 

oscillations produced, and that results in reduced 

efficiency. This drawback is effectively answered with 

the help of the fractional approach.  

5. Normally, it has been observed that the convectional 

design fails to track the MPP in real rapidly changing 

environmental conditions. To test our design we have 

tested it on real data. This data is taken from the Solcast 

API toolkit. The region for analysis is New Delhi, the 

capital of India. The reason for taking this data is as this 

region is the capital of our country is one of the densely 

populated regions and faces an acute shortage of power 

supply around the year.  

The research gap and above points motivate the author 

to design a novel Fractional-order MPPT control algorithm 

with DQN in reinforcement learning for a system design 

consisting of PV array under variable load for partial 

shading conditions. The tracking of MPP is governed by the 

agent of RL that is fed with seven different observation viz 

PV power, voltage, PV generated power diversion with PV's 

desired capability, integral of power diversion, coupling 

voltage, and divergence per unit time with reference 

coupling DC are contained for the learning process. Then, to 

make the process more efficient, the tracking speed of the 

agent is indirectly aided by the output of the fractional-order 

with error and derivative error terms. Also, it is tested on the 

real data for the region of New Delhi, the capital of India. 

The subsequent parts of this paper are arranged as follows: 

Section 2 Fractional-order for MPPT. Section 3 introduces 

the designed system. Then, Section 4 discusses the results 

achieved which are subdivided into two parts a) Comparison 

of the proposed algorithm with the other benchmark 

algorithms and b) Testing of the model on the real data set 

for the region under consideration, followed by Section 5 

describes the prospects of the designed method along with 

the concluding remarks. 

II. FRACTIONAL ORDER FOR MPPT 

The functionality of PV array is generally is carried out 

in the changing atmospheric conditions, that get influenced 

by the parameters like irradiance and temperature. They 

constitute an overall impact on the PV array. Therefore, it is 

mandatory to consider them for modeling a PV module [19].  
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There are methods for parameter estimation out of 

which MPP is one of the methods. Here, (𝑉𝑚, 𝐼𝑚)are the 

corresponding voltage and current of the maximum point of 

any PV curve. Taking the derivative of PV power 

𝑃𝑃𝑉concerning PV voltage𝑉𝑃𝑉 when equated to zero one can 

estimate all the parameters for the variation in  

 

MPP for a certain environmental condition.  

 
𝑑𝑃𝑃𝑉

𝑑𝑉𝑃𝑉
|(𝑉𝑚 , 𝐼𝑚) = 𝐼𝑚 +  

𝑑𝐼𝑃𝑉

𝑑𝑉𝑃𝑉
| (𝑉𝑚 , 𝐼𝑚) × 𝑉𝑚   (1) 

The solar radiation, temperature, and electrical 

conduction in the PV system are identical to the phenomena 

like diffusion, etc. This can be explained using the 

fractional-order approach [20]. 

Fractional-Order Differentiator  

The designing of fractional order (FO) is commonly based 

on the definitions of fraction derivative of the Riemann–

Liouville,and Grunwald–Letnikov(GL)[21,22]. All kinds of 

variations such as illumination, temperature, electric flow 

can express by FO using derivative-based formulation in the 

range of 0 < 𝛼 ≤ 1. 

Fractional-Order Control MPPT Algorithm 

Movement of operating point towards the peak 

level in the P-V curve is done to extract the maximum 

power output from the source. To reach the peak at a faster 

rate a fractional factor α (alpha) is applied this enables a 

variable domain for expansion and contraction for the 

designed model. In the case when the input variable is 

expanded then the model designed has a large tracking step 

size to reach MPP quickly. The Equation.1 when modified 

in the presence of α 
𝑑𝛼𝑃

𝑑𝑉𝛼 = lim
∆𝑉 → 0

1

∆𝑉𝛼  × ∑
−1𝑡 𝛤 (𝛼+1)

Γ (t+1)Γ (α−t+1)

∞
𝑡=0   𝑃(𝑉 −

𝑡∆𝑉) (2) 

 

Here α > 0, 𝑃(𝑉 − 𝑡∆𝑉) is the output power of the 

PV array at the instant of time 𝑡. The changes in power and 

voltage get approximated using the fractional-order 

calculus. The approximated Equaion.2 is given as  
𝑑𝛼𝑃

𝑑𝑉𝛼 = lim
∆𝑉 → 0

𝑃−𝛼𝑃0

(𝑉−𝑉0)𝛼 (3) 

The 𝑃 and 𝑃0 are the power measured at instant 𝑡 

and 𝑡 − 1 respectively. Similarly, is the voltage 𝑉 and 𝑉𝑂. 

Theincremental power as approximated using the fractional-

order is 𝑑𝛼𝑃 ≅ 𝑃 − 𝛼𝑃0 and the incremental change in the 

voltage is 𝑑𝑉𝛼 ≅ (𝑉 − 𝑉0)𝛼 . The change in voltage and 

power in unit time is taken as an error 𝐸𝑟 (𝑡). The change in 

power is 𝛿 𝑃(𝑡). These values are calculated in Equation.4 

and Equation.5 respectively.  

𝐸𝑟 (𝑡) =
𝑃−𝑃𝑂

𝑉−𝑉𝑂
                      (4) 

 

𝛿 𝑃(𝑡) = 𝑃 − 𝑃𝑂                 (5) 

The fractional factor α falls in the range of 0 < 𝛼 ≤ 1, 

this changes the input domain of the reward function 

designed for the reinforcement learning agent. When, α=1, 

the input the reward is directed by the other inputs while for 

the other values there will be an efficient change in the input 

pattern of the reward. The smaller value of α will expand the 

𝐸𝑟 (𝑡) that eventually leads less time taken to achieve MPP 

by increasing the step size of tracking. Also, in the case 

when MPP is nearby the 𝐸𝑟 (𝑡)is contracted thus step size is 

reduced and oscillations around the optimal point are 

prevented. The fast-tracking of MPP and a stable output 

around MPP will always minimize energy losses and 

improve the efficiency of the system. 

III. PROPOSED IMPLEMENTATION OF 

FRACTIONAL DQN WITH RL 

In this work, the author proposes a fractional order in 

the RL to cater to the problem of MPPT in PV arrays. RL 

effectively solves this problem without any parametric 

information about the dynamic parameters of the model. 

The algorithm aims to depict the system analogy based on 

the DQN (Deep Q-Network) model. The complete model 

designed by the author is shown in Figure.1 and the 

fractional block internal design is shown in Figure.5. 

  

Fig.1. The DQN with the fractional design of MPPT control for the PV arrays model. 

3.1 RL formulation for MPPT Control 

Reinforcement learning is comprising of four main 

components as already discussed in Section.2. These are 

state-space𝑋, reward 𝑟, transition probability 𝑝, and the 

action space 𝑈.In the MPPT control problem, any action 

taken in a speck of time 

corresponds to any 

manipulation in the variable 

𝑉𝑃𝑉.  
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Any interaction of the agent with the environment leads to 

the learning process and takes an action 𝑢𝑡  ∈ 𝑈 through this 

system evolves from the state 𝑥𝑡  ∈ 𝑋  to the next state 

action 𝑥𝑡+1 then agent achieves feedback known as a reward 

that quantifies the quality of action or the step chosen by the 

agent. Therefore, the reward is acting as a “clue” to target 

the achievable goal or optimal solution. The RL method 

intends to search for an optimal policy 𝜋 that satisfies.  

𝐽∗ = max
𝜋

𝐽𝜋 =  max
𝜋

𝐸𝜋 {𝑟𝑡  |𝑥𝑡 = 𝑥}                                                          

Here 𝐽𝜋 corresponds to the total expected reward 

against the policy 𝜋. Under the assumption that forgiven 

policy 𝜋, the expected cumulative reward 𝑉𝜋(𝑥) or the 

value function for a certain time interval is the function of 

𝑥𝜋 and is defined  as 𝑥𝜋 = {𝑥𝑡}𝑡=1
𝑡=𝑛 are the state values 𝑘𝜋 =

{𝑘𝑡}𝑡=1
𝑡=𝑛 are the sequences of the agent taken based on the 

actions.  

i. State Space 

The various states in any MPPT control are designed 

based on the knowledge of the movement of MPP on the PV 

curve under varying environmental conditions. The 

methodology of RL is governed by the current, power, and 

voltage. The state-space includes 

[𝑉𝑃𝑉 , 𝐼𝑃𝑉 , 𝑃𝑃𝑉 ,∆𝑃𝑃𝑉 , ∫ ∆𝑃𝑃𝑉 , 𝛼𝑒(𝑡)] and the coupling point 

∆ 𝑉𝐷𝐶  . Here, ∫ ∆𝑉𝐷𝐶  controls the selection of duty cycle in 

the interval of [0,1]. ∆𝑃𝑃𝑉defines the divergence of 𝑃𝑉 

power from the desired to the generation capacity and 

∆ 𝑉𝐷𝐶is the difference between the reference coupling 

voltage and measured 𝑉𝐷𝐶. 

ii. Action Space 

Action space normally applied to the MPPT problem is 

discrete. This guarantees a high precision level and acts as a 

powerful learning technique that makes it a computationally 

efficient method. In the action of the RLMPPT agent, there 

is a defined duty cycle. Through a series of actions, the duty 

cycle𝐷𝑖𝑛𝑡  is selected in the range 𝐷𝑖𝑛𝑡 = (0,1]. This results 

in a matrix with 100 possible actions. 

iii. Reward  

The reward space has been carefully crafted using four 

values [∆ 𝑉𝐷𝐶, ∆𝑃𝑃𝑉, 𝑒(𝑡), 𝑒𝑥𝑏, ∆𝑒(𝑡)]. The threshold is 

imposed on each input except the 𝑒𝑥𝑏 which denotes the 

excess bound conditions. The violations in the input values 

cause the generation of negative reward while the 

permissible value of input fetches a positive reward value. 

The internal design of getting 𝑒(𝑡)  𝑎𝑛𝑑 ∆𝑒(𝑡) is shown in 

Figure.2 below. 

 

Fig.2. Schematic design of the Fractional Block. 

3.2 Deep RL tracking Problem 

Designing an RL agent is an especially important and 

crucial step to attain the required accuracy and robustness. 

The biggest challenge faced here is how to deal with the 

continuous space. The right balance between heavy 

discretion and insufficient discretion is solved. This limits 

the functionality of RL to a narrow zone that hampers its 

ability for dynamic environments. This leads to the method 

is called Deep Q-learning that has the characteristic of being 

off-policy and model-free.  The layered structure of DQN is 

shown in the Figure. 3. It consists of the stacking of various 

layers like a fully connected layer and Relu layers. The 

other necessary parameters taken for designing the network 

are tabulated in Table. 1 below. 

Fig.3. The internal structure of DQN employed for fractional MPPT control. 
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Table 1. The parameter setting for the fractional DQN 

network. 
Parameters Values 

Various  Inputs 7 

Relu Layers 5 

Fully connected Layers 7 

Number of Hidden neurons 100 

Designed Discount Factor (𝛾) 0.99 

Targeted Learning rate  (α) 0.01 

Maximum number of Episodes 300 

Maximum step size  10 

In this part, the proposed algorithm for Deep RL control is 

discussed in Algorithm.1. RL agent is DQN based design. 

Thus, the agent consists of neural networks that optimize the 

policy 𝜋 and the network 𝑄. The algorithm starts by 

initializing the parameters for generating power through a 

connection of PV arrays. Here, a factor α is used as 

fractional to pass the error and the derivative error terms as 

designed in the above section. Then, these are given in the 

state, action, and reward space for the network as discussed 

in the methodology section. The designed DQN as depicted 

above is loaded. Then the training of the network is carried 

out using Q-learning. The network gets loaded. The main 

loop starts from Line.14. Loop is made to run for 
(𝑀)several episodes. The initial value of the duty cycle  

𝐷𝑖𝑛𝑡is provided, followed by all the initial states 𝑥0, 

observations, and the course of actions 𝑢𝑡. Line 17 leads to 

the inner loop which is executed for several time steps (𝑇) 

in each episode. Here, the agent picks an action from the 

pool of existing actions hanging on the environment (line 

number 18). As a result, the new state is generated 𝑥𝑡+1,and 

reward is provided 𝑟 based on the action taken by the agent 

(Line number 20). Finally, all three things are kept aside in a 

buffer (Line 21). In the next, it shows that if enough state 

transitions are stored then training of the agent is started. A 

small number (𝑁) of random transitions are extracted from 

the buffer. These values update the network uses Q-learning. 

The total number of training states are finished for target 

networks and updated. The algorithm ends at line number 19 

where both the networks are trained and returned in the 

buffer. The results achieved through this whole 

methodology are discussed in the section below.  

Algorithm 1: Fractional Order DQN MPPT 

1. Connect solar PV array SPR-305E-WHT-D (330 sun power) 

2. Set the short-circuited current 𝐼𝑆𝐶 = 5.96 𝐴 and Open circuited 

Voltage  𝑉𝑜𝑐 = 64.2 𝑉 

3. Estimate the peak power for 𝑁𝑆 = 1 (PV’s in series) and 𝑁𝑝 =

12 (PV’s in parallel ) using 𝑃𝑛𝑝𝑝 = (𝑁𝑆  × 𝑉𝑚𝑝𝑝) × (𝑁𝑃 × 𝐼𝑚𝑝𝑝) 

4. Select the DC-link voltage 

5. Initialize the state, action, and reward for the RL agent. 

6. Initialize the duty cycle 𝐷𝑖𝑛𝑡 = 0.5, 𝑒𝑥𝑏 = −100 

7. Initialize the 0 < 𝛼 ≤ 1 fractional factor 

8. Calculate the 𝑒(𝑡) and ∆𝑒(𝑡) based on the fractional value of 𝛼 

9. State-space X=[𝑉𝑃𝑉, 𝐼𝑃𝑉, 𝑃𝑃𝑉 ,∆𝑃𝑃𝑉, ∫ ∆𝑃𝑃𝑉 , 𝛼𝑒(𝑡), ∆ 𝑉𝐷𝐶]+ Action 

space U= (0,1] 
10. Reward functions calculate using [∆ 𝑉𝐷𝐶, ∆𝑃𝑃𝑉, 𝛼𝑒(𝑡), 𝑒𝑥𝑏, 𝛼∆𝑒(𝑡)] 

11. Provides these values to the network DQN  

12. Initialize / Load 𝑄 and replay buffer 𝑅. 𝛽 learning rate and 𝛾 discount 

factor. 

13. for 𝑗 = 1𝑡𝑜 𝑀do 

14. Get initial state 𝑥0 

15. for𝑡 = 1 𝑡𝑜 𝑇do 

16.                      Select action 𝑢𝑡 from the set defined 

17. Execute the action 𝑢𝑡 

18.                      Get a new state 𝑥𝑡+1 and reward 𝑟 

19.                      Store the transition (𝑥𝑡, 𝑢𝑡,𝑢𝑡+1,𝑢𝑡+1) in 𝑅 

20.                      IF |𝑅| > 𝑁 

21.                           Update the network using Q-learning: 

22. 𝑄𝑛𝑒𝑤(𝑥𝑡, 𝑢𝑡) ← 𝑄(𝑥𝑡, 𝑢𝑡) + 𝛽 (𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑥𝑡+1, 𝑎)) − 𝑄(𝑥𝑡, 𝑢𝑡) 

23.                           Update the network 
24. end if  

25.                Set 𝑥𝑡 = 𝑥𝑡+1 

26. end for 

27. end for 

28. 𝑄(. , . |𝑤), 𝑟  
 

IV. RESULTS AND DISCUSSION 

The proposed fractional MPPT scheme is tested when 

powered from the 330-Watt sun module. The module is 

tested under the standard conditions also tested for the real 

data set. The parameters employed in PV array simulation 

are jotted down in Table.2.  The performance of the PV cell 

taken for Simulink modelling is showcased in Figure.4. This 

curve is plotted for the standard temperature of  25 ℃ under 

different irradiance conditions.The efficiency of the cell is 

high as the solar irradiance being as minimum as 200 𝑤/𝑚2 

produces a power of 0.2 𝑘𝑤 and it improves with the 

increase in sun radiations. The design of MPPT is done on 

MATLAB 2020a with processor Intel ® Core TM i3, 1.98 

GHz. The initial duty cycle is 𝐷𝑖𝑛𝑡 = 0.5. A Deep Q 

algorithm is used to train the RL agent. The limits are set 

as(0,1]. The action space for the RL agent is designed in 

interval over the step size of (0: 0.01: 1] resulting in a 

matrix size of 100 × 1. The learning rate is designed as 

0.01with regularization L2 having values 0.0001 and a 

mini-batch size of 𝑁 = 64 . The model is trained for 𝑀 =

300 episodes with a step size of 
𝑇

𝑇𝑠
 , 𝑇 is the total simulation 

time incurred and 𝑇𝑠 is the sample time. The deigned model 

takes the value of α (the fractional factor) over a range of 

[0,1]. 

Table 2. Parameter for the PV system utilized in the 

model. 
Sun Power SPR-305E-WHT-D  

No. of PV array series connected 12 

No. of PV array parallel connected 1 

𝐼𝑆𝐶  per PV array 5.96 A 

𝑉𝑂𝐶 per PV array 64.2 V 

Max power 𝑃𝑃𝑉 at standard operating conditions 305 W 

Reference DC coupling voltage 𝑉𝐷𝐶𝑟𝑒𝑓
 400 V 

Temperature Range   𝑇𝑒𝑚𝑝 0-500%/deg.C 

Irradiation Range  𝐼𝑟 680-1000 

The voltage at the maximum powerpoint𝑉𝑃𝑉 54.7 V 

Current at the maximum power point𝐼𝑃𝑉 5.58 A 
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Fig.4. Standard current and voltage of the PV system under different Irradiance at 𝟐𝟓 ℃. 

The designed model is RL based, the Figure.5 below 

showcases the training of the DQN learning for the RL 

model over an episode of 300. This training is done using 

the standard conditions of temperature and solar irradiance. 

The model already gets converged around 600 iterations. 

This illustrates the ability of the designed model to get 

quickly adapt to the changes in the environmental 

conditions. 

 
Fig.5. Training Curve of proposed Fractional Order 

DQN MPPT Control Model. 

This completes the brief overview of the 

parameters of the model designed and the platform. Now, 

the results section is bifurcated into two parts: The deigned 

model is compared against the various benchmark algorithm 

to showcases it is robustness and efficiency and in the last 

section, the model is validated on the real dataset to prove 

that the model once trained is efficient to operate different 

environmental conditions.  

Comparative analysis with other Benchmark 

Approaches 

The proposed fractional-order method has been juxtaposed 

with other comparative benchmark work especially trying to 

control the problem of MPPT with RL. The methods 

compared with are perturbation and Observation (P&O) 

[23], a fuzzy logic controller (FLC) [24],  and fractional 

order fuzzy logic controller (FOFLC) [25]. Here, with help 

of a controlling parameter fraction of change in the power is 

reverted into the circuit. This factor α is varied over the 

range as stated in the algorithm. P&O is one of the most 

widely used models for MPPT control. The change in duty 

cycle and power along with voltage get tested with every 

cycle of perturbation. In the occurrence of violations 

condition, a reinitialization is done. The comparison in 

terms of maximum power and voltage are shown in Figure. 

6.  

 
Fig.6. Comparative Analysis of different algorithms for 

PV power and 𝑽𝑫𝑪. 

 

Total harmonic distortion (or THD) is the amount of 

harmonic distortion present in any signal. It is defined as the 

ratio of the sum of all the harmonics present to the 

fundamental frequency. The sun rays incident are 

fluctuating in nature that eventually generates harmonics in 

the power that are undesirable for system performance. It is 

one of the serious concerns in the PV systems that are 

integrated into grid systems. The designed model with 

fractional control has been able to reduce THD component 

under the standard conditions. A comparison of the various 

methods based on THD has been shown in Table.3. This 

term is calculated here for all the comparative algorithms 

based on fundamental frequency and the first 5 harmonics 

encountered when a modified periodogram (Kaiser 

Window) is used. It can be observed that the proposed 

FODQN has the least THD component and also settles in 

very few seconds.  
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Table 3 Comparative results of various methods against 

THD and Settling Time. 

Parameters 
Proposed 

FODQN 
DQNFR FOFLC FLC P&O 

Power 

(𝒌𝒘/𝒎𝟐) 
2.7 2.8 2.26 2.28 1.5 

THD -15.48 
-

26.1506 
-6.6345 -5.250 2.23 

Settling 

Time (s) 
0.121 0.231 0.1847 0.1847 0.3225 

Temperature  : 0-50 ℃ 

Irradiance (
𝑊

𝑚2
) = 680-1000 

 

Also, the proposed algorithm is compared with other two 

designed algorithms in terms of various output 

characteristics at MPPT under various solar irradiance 

conditions and keeping the temperature at a standard 

condition of 25 ℃. This data has been taken for comparison 

purposes from [26]. To have uniformity in comparison the 

values have been normalized using the standard 

characteristic of the PV array utilized by the designs. 

Through this analysis, the author could conclude that the 

design outperforms in terms of maximum power in presence 

of distinct environmental conditions.   

 

Table 4 Comparative results of various output 

characteristics at maximum power point tracking 

(MPPT) for different solar irradiation at standard 

temperature conditions. 
MPPT Irradiations (𝒘/𝒎𝟐)  

200 400 600 800 1000 

SST [27] 

𝑰𝑷𝑽 0.305 0.600 0.896 0.924 0.9854 

𝑽𝑷𝑽 0.640 0.705 0.715 0.747 0.783 

𝑷𝑷𝑽 0.195 0.423 0.641 0.840 0.941 

FGSMC [28] 

𝑰𝑷𝑽 0.475 0.9388 0.9425 0.9548 0.9845 

𝑽𝑷𝑽 0.6288 0.7006 0.6791 0.7662 0.8067 

𝑷𝑷𝑽 0.1599 0.3518 0.5431 0.7743 0.8659 

Proposed FODQN 

𝑰𝑷𝑽 0.2249 0.4342 0.6502 0.8647 1.0776 

𝑽𝑷𝑽 0.3034 0.4596 0.5244 0.6998 0.8318 

𝑷𝑷𝑽 0.2127 0.5188 0.7309 0.8464 0.8483 

 

In this article, the author has also compared the proposed 

work with other fuzzy methods on basis of the rise time of 

Voltage 𝑉𝑑𝑐, robustness, and deviation. The method is 

compared to FOFLC, adaptive FLC, Fractional Order (FO), 

and IncCond Methods (ICM). The proposed method has a 

smooth transition, with a good tracking speed and steady-

state stability. Also, a comparative settling time, a model-

free approach have begged good results under varying 

temperatures and irritation condition. These all make the 

proposed method a robust design. The deviation defines 

here the difference that is between 𝑉𝑑𝑐 and the 𝑉𝑟𝑒𝑓 . There 

by making it more vulnerable as compared to all the 

techniques existing in the literature as tabulated in Table.5.  

These values are taken for comparative analysis. These are 

on the simulations done by the respective authors in the 

state-of-the-art schemes. They have adopted the different 

PV models, so the linguistic approach is used to compare 

their work with our results 

 

 

Table 5 Performance Comparison of FODQN MPPT 

Techniques with other fractional-order designs. 
Work Proposed   Rise Time Robustness Deviation 

Fixed FLC [29] 0.2  Good Good 

Adaptive FLC [30] 0.15  Good Good 

ICM [31] 0.16  Bad Bad  

FO [32] 0.2  Bad Bad  

FOFLC [33] 0.03  Excellent Excellent 

Proposed FODQN 0.221 Excellent Good 

Note: Bad, Good and Excellent are linguistic to compare the methods 

 

The tracking time is also an important parameter to 

effectively track the MPP. This has led the author to 

compare the tracking time of the proposed method with 

FFGSMC in Table.6 shows the tracking time of the 

maximum power point for different irradiation.  

Table 6 Tracking time of the maximum power point for 

various solar irradiations. 
Irradiations 

(𝒘/𝒎𝟐) 

200 400 600 800 1000 

Proposed  

FODQN 

0.0081 0.0075 0.0062 0.0042 0.0039 

FFGSMC 

[23] 

0.0093 0.0078 0.0064 0.0051 0.0046 

Testing on Real Data Set of New Delhi    

The validation of the model is carried out on the 

real data. This data is collected from the website Solcast. It 

is an API toolkit that produces real-time, historical, and 

forecast estimates of the available solar radiation resources 

around the globe. Also, it provides actual and forecasts solar 

irradiance and power data, globally, using satellites and 

surface measurements. In this article, the region for study 

chosen is Delhi, officially known as the National Capital 

Territory of Delhi (NCT), which is a city and a union 

territory of India. Below, in Figure. 7 the map of India along 

with Delhi is shown for reference. 

The latitude of Delhi is 28.644800, and the 

longitude is 77.216721. It is in India with the Global 

Position System (GPS) coordinates of 28° 38' 41.2800'' N 

and 77° 13' 0.1956'' E. The NCT covers an area of 1,484 

square kilo meters (573 sq mi). According to the 2011 

census, Delhi's city proper population was over 11 million, 

the second-highest in India. The climatic conditions of these 

regions vary over a range from 2 to 47 °C (35.6 to 

116.6 °F), with the lowest and highest temperatures ever 

recorded being −2.2 and 48.4 °C (28.0 and 119.1 °F), 

respectively. Normally, it has a dry winter with humid 

subtropical climatic conditions. The annual mean 

temperature is 25 °C (77 °F); monthly mean temperatures 

range from 13 to 32 °C (55 to 90 °F). The different seasons 

round the year in Delhi are tabulated in Table.7 below. 
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Fig.7. Outline of Map of India and New Delhi. 

 

Table 7 Different Seasons witnessed in New Delhi round 

the year. 
 Month Climate 

Spring February to March Sunny and pleasant. 

Summer April to June Hot 

Monsoon July to Mid-September Wet, hot, and humid 

Autumn September end to November Pleasant 

 

In this study, the parameter taken for analysis is Air 

Temperature (TEMP, °C): The air temperature (2 meters 

above ground level)  and Global Horizontal Irradiance 

(GHI, W/m2): The total irradiance received on a horizontal 

surface. It is the sum of the horizontal components of direct 

(beam) and diffuse irradiance. The mean of temperature and 

irradiance for the summer season is showcased in Figure. 8 

and Figure.9 respectively.  

 

 
Fig.8. The mean temperature was recorded for New 

Delhi in the year 2019 during the summer season. 

 
Fig.9. The mean irradiance was recorded for New Delhi 

in the year 2019 during the summer season. 

The model was tested using this data. The data was pre-

processed to suit the input conditions of the model. The data 

for the year 2019 was taken and the output PV power and 

the other standard values were measured for a day. The data 

taken for analysis is shown in Figure.10. The model after 

being trained and tested on the standard conditions. Then, 

the model is further tested on this real data condition of 

different temperatures and irradiance. The testing purposed 

only includes the applying of the pre-processed data and 

observing the output. To, validate the model author has 

tested the model for both the extreme season conditions 

prevailing in New Delhi. As the winter and summer seasons 

witness extreme conditions these are chosen for testing 

purposes.  

 

 
Fig.10. Data taken for testing the model designed (A day 

in the year 2019 for summer and winter). 

The results showcase the utility of the designed model under 

various environmental conditions. Also, the model 

simulated in the ideal condition can be effectively utilized in 

the field conditions without any change in the effective 

model design. One more advantage of this design is that 

once the model is designed it can be utilized without 

retraining it.  

 
Fig.11.The PV power and DC coupling voltage for 

testing under summer data. 
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The simulation results for summer and winter testing under 

different environmental condition is shown in Figure. 11 

and Figure. 12 respectively. 

 
Fig.12.The PV power and DC coupling voltage for 

testing under winter data. 

V. CONCLUSION 

In this article, a novel model for tracking maximum 

power point is designed using reinforcement learning and 

the fractional-order concept. The introduction of 

reinforcement learning is done to make the model 

independent of parametric variations in the design to adapt 

the environmental effects and also the training is done using 

a Deep Q-learning algorithm that makes the design a model-

free approach. The added advantage of this learning is that 

once the network trained can withstand any variation still 

effectively track the MPP. The appending of fractional-order 

in the proposed design is to reduce the tracking time for 

reaching the peak level, maintain a steady-state output 

without oscillation around the MPP, and the reductions 

THD component in the output due to variation in the solar 

irradiation that eventually affect the PV array performance. 

The testing of design is carried out in two phases where it is 

has been compared with various benchmark existing 

algorithms and also it has been tested on the real data set to 

capture the essence of the design under various 

environmental conditions. The lowest THD component and 

tracking time with maximum power output at MPP are 

achieved with FODQN as compared to various algorithms. 

The comparative analysis confirmed that model is effective 

in harvesting maximum energy at different solar irradiation 

conditions. The application of the proposed model on the 

real data set ensures that this model can be easily 

implemented in any area without any parametric change in 

the model and also produces maximum power even under 

the lowest solar irradiance in extreme winter conditions 

where the presence of solar energy is lowest recorded.  
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