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Abstract: The high-volume and velocity data stream generated 

from devices and applications from different domains grows 
steadily and is valuable for big data research. One of the most 
important topics is anomaly detection for streaming data, which 
has attracted attention and investigation in plenty of areas, e.g., 
the sensor data anomaly detection, predictive maintenance, event 
detection. Those efforts could potentially avoid large amount of 
financial costs in the manufacture. However, different from 
traditional anomaly detection tasks, anomaly detection in 
streaming data is especially difficult due to that data arrives along 
with the time with latent distribution changes, so that a single 
stationary model doesn’t fit streaming data all the time. An 

anomaly could become normal during the data evolution, 
therefore it is necessary to maintain a dynamic system to adapt the 
changes. In this work, we propose a LSTMs-Autoencoder 
anomaly detection model for streaming data. This is a mini-batch 
based streaming processing approach. We experimented with 
streaming data that containing different kinds of anomalies as 
well as concept drifts, the results suggest that our model can 
sufficiently detect anomaly from data stream and update model 
timely to fit the latest data property.. Index Terms: About four key 
words or phrases in alphabetical order, separated by commas.  

Keywords: An Anomaly Could Become Normal During The 
Data Evolution, Therefore It Is Necessary To Maintain A 
Dynamic System To Adapt The Changes. 

I. INTRODUCTION 

Anomaly detection attracts more and more attention in the 
data mining domain, and is widely used in different 
applications, e.g. manufacture, e-commerce, internet etc. 
Successful anomaly detection in time avoids inconvenient 
and reduces maintenance expenditure in many scenarios like 
credit card fraud detecting, spam email recognition, machine 
condition monitoring, and can also be used as a 
pre-processing step to remove anomalies from datasets 
before other machine learning tasks. There are already plenty 
of anomaly detection techniques proposed in previous 
literatures that solve this problem from variety perspectives, 
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e.g. distance-based methods, clustering analysis, 
density-based methods etc. 

There is no lack of anomaly detection approaches that 
perform well with respect to different kinds of data. 
Supervised approaches take anomaly detection as a binary 
classification problem of “normal” and “abnormal” 

instances, and all instance labels should be available in 
advance. The key difference to classical classification 
problem is here the class labels are extremely biased to the 
normal class while anomaly only appears rarely. Instead of 
doing data augmentation on anomaly data for supervised 
approaches, unsupervised approaches are more direct 
solutions to this problem, which treat the instances that fit 
least to the majority as the anomalies. Furthermore, under 
many real-world situations, only partial labels are available, 
and therefore semi-supervised as well as one-class models 
are more efficient. Those models learn pattern from the 
partially labelled normal data, and scale anomaly likelihood 
according to the difference between an unseen pattern and the 
learned normal pattern. 

However, most of the existing anomaly detection models 
are designed as batch model, which means, the entire training 
set should be available in advance. This becomes a 
shortcoming under today’s big data background. With the 
rapid development of hardware in the last decade, the 
situation of data acquisition and analysis has significantly 
been changed. Specifically, in the IoT applications, data are 
acquired from sensors that attached to IoT devices, arrives 
continuously and everlasting. In the beginning, no static 
entire training set is available for model initialization in the 
batch fashion. Besides, during data analysis, we should 
always consider the volume and velocity of data. On one 
hand, with traditional batch classifiers, the infinity data 
stream will lead to out of memory problem, on the other 
hand, streaming data usually comes with a high velocity that 
leaving the system few processing time. Optimally, the 
model should have only single look at each data point in the 
stream. In addition, the statistical property of data may also 
change over time, which is formally called ‘concept drift’. 

The model should always learn latest knowledge from the 
stream and update its identification of anomaly 
automatically, while anomalies could be temporally. After a 
data distribution change, an anomaly could possibly become 
normal in the new streaming context. Data distribution 
changes should not be classified as anomaly, in the 
meanwhile, though anomalies show up rarely over the 
stream, they should not be over sighted.  

