
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-2, July 2021

233

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

Abstract: The high-volume and velocity data stream generated

from devices and applications from different domains grows
steadily and is valuable for big data research. One of the most
important topics is anomaly detection for streaming data, which
has attracted attention and investigation in plenty of areas, e.g.,
the sensor data anomaly detection, predictive maintenance, event
detection. Those efforts could potentially avoid large amount of
financial costs in the manufacture. However, different from
traditional anomaly detection tasks, anomaly detection in
streaming data is especially difficult due to that data arrives along
with the time with latent distribution changes, so that a single
stationary model doesn’t fit streaming data all the time. An

anomaly could become normal during the data evolution,
therefore it is necessary to maintain a dynamic system to adapt the
changes. In this work, we propose a LSTMs-Autoencoder
anomaly detection model for streaming data. This is a mini-batch
based streaming processing approach. We experimented with
streaming data that containing different kinds of anomalies as
well as concept drifts, the results suggest that our model can
sufficiently detect anomaly from data stream and update model
timely to fit the latest data property.. Index Terms: About four key
words or phrases in alphabetical order, separated by commas.

Keywords: An Anomaly Could Become Normal During The
Data Evolution, Therefore It Is Necessary To Maintain A
Dynamic System To Adapt The Changes.

I. INTRODUCTION

Anomaly detection attracts more and more attention in the
data mining domain, and is widely used in different
applications, e.g. manufacture, e-commerce, internet etc.
Successful anomaly detection in time avoids inconvenient
and reduces maintenance expenditure in many scenarios like
credit card fraud detecting, spam email recognition, machine
condition monitoring, and can also be used as a
pre-processing step to remove anomalies from datasets
before other machine learning tasks. There are already plenty
of anomaly detection techniques proposed in previous
literatures that solve this problem from variety perspectives,

Manuscript received on July 18, 2021.
Revised Manuscript received on July 30, 2021.
Manuscript published on 30 July, 2021.
* Correspondence Author

Aju D, Professor, Department of School of Computer Science and
Engineering, Vellore Institute of Technology, Vellore (Tamil Nadu), India.

Dibyajyoti Roy, Department of School of Electronics and Engineering,
Vellore Institute of Technology, Vellore (Tamil Nadu), India.

Raghav Agarwal*, Department of School of Computer Science and
Engineering, Vellore Institute of Technology, Vellore (Tamil Nadu), India.

Tanishq Nagpal, Department of School of Computer Science and
Engineering, Vellore Institute of Technology, Vellore (Tamil Nadu), India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

e.g. distance-based methods, clustering analysis,
density-based methods etc.

There is no lack of anomaly detection approaches that
perform well with respect to different kinds of data.
Supervised approaches take anomaly detection as a binary
classification problem of “normal” and “abnormal”

instances, and all instance labels should be available in
advance. The key difference to classical classification
problem is here the class labels are extremely biased to the
normal class while anomaly only appears rarely. Instead of
doing data augmentation on anomaly data for supervised
approaches, unsupervised approaches are more direct
solutions to this problem, which treat the instances that fit
least to the majority as the anomalies. Furthermore, under
many real-world situations, only partial labels are available,
and therefore semi-supervised as well as one-class models
are more efficient. Those models learn pattern from the
partially labelled normal data, and scale anomaly likelihood
according to the difference between an unseen pattern and the
learned normal pattern.

However, most of the existing anomaly detection models
are designed as batch model, which means, the entire training
set should be available in advance. This becomes a
shortcoming under today’s big data background. With the
rapid development of hardware in the last decade, the
situation of data acquisition and analysis has significantly
been changed. Specifically, in the IoT applications, data are
acquired from sensors that attached to IoT devices, arrives
continuously and everlasting. In the beginning, no static
entire training set is available for model initialization in the
batch fashion. Besides, during data analysis, we should
always consider the volume and velocity of data. On one
hand, with traditional batch classifiers, the infinity data
stream will lead to out of memory problem, on the other
hand, streaming data usually comes with a high velocity that
leaving the system few processing time. Optimally, the
model should have only single look at each data point in the
stream. In addition, the statistical property of data may also
change over time, which is formally called ‘concept drift’.

The model should always learn latest knowledge from the
stream and update its identification of anomaly
automatically, while anomalies could be temporally. After a
data distribution change, an anomaly could possibly become
normal in the new streaming context. Data distribution
changes should not be classified as anomaly, in the
meanwhile, though anomalies show up rarely over the
stream, they should not be over sighted.

To this end, an anomaly detection system for streaming
data should be able to initialize with only a small subset
process streaming data and make prediction in real-time,

 Raghav Agarwal, Tanishq Nagpal, Dibyajyoti Roy, Aju D

A Novel Anomaly Detection for Streaming Data
using LSTM Autoencoders

http://www.ijrte.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.B6294.0710221&domain=www.ijrte.org

A Novel Anomaly Detection for Streaming Data using LSTM Autoencoders

234

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

adapt data evolution over the stream and model should be
able to deal with the biased data

LSTMs are a kind of recurrent neural network that exhibit
dynamic temporal behavior for time series. As a neural
network-based model, LSTMs are able to deal with high
dimensional and non-linear data directly. In the last decade,
LSTMs are used widely in time series prediction and text
prediction. LSTMs-based auto encoders are also applied to
sequence-to-sequence problems, e.g. language translation,
time series data embedding. Deep LSTMs have been shown
good performance in capturing hierarchical information of
time series like separation of sentences. Recently,
LSTMs-based autoencoders are also used for time series
anomaly detection in order to capture the temporal
information between data points. For instance, Malhotra et al.
introduced an autoencoder based anomaly detection
approaches in [1],[2], and achieved good performance in
multiple time series dataset. However, in those researches,
they still assume that the whole datasets are available
beforehand and work on static data. Also, the aforementioned
online learning difficulties are not taken into consideration.
Hence, we enhanced this kind of LSTMs Autoencoder based
static anomaly detection approaches with the online learning
ability by appending incremental model updating strategies.

In this paper, we introduce a novel and robust incremental
LSTMs-Autoencoder anomaly detection model, which
designed specifically for time series data in a streaming
fashion using Long Short-Term memory (LSTM) units, with
also online learning ability for model updating. For each
accumulated mini-batch of streaming data, the autoencoder
reconstructs it with previous knowledge learned from normal
data. Anomalies (never used for training) are supposed to
cause significant larger reconstruction error than normal data.
In addition, the model is able to update itself when data
distribution changes are detected. The LSTMs-Autoencoder
is experimented with different data streams, and the
experiment results show its ability in detecting anomaly from
streaming data and is able to adjust itself with different kinds
of concept drifts by model online updating.

II. LITERATURE SURVEY

In this section, we present a survey on previous works in
anomaly detection. Both batch models and online models are
listed with respectively classical machine learning
approaches and neural network as well as autoencoder based
approaches. And for the online case, we also survey works
with neural network updating approaches.

As an important component of data mining and machine
learning, anomaly detection has been investigated using
plenty of efficient models. When talking about anomaly
detection, the most intuitive solutions are detection of outliers
from a dense cluster, or to find data points that have obvious
different property as their neighbors. Considering the lack of
label and extremely imbalanced dataset, unsupervised
approaches are more widely used in practice, for example
Local Outlier Factor (LOF).

In anomaly detection, the LOF is a common
density-based approach. LOF shares some concepts with
DBSCAN such as ‘core distance’ and ‘reachability distance’,

in order to estimate local density. Here, points with
substantially lower local density than their neighbors are
considered as anomalies. LOF shows competitive
performance in many anomaly detection tasks, especially

when dealing with data with unevenly density distribution.
However, when getting a numerical factor from LOF model
as result, it is actually hard to define a threshold
automatically for the judgment of anomaly.

Because the anomalies appear rarely in the dataset, and
occur usually in novel ways, it is expensive to label and hard
to learn all kinds of anomalies during the training phase, so
unsupervised models are commonly used. There are also a
batch of semi-supervised or one-class anomaly detection
models. The intuitive difference between anomaly detection
and binary classification problem is the obvious fewer
positive class data (anomalies). A typical one-class model is
the One-class Support Vector Machine (OCSVM).

As a semi-supervised one-class classifier, OCSVM takes
only normal data as input, and generates a decision surface to
separate them from the anomaly data. By analyzing
anomalies, the datasets are always bias to the normal part,
and anomaly appear only rarely. So, this kind of one-class
classifiers avoid making balance between the two classes.
Besides, they also take advantage of classical support vector
machine by using kernel methods, they can also deal with
linearly not separable data. However, in the meantime,
choosing a proper kernel becomes a hard problem for
OCSVM. A suboptimal kernel function can seriously impact
the performance.

LSTMs-Autoencoders are originally widely used for text
generation because the LSTMs are able to capture the
contextual dependency between words and sentences. Text
data are usually embedded into vector as input data of
autoencoder. And the tasks are either to generate temporal
relevant text on the decoder side or to learn text
representation from the hidden layer [1]. Similar problem
appears also in time series mining due to the temporal
dependency of values between timestamps. So, in later
works, LSTMs-Autoencoder are also used for time series
data.

Sutskever et al. [13] proposed a deep LSTMs-based
sequence-to-sequence model for language translation. In
their work, the deep LSTMs encoder takes single sentence as
input, and learn a hidden vector with fixed length, then a
different LSTMs decoder decodes the hidden vector to the
target sentence. As a translation task, they found that this
encoder-decoder architecture can capture long sentences and
sensible phrases, especially they achieved better performance
with deep LSTMs in compare with shallow LSTMs. In
addition, a valuable found is, reversing the order of words in
the input sentence makes the optimization problem much
easier and achieved better performance. The LSTMs based
model outperforms non-LSTMs model on the long input
sentence cases (more than 35 words) since its long-term
memory ability.

Li et al. [7] did similar research on long paragraph text
and even entire document generation using
LSTMs-autoencoder. Their main contribution is the
hierarchical sentences representation. The model learns
word-level, sentence-level and paragraph-level information
with each respectively a LSTMs layer, so that the model
captures very long-term temporal information. Moreover,

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-2, July 2021

235

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

they introduced an attention based hierarchical
sequence-to-sequence model that connect the most relevant
parts between encoder and decoder, for example, the words
around a final punctuation. They experiment with documents
over 100 words, the results show that hierarchical and
attention-based hierarchical LSTMs learns even better
long-term temporal information than standard LSTMs-based
encoder-decoder models.

As autoencoder achieve great successes in text data and
speech processing, they are also used for time series anomaly
detection. These models train autoencoder with only normal
data while take anomalies as unknown patterns. Then the
autoencoder are only able to reconstruct normal patterns, then
large reconstruction error indicates anomaly. An early work
[11] used vanilla autoencoder to detect abnormal status of the
electric power system. In order to capture temporal
information, they applied sliding window on the raw data as
input. As anomaly scoring method, they evaluated each
sliding window with respect to their reconstruction error. As
some measures in the autoencoder output vectors that are
more sensible to anomalies than others, they use the average
absolute deviation of reconstruction error as anomaly score.
And the anomaly threshold is chosen by large amount of
experiments over normal data.

Another important reason of using autoencoder for
anomaly detection is its ability of dealing with
high-dimensional data. Sakurada et al. [12] experimented
with time series data that consist of 10-100 variables without
linear correlation. Comparing with reconstruction using PCA
or Kernel PCA techniques, the autoencoder reconstruction
error can easily recognize anomalies.

In further researches, Malhotra et al. [10] [8] developed
the application of LSTMs-autoencoder from sequence
learning into anomaly detection problem. They proposed a
stacked LSTMs model to learn high level temporal patterns.
They show that LSTMs outperform normal RNNs-based
anomaly detection model and avoid the gradient vanishing
problem thanks to the gate architecture inside the LSTM unit.
They also detect anomaly based on the reconstruction error.
The scoring function is based on the parameters of an
estimated normal distribution of a validation set. Their
experiments show that the model performs well in variety
kinds of datasets. A variation of this model [9] has been
proved that achieves better performance in the anomaly
detection tasks, while they tell that using a constant as input
of decoder instead of read time series value improves the
performance of model.

A. Online anomaly detection over data stream

1) Classical online approaches

Recently, streaming data mining attracts more and more
attention, and many efficient classical models are modified to
fit the online learning property. Cui et al. [2] proposed online
anomaly detection approach with grid-based summarization
and clustering algorithm, which is able to detect anomaly
immediately when data arrives. For the past streaming data,
they used summarization algorithm to reduce the run time
and memory consumption over stream. And they give
anomaly scores to instances to describe concrete anomaly
degree. The model shows good performance in KDD dataset
for network attack detection. However, they consider only
isolated data point without any temporal information
measuring. Another streaming data anomaly detection
framework by Tang et al. [15] used sliding window to

involve the contextual dependency and temporal changes in
the stream. The anomaly detection algorithm is a modified
version of LOF while LOF’s high time complexity cannot be

directly employed to streaming data. They use com-entropy
to filter out most normal windows, and feed the rest to LOF.

1 2.2.2 Autoencoder-based online approaches
Zhou et al. [16] proposed an online updating approach for

de-noising autoencoders by modifying the hidden layer
neurons in order to deal with the non-stationary streaming
data properties. The basic idea consists two steps, adding
hidden layer neurons to capture new knowledge, and merging
hidden layer neurons if information is redundant. Their
experimental result shows comparable or better
reconstruction result than non-incremental approaches with
only few data used during initialization. And they show that
their incremental feature learning methods performs more
adaptively and robustly to highly nonstationary input data
distribution.

Dong et al. [3] proposed a 2-step anomaly detection
mechanism with incremental autoencoders. They
implemented the model with ensembled autoencoders in
multithreads in order to leverage parallel computing when
large volumes of data arrive. In the 2- step mechanism, they
check anomaly in the first step and verify anomaly data with
previous and subsequent data (to distinguish between
anomalous state and concept drift) in the second step to
reduce false-positive rate in anomaly detection. In the
experimental results, they show that their model outperforms
commonly used tree-based streaming anomaly detection
models especially when concept drift presents. And they
speed up the online processing with mini-batch learning and
online learning in multithreads.

Ghazikhani et al. [4] introduced an online neural network
model for streaming data towards to the two major problems
of online learning, concept drift and imbalanced classes. In
term of concept drift, they applied a forgetting function that
weights recent instances to navigate the model to the drifted
model, so that the model always learns pattern from latest
data. Besides, for class imbalance, they proposed an error
function for two-class imbalance problem with the basic idea
that the error function generating higher error signals for
instances in the minority class.

Kochurov el at. [6] Designed incremental learning
framework for deep neural networks based on Bayesian
inference. They argued that, naïve deep learning approaches
for incremental learning applies Stochastic Gradient Descent
(SGD), which intent to keep previous learned model
remembered, and enhanced with current batch of new data.
However, by SGD, the neural network model is likely to
converge to the local optimal of the latest batch of data
without preserving the previous knowledge. Their Bayesian
framework estimates the posterior distribution over the
weights of the model in the condition of previous knowledge
and use the Bayesian rule to sequentially update the posterior
distribution in the incremental learning.

In this work, we implement a LSTMs-autoencoder based
incremental streaming data anomaly detection model. The
LSTMs-autoencoder is close to the model introduced by
Malhotra et al.

http://www.ijrte.org/

A Novel Anomaly Detection for Streaming Data using LSTM Autoencoders

236

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

[8], and we design an online model updating strategy as
well as the updating data buffers used for model updating,
which collect fresh knowledge from the last seen instances.

III. METHODOLOGY

The proposed model is a full flow from data stream
generation, anomaly detection with autoencoder-based model
and online model incremental updating. Figure 4 shows the
general pipeline. The first received batches of streaming data
are used for decision of model hyper-parameters and the
model initialization. Hyper-parameters includes the hidden
layer size, batch size, input window length as well as the
number of epochs. Once the hyper-parameters are
determined, an autoencoder will be constructed and
initialized with random weights. A subset of the streaming
data is used for model initialization (only normal data used
for training). Furthermore, the model is used for online
anomaly detection, and evaluated based on the labels
provided by experts. After evaluation, the data windows with
bad performance are collected as hard examples in buffers for
updating. Model will be updated when the updating condition
is triggered. As shown in Algorithm 1, if a batch of streaming
data is available, the model will start do prediction,
evaluation, and check whether current window is useful to
store for later updating. If so, the window of data will be
appended to the updating buffer, with the instance order not
been destroyed. As a consequence of anomalies’ rare

appearance, we keep all seen anomalous windows for
determination of anomaly score threshold during updating.

1) Encoder-decoder architecture

The LSTMs-Autoencoder consists of two LSTM units,
one as encoder and the other as decoder. The encoder inputs
are fix length vectors with shape <MB, T, D>, where MB is
the number of data windows contained in a mini-batch, T is
the numbers of data points within each data window, and D
represents the number of data dimensionality. Here, MB and
T are learned as hyper-parameter in the initialization phase.
And on the decoder side, it is supposed to output exactly the
same format data vector for each mini-batch. The LSTM unit
copies its cell state for itself as one of the cell input at next
timestamp.

At the last timestamp of encoder, the cell state of LSTM
unit is the hidden representation of the input data vector and
copied to the decoder unit as initial cell state, so the hidden
information can be passed to the decoder. The size of hidden
layer representation vector, namely the size of cell state is
another hyper-parameter need to be learn in the initialization
phase. The larger the hidden vector, the more information can
be captured during the process, so it is a feature highly
depends on the data. Similar to previous study [13], we also
train the encoder and decoder with time series in reverse
order. For example, if the input data fragment are data points
from timestamp t1 to t2, then the decoder will predict data
point at t2 at first, and then back to t1 step by step, while this
trick makes the gradient escarpment between last state of
encoder and first state of decoder smaller and easier to learn.

In order to let the whole process happen online, the model
initialization also utilizes streaming data. Once a small subset
of streaming data is available, hyper-parameters are learned,
and then another dataset that consists only of normal data is
collected from stream used for training. Assume that once an
anomaly detection task is determined, the anomalous state is
explicit defined and a subset of anomalous data is available

for model initialization. We split the normal data into four
subsets, N1 for hyper-parameters tuning, N2 for model
training, N3 for early stopping, and scoring parameters
learning, N4 for testing. And abnormal data are split into two
subsets, A1 for decision of anomaly score threshold, A2 for
testing.

Figure 1: Online anomaly detection flowchart

2) Online anomaly detection

The autoencoder reconstructs the input with its
knowledge of normal data, so if the input data contains
anomalies, the reconstruction error will be obviously larger
due to the lack of anomalous knowledge. For input X(i), the
reconstruction error is

e(i) = X(i) − X0(i) (1)

, similar to [8], the reconstruction error of data points in
N3 is used to estimate the parameters µ and Σ of a normal

distribution N(µ, Σ) using maximum likelihood estimation.

The anomaly score for a point xt
(i) is defined as

a(i) = (e(i) − µ)TΣ−1(e(i) − µ) (2)
During the initialization phase, an anomaly score threshold τ

is also learned using N3 and
A1 as

τ = argmaxAUC(a(N3), a(A1)) (3)

The anomaly score of every instance in a window is
compared with τ, and values over τ are predicted as
anomalies. If a window contains more than τN anomalous
values, this window is predicted as anomaly. The threshold τN

is determined by dataset study.

 Online learning

However, if the model is utilized for streaming data, the
autoencoder will possibly become outdated because of the
relative small and simple initialization dataset and concept
drift that happed along with the time.

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-2, July 2021

237

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

So the update of model is indispensable. In this section,
we introduce the updating strategy of the
LSTMs-Autoencoder.

Updating dataset

Once the LSTMs-Autoencoder is initialized, it is ready
for online prediction. There is a multi-thread setting in the
online learning architecture. A sub-thread collects data
instances continuously from the stream, and in the meantime,
the main-thread works on real-time anomaly detection as
long as mini-batches of data is provided by the sub thread.
For each single window in the mini-batch, every instance is
reconstructed and the anomaly score is calculated using
Equation (4.2) on the preceding page. The system maintains
two data buffers for updating, one for normal data windows,
and the other one for anomalous windows. Considering the
fact that a well mastered window leads to lower
reconstruction error, and higher error indicates new features
in the data, we can measure this reconstruction error level by
the predefined normal distribution on reconstruction error.
After each batch, the label for each data window is
determined by experts. We predefine a performance
threshold PN for normal data. Normal data windows that
containing more than PN over τ instances are regarded as not

good mastered and will be appended into the normal buffer
for updating. Normally, we set PN lower than τN, so that not
only wrongly predicted, but also ’hardly predicted’ data are
collected for model updating. As anomalies appear rarely in
the stream, we collect all anomalous windows in the
abnormal buffer for score threshold determination during
updating.

Because the out-of-date buffer not might be collect from
previous concept drift time period, and not benefits to current
updating, we maintain the retain buffers with a queue
structure, so that only a specific amount of most fresh data
can stay in the buffer. To this end, once a updating process is
triggered, only not well mastered fresh normal data are used
for updating.

Figure 2: Updating data buffer

Updating trigger

During the online processing, if the system detects that
the model doesn’t fit the current data any more, then the

model updating is triggered and done with the latest collected
data in the two buffers. During experiments we found that,
anomalies only appears rarely in the stream, so it often
happens that the model need updating to fit the latest data, but
still lack of anomaly data in the buffer to update the anomaly
score threshold. To this end, we trigger the updating so long
as the anomaly buffer is not empty. If the anomaly data are
not enough to make up a single batch, then we duplicate the
windows in anomaly buffer until buffer fits the batch size. In
case of the normal buffer reaches a predefined size and
anomaly buffer is not empty, the model is updated in a sub
thread while the main thread keeps processing the stream.

The updating trigger strategy depends on the buffer size.
If concept drift happens, large amount of data arrives quickly
to enrich the updating buffers, and trigger updating in time.
And the trigger highly depends on the hard window criterion
that decides when a data window from stream should be
appended to the buffers. In case it is necessary to react very
quickly after the concept drift, then the criterion of ‘hard’

should be lower, so that more windows during concept drift
will be added to the buffer.

Model updating

Once the updating process is triggered, the model will be
updated using data from the buffers. Windows of normal
buffer are divided into updating training set and updating
validation set. Once the online phase starts, the
LSTMs-Autoencoder is loaded into memory, and further
model updating are all done in memory. The updating is a
continuation of the initialization or previous updating (last
check point) with identical data format. Parameters mu,
sigma as well as anomaly score threshold are learned from
the updating validation set and anomaly buffer data. The
parameters mu and sigma are the mean and variance (or
covariance for multivariate data) of reconstruction error
estimated by normal validation set during training. So we
learn new parameters in the updating using normal validation
set as well.

IV. DATASET AND EXPERIMENTAL SETUP

We use 5 datasets in our experiments, PowerDemand,
SMTP, HTTP, SMTP+HTTP and ForestCover. Those are
widely used datasets in the streaming data mining area
[8][3][14]. Statistical features are listed in Table 5.1.
PowerDemand is a small univariate time series that records
the power demand over a period of one year. Weekdays’

power demand is higher than weekends’ and daytime is

higher than nights, power demand of special days (e.g.
festivals) are abnormal. The aim is to find out such contextual
anomalous weeks instead of single strange data point. The
experimental data is an subsampling of original set. We
demonstrate a synthetic example with visualization using this
dataset while the trends and anomalous states are relative
obviously. SMTP, HTTP, SMTP+HTTP are streaming
anomaly data extracted from KDD Cup 99 dataset.
According to Tan et al. [14], HTTP contains sudden surges of
anomalies and SMTP does not, but possibly exhibits some
distribution changes within the stream. Because of the
difficulty to point out where the distribution changes occur in
the stream, the HTTP+SMPT dataset is derived by
connecting SMTP and HTTP, so that a distribution change is
occurred when the communication protocol is switched.

The ForestCover dataset is from the UCI repository,
which contains 7 kinds of forest cover types. Similar as Dong
et al. [3], we defined the smallest class Cottonwood/Willow
with 2747 instances as anomaly, and the rest 6 classes as
normal class with distribution changes.

http://www.ijrte.org/

A Novel Anomaly Detection for Streaming Data using LSTM Autoencoders

238

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

Table 1: Datasets information

Dataset Size Dimensionality
Anomaly
proportion
(%)

PowerDemand 35 040 1 2.19

SMTP 96 554 34 1.23

HTTP 623 091 34 0.65

SMTP+HTTP 719 645 34 0.73

ForestCover 581 012 7 0.47

We separate each dataset into initialization set and
streaming set, both contain normal and abnormal data.
Further, the initialization set is divided into:

• GS(n&a): for grid search

• INIT(n): for model initial training

• PL(n&a): for model parameter learning

• TEST(n&a): for testing during initialization

Where “n” represents normal data and “a” represents

abnormal data. And the streaming set is published to Kafka to
generate data stream (Figure 3).

Figure 3: Data stream Publisher-Consumer architecture

For each dataset, we use around 20% data for
initialization and the other half for online prediction. Each
subset used for training and prediction are pre-processed
locally in batch, in order to scale them into [0, 1] to fit the
LSTM activation function.

A. Parameter tuning

For each dataset, we carry out a grid search step to tune
the model hyper-parameters. Here we try multiple
combinations of window length and hidden size for each data
set. The grid search set GS contains 5% -15% anomalies.
Because of the uncertainty of the random neural network
weight initialization, we do each experiment 10 times and
take the average result to reduce the impact. To be noted that
during every divisions, the consistency of streaming data is
persisted, or in other words, there is no random sampling
during the process. A good model should make the
reconstruction error as large as possible in order to make the
classification easier.

Table 2: Hyper-parameters

Dataset
Window
length

Hidden
size

#Grid
Search
instance

PowerDemand 80 15 1 000

SMTP 10 15 5 000

SMTP+HTTP 10 15 5 000

HTTP 30 35 10 000

ForestCover 10 25 10 000

Experimental results:

Autoencoders are trained for each dataset with the
beginning of streaming data. The anomaly detection
performance is indicated by AUC. For each dataset, we
compare the AUC of online phase that without and with
continuously model and parameter updating (Table 3). For
the PowerDemand dataset, retrain trigger depends on the
batch performance. And for the rest datasets, retraining only
triggered when retrain buffers are full. The retraining brings
overall performance improvement on all datasets comparing
to stationary models. Especially in the SMTP+HTTP dataset,
the stationary without learning concept drifted knowledge
performs clearly worth than the model with updating.

Table 3: Performance
Dataset AUC(without

retraining)
AUC(with
retraining)

#retrain

PowerDemand 0.91 0.97 2
SMTP 0.94 0.98 2
HTTP 0.76 0.86 2

SMTP+HTTP 0.64 0.85 3

ForestCover 0.74 0.82 8

In order to compare the performance with and without
retraining, after each model updating, we calculate the AUC
value for each specified time period. As Shown in Figure 6 on
the following page, the x-axis represents the periods, for
example, before first retraining (shown as P1 in each
subplot), between first and second retraining (P2), and so on.
For each dataset, we compare the AUC value of stationary
model (trained with only initialization set) and adaptive
model (online updated). For most cases, the adaptive models
outperform stationary models, which shows the models
profits from the knowledge updating over streaming data. To
be notice that the SMTP+HTTP set contains sudden concept
drift around P3, which leads to a sharp decline of the
stationary model. In the meantime, the adaptive model is only
slightly influenced by the mixed knowledge at P3 but keeps
outstanding performance when the stream switches to HTTP
side.

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-2, July 2021

239

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

Figure 4: AUC comparison between stationary and
adaptive models over stream. The x-axis represents
specific periods over stream. For example, P1 is the

period from beginning to the first retraining, and P2 is
the the period between first and second retraining etc.

The above Figure5 shows the run time used for both

stationary models and adaptive models for each data set. The
updating takes more time for HTTP, SMTP+HTTP and
ForestCover than PowerDemand and SMTP is due to that
larger datasets take more time for prediction, and trigger
more updating events. And for each retraining, the retrain
buffers also contain larger retraining sets

V. ANOMALY DETECTION OVER STREAMS

Generally, the autoencoder reconstructs normal data with
relative lower reconstruction error while anomaly data with
significant larger reconstruction error. Figure 6 demonstrates
two typical data windows (weeks) in PowerDemand, one
normal and one anomaly. The Monday of anomaly week
(right) is a special data, which has an abnormally low power
demand. Even so, the autoencoder still reconstructs the
Monday as usual with a higher score, therefore the
reconstruction error is obviously larger on Monday, and the
model labels this week as anomaly.

Even there will be concept drift over the stream, which
will lead to an entirely increase or decrease in the input side,
and the decoder output side remaining, our model can still
deal with this problem with its online parameter updating
ability. While the anomaly scores are calculated by the
mahalanobis distance to the estimated normal distribution of
normal data reconstruction errors in the validation set, by
every model updating, the model estimates new normal
distribution and relevant parameters with the latest collected
validation set, so that the reconstruction error-based anomaly
detection is robust against concept drift.

Figure 6: Reconstruction error of Power Demand data

A. Reaction of concept drift

Figure 7, y-axis magnitude and x as time stamps shows 3
continual days power demand in normal state. Due to the lack
of knowledge for current pattern, the autoencoder
reconstructs the input time series higher than desired on day 1
(left diagram). This could be caused by seasonal changes on
the power demand, which is slightly, gradually, and would
potentially cause misclassification. The increase of normal
data reconstruction error makes the margin between two
classification classes smaller, and harder to make decision.
As a consequence, the model retraining process is triggered
after the second day with last seen data in the buffers, and the
model performs well again on the third day.

Figure 7: Retraining effect on Power Demand dataset

http://www.ijrte.org/

A Novel Anomaly Detection for Streaming Data using LSTM Autoencoders

240

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

B. Model updating

During the online phase, the model is retrained two times,
before batch No.10 and No. 27. After retraining, the normal
data reconstruction error becomes lower while for abnormal
data becomes higher, so that the classification becomes
easier.

Figure 8: Power Demand dataset online learning scores.

For each window, the anomaly score is the highest
pointwise scores within the window

After each updating process, the parameters mu, sigma

and threshold of anomaly scores are also updated. Figure
shows the parameter changes over the stream. As there is no
clear concept drift during the power demand stream, the
parameters change just slightly in order to learn latest
knowledge from the retrain buffer.

Figure 9: Power Demand dataset online parameter

updating

C. Reaction of sudden and drastic concept drift

The main advantage of online model is its ability to take
reaction against sudden data distributional changes over time.
The SMTP+HTTP data set is composed by directly
connecting HTTP set after SMTP, so there is a sudden
concept drift in between. The model is initialized with only
SMTP data, so HTTP is completely unknown knowledge for
the model. Here it shows the scores for both normal and
abnormal data over the SMTP+HTTP stream. In the
beginning, only SMTP data in the stream, and partially used
for model initialization. In the online prediction phase, once
the HTTP data arrives, the first peak of normal data scores’

curve appears, and then the model updating is triggered, with
buffer data being few hard SMTP data and most HTTP data.
After the first model updating, the performance of model is
still suboptimal due to the lack of enough HTTP data,
therefore there are two further model updating process
triggered during the following stream. As a result, the overall
anomaly detection for SMTP+HTTP stream is good only
except the short period after concept drift. The model
updating are triggered in time after concept drift, and
afterwards no redundant updating are triggered.

Figure 10: SMTP+HTTP stream concept drift.

D. Reaction of serial concept drift

Sometimes concept drift over the stream are slight,
periodically, and potentially repeated. A single slight concept
drift may not be able to trigger the retraining, but new
knowledge should be saved into retraining buffer, so that
once the model retrained with the fresh knowledge, tshe
model should perform well when the same concept drift
happens. We experiment with the ForestCover dataset. There
are 7 kinds of forest cover types as labels. We take the least
TYPE4 as anomaly while the rest 6 kinds as normal. The
ForestCover stream is generated type by type, as shown in the
bottom chart of figure 11 on the facing page. During the
beginning phase, TYPE1 data appears in the stream, part of
which is used for model initialization. Afterwards follows
instances from TYPE2, TYPE3, TYPE5, TYPE6, TYPE7
and finally TYPE2 appears again during the ending phase.
Anomaly data (TYPE4) is randomly distributed in the stream.
Because the model is only initialized with TYPE1 data, every
appearance of a new cover type will potentially cause a
performance decrease. The concept drift under this setting is
then the type changes over stream.

The points on the time axis in Figure 11 indicates the
model updating. In the anomaly score chart, the scores for
anomaly data are generally larger than normal data except
when concept drifts take place. Once data stream from a new
cover type appears in the stream, there are always peaks in
the normal data score plot, and the difference to anomaly data
scores decreases. After performance being impacted, the
normal buffer is filled with hard windows shortly that triggers
the model updating quickly after the concept drift.

During the experiment, there are two cases delay the
updating. Firstly, because of the fixed size of buffer, if a
model updating is just triggered shortly before a concept
drift, then the hard windows from new cover type need more
time to fill the buffer and trigger updating. In Figure, before
TYPE3 arrive, there was a updating at the end of TYPE2, and
buffered was emptied, so that the model didn’t take any
action against the concept drift.

Secondly, if a concept drift only appears in a short period,
e.g. the TYPE7, which is also not enough to fill the buffer and
trigger updating. However, under both aforementioned cases,
the new information of concept drift, namely the new cover
types, are stored in the buffer, and will be used for next model
updating. If the concept drift missed model updating due to
too short appearance period, we suppose that this would also
not cause catastrophic effect over the stream prediction.

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-10 Issue-2, July 2021

241

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.B62940710221
DOI: 10.35940/ijrte.B6294.0710221
Journal Website: www.ijrte.org

Figure 11: Forest Cover stream concept drift. The chart
on the bottom shows the cover type over the stream. The

top chart shows average anomaly scores for every 100
windows

VI. CONCLUSION

Anomaly detection attracts more and more attention in the
data mining field and have been applied to plenty of
industrial use cases, which achieved perfect effectiveness and
avoids large amount of financial spending. At the same time,
the industrial applications need critically anomaly detection
models under the big data background, specifically, ability to
deal with high-volume, high-velocity data. In this paper, we
proposed an adaptive LSTMs-autoencoder for streaming data
anomaly detection. In the previous works, autoencoders are
widely used in NLP tasks, e.g. language translation, sentence
understanding. Vanilla autoencoders and deep autoencoders
are also have been used to anomaly detection based on
reconstruction error. [8] is the first work that use LSTMs
autoencoder for anomaly detection, with concentration to
protection of temporal dependency between time series data.
Our work uses similar LSTMs-autoencoder architecture, and
enable the model to work with streaming data, and update
model according to specific criterions. Our model shows
good performance in detecting anomalies and outperforms
the stationary models.

In terms of streaming data anomaly detection, we mainly
focus on the concept drift over steam and model
reinforcement by the last seen data. In the experiment with
SMTP+HTTP dataset, our model shows robustness against
sudden concept drift and adjusted the new data distribution
very quickly. In the experiment with ForestCover dataset, the
model master’s serried and slight concept drifts also well. We

also demonstrated an intuitive model online learning process
with the small Power Demand dataset, which shows the
impact of model updating between data windows in this small
univariate dataset clearly.

Our model is designed under the assumption that there are
expert labelling available during the online phase, which
make the hard window collection become possible, and they
are used for model updating. In the future work, a further
research direction is to scale the model into fully automated
without expert labelling online. Similar verification step as in
[3] could be added after online prediction to make the model
prediction more reliable, so that the data labelling can be
directly according to the model prediction.

REFERENCES

1. Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder–decoder for
statistical machine translation. 2014.

2. Hongyin Cui. Online outlier detection over data streams. 2002.
3. Yue Dong and Nathalie Japkowicz. Threaded ensembles of

autoencoders for stream learning. 2017.
4. Adel Ghazikhani, Reza Monsefi, and Hadi Sadoghi Yadi. Online neural

network model for non-stationary and imbalanced data stream
classication. 2013.

5. Michiel Hermans and Benjamin Schrauwen. Training and analyzing
deep recurrent neural networks. 2013.

6. Max Kochurov, Timur Garipov, Dmitry Podoprikhin, Dmitry
Molchanov, Arsenii Ashukha, and DmitryVetrov. Bayesian incremental
learning for deep neural networks.

7. Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical neural
autoencoder for paragraphs and documents. 2015.

8. Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh
Vig, Puneet Agarwal, and Gautam Shroff. Lstm-based encoder-decoder
for multi-sensor anomaly detection. 2016.

9. Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and
Gautam Shroff. Timenet: Pre-trained deep recurrent neural network for
time series classifi cation. 2017.

10. Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal.
Long short term memory networks for anomaly detection in time series.
2015.

11. Marco Martinelli, Enrico Tronci, Giovanni Dipoppa, and Claudio
Balducelli2. Electric power system anomaly detection using neural
networks. 2004.

12. Mayu Sakurada and Takehisa Yairi. Anomaly detection using
autoencoders with nonlinear dimensionality reduction. 2014.

13. Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks. 2014.

14. Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly
detection for streaming data. 2011.

15. Xiaohong Tang and Chen Li. The stream detection based on local outlier
factor. 2015.

16. Guanyu Zhou, Kihyuk Sohn, and Honglak Lee. Online incremental
feature learning with denoising autoencoder. 2012.

AUTHORS PROFILE

Aju D, is affiliated with the Vellore Institute of
Technology under the School of Computer science and
engineering department as a Professor. His
interests lie in Computer Science specific to Artificial
Intelligence.

Dibyajyoti Roy, was affiliated with the Vellore
Institute of Technology under the School of Electronics
and engineering department and is currently with
Networth Corp. His interests lie in Full Stack
development.

Raghav Agarwal, was affiliated with the Vellore
Institute of Technology under the School of Computer
science and engineering department. His interests lie in
machine learning and algorithm improvement.

Tanishq Nagpal, was affiliated with the Vellore
Institute of Technology under the School of Computer
science and engineering department. His interests lie in
Analytics and Data Science.

http://www.ijrte.org/