To this end, an anomaly detection system for streaming 
data should be able to initialize with only a small subset 
process streaming data and make prediction in real-time,  
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adapt data evolution over the stream and model should be 
able to deal with the biased data 

LSTMs are a kind of recurrent neural network that exhibit 
dynamic temporal behavior for time series. As a neural 
network-based model, LSTMs are able to deal with high 
dimensional and non-linear data directly. In the last decade, 
LSTMs are used widely in time series prediction and text 
prediction. LSTMs-based auto encoders are also applied to 
sequence-to-sequence problems, e.g. language translation, 
time series data embedding. Deep LSTMs have been shown 
good performance in capturing hierarchical information of 
time series like separation of sentences. Recently, 
LSTMs-based autoencoders are also used for time series 
anomaly detection in order to capture the temporal 
information between data points. For instance, Malhotra et al. 
introduced an autoencoder based anomaly detection 
approaches in [1],[2], and achieved good performance in 
multiple time series dataset. However, in those researches, 
they still assume that the whole datasets are available 
beforehand and work on static data. Also, the aforementioned 
online learning difficulties are not taken into consideration. 
Hence, we enhanced this kind of LSTMs Autoencoder based 
static anomaly detection approaches with the online learning 
ability by appending incremental model updating strategies. 

In this paper, we introduce a novel and robust incremental 
LSTMs-Autoencoder anomaly detection model, which 
designed specifically for time series data in a streaming 
fashion using Long Short-Term memory (LSTM) units, with 
also online learning ability for model updating. For each 
accumulated mini-batch of streaming data, the autoencoder 
reconstructs it with previous knowledge learned from normal 
data. Anomalies (never used for training) are supposed to 
cause significant larger reconstruction error than normal data. 
In addition, the model is able to update itself when data 
distribution changes are detected. The LSTMs-Autoencoder 
is experimented with different data streams, and the 
experiment results show its ability in detecting anomaly from 
streaming data and is able to adjust itself with different kinds 
of concept drifts by model online updating. 

II. LITERATURE SURVEY 

In this section, we present a survey on previous works in 
anomaly detection. Both batch models and online models are 
listed with respectively classical machine learning 
approaches and neural network as well as autoencoder based 
approaches. And for the online case, we also survey works 
with neural network updating approaches. 

As an important component of data mining and machine 
learning, anomaly detection has been investigated using 
plenty of efficient models. When talking about anomaly 
detection, the most intuitive solutions are detection of outliers 
from a dense cluster, or to find data points that have obvious 
different property as their neighbors. Considering the lack of 
label and extremely imbalanced dataset, unsupervised 
approaches are more widely used in practice, for example 
Local Outlier Factor (LOF). 

In anomaly detection, the LOF is a common 
density-based approach. LOF shares some concepts with 
DBSCAN such as ‘core distance’ and ‘reachability distance’, 

in order to estimate local density. Here, points with 
substantially lower local density than their neighbors are 
considered as anomalies. LOF shows competitive 
performance in many anomaly detection tasks, especially 

when dealing with data with unevenly density distribution. 
However, when getting a numerical factor from LOF model 
as result, it is actually hard to define a threshold 
automatically for the judgment of anomaly. 

Because the anomalies appear rarely in the dataset, and 
occur usually in novel ways, it is expensive to label and hard 
to learn all kinds of anomalies during the training phase, so 
unsupervised models are commonly used. There are also a 
batch of semi-supervised or one-class anomaly detection 
models. The intuitive difference between anomaly detection 
and binary classification problem is the obvious fewer 
positive class data (anomalies). A typical one-class model is 
the One-class Support Vector Machine (OCSVM). 

As a semi-supervised one-class classifier, OCSVM takes 
only normal data as input, and generates a decision surface to 
separate them from the anomaly data. By analyzing 
anomalies, the datasets are always bias to the normal part, 
and anomaly appear only rarely. So, this kind of one-class 
classifiers avoid making balance between the two classes. 
Besides, they also take advantage of classical support vector 
machine by using kernel methods, they can also deal with 
linearly not separable data. However, in the meantime, 
choosing a proper kernel becomes a hard problem for 
OCSVM. A suboptimal kernel function can seriously impact 
the performance. 

LSTMs-Autoencoders are originally widely used for text 
generation because the LSTMs are able to capture the 
contextual dependency between words and sentences. Text 
data are usually embedded into vector as input data of 
autoencoder. And the tasks are either to generate temporal 
relevant text on the decoder side or to learn text 
representation from the hidden layer [1]. Similar problem 
appears also in time series mining due to the temporal 
dependency of values between timestamps. So, in later 
works, LSTMs-Autoencoder are also used for time series 
data. 

Sutskever et al. [13] proposed a deep LSTMs-based 
sequence-to-sequence model for language translation. In 
their work, the deep LSTMs encoder takes single sentence as 
input, and learn a hidden vector with fixed length, then a 
different LSTMs decoder decodes the hidden vector to the 
target sentence. As a translation task, they found that this 
encoder-decoder architecture can capture long sentences and 
sensible phrases, especially they achieved better performance 
with deep LSTMs in compare with shallow LSTMs. In 
addition, a valuable found is, reversing the order of words in 
the input sentence makes the optimization problem much 
easier and achieved better performance. The LSTMs based 
model outperforms non-LSTMs model on the long input 
sentence cases (more than 35 words) since its long-term 
memory ability. 

Li et al. [7] did similar research on long paragraph text 
and even entire document generation using 
LSTMs-autoencoder. Their main contribution is the 
hierarchical sentences representation. The model learns 
word-level, sentence-level and paragraph-level information 
with each respectively a LSTMs layer, so that the model 
captures very long-term temporal information. Moreover,  
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they introduced an attention based hierarchical 
sequence-to-sequence model that connect the most relevant 
parts between encoder and decoder, for example, the words 
around a final punctuation. They experiment with documents 
over 100 words, the results show that hierarchical and 
attention-based hierarchical LSTMs learns even better 
long-term temporal information than standard LSTMs-based 
encoder-decoder models. 

As autoencoder achieve great successes in text data and 
speech processing, they are also used for time series anomaly 
detection. These models train autoencoder with only normal 
data while take anomalies as unknown patterns. Then the 
autoencoder are only able to reconstruct normal patterns, then 
large reconstruction error indicates anomaly. An early work 
[11] used vanilla autoencoder to detect abnormal status of the 
electric power system. In order to capture temporal 
information, they applied sliding window on the raw data as 
input. As anomaly scoring method, they evaluated each 
sliding window with respect to their reconstruction error. As 
some measures in the autoencoder output vectors that are 
more sensible to anomalies than others, they use the average 
absolute deviation of reconstruction error as anomaly score. 
And the anomaly threshold is chosen by large amount of 
experiments over normal data. 

Another important reason of using autoencoder for 
anomaly detection is its ability of dealing with 
high-dimensional data. Sakurada et al. [12] experimented 
with time series data that consist of 10-100 variables without 
linear correlation. Comparing with reconstruction using PCA 
or Kernel PCA techniques, the autoencoder reconstruction 
error can easily recognize anomalies. 

In further researches, Malhotra et al. [10] [8] developed 
the application of LSTMs-autoencoder from sequence 
learning into anomaly detection problem. They proposed a 
stacked LSTMs model to learn high level temporal patterns. 
They show that LSTMs outperform normal RNNs-based 
anomaly detection model and avoid the gradient vanishing 
problem thanks to the gate architecture inside the LSTM unit. 
They also detect anomaly based on the reconstruction error. 
The scoring function is based on the parameters of an 
estimated normal distribution of a validation set. Their 
experiments show that the model performs well in variety 
kinds of datasets. A variation of this model [9] has been 
proved that achieves better performance in the anomaly 
detection tasks, while they tell that using a constant as input 
of decoder instead of read time series value improves the 
performance of model. 

A. Online anomaly detection over data stream 

1) Classical online approaches 

Recently, streaming data mining attracts more and more 
attention, and many efficient classical models are modified to 
fit the online learning property. Cui et al. [2] proposed online 
anomaly detection approach with grid-based summarization 
and clustering algorithm, which is able to detect anomaly 
immediately when data arrives. For the past streaming data, 
they used summarization algorithm to reduce the run time 
and memory consumption over stream. And they give 
anomaly scores to instances to describe concrete anomaly 
degree. The model shows good performance in KDD dataset 
for network attack detection. However, they consider only 
isolated data point without any temporal information 
measuring. Another streaming data anomaly detection 
framework by Tang et al. [15] used sliding window to 

involve the contextual dependency and temporal changes in 
the stream. The anomaly detection algorithm is a modified 
version of LOF while LOF’s high time complexity cannot be 

directly employed to streaming data. They use com-entropy 
to filter out most normal windows, and feed the rest to LOF. 

1 2.2.2 Autoencoder-based online approaches 
Zhou et al. [16] proposed an online updating approach for 

de-noising autoencoders by modifying the hidden layer 
neurons in order to deal with the non-stationary streaming 
data properties. The basic idea consists two steps, adding 
hidden layer neurons to capture new knowledge, and merging 
hidden layer neurons if information is redundant. Their 
experimental result shows comparable or better 
reconstruction result than non-incremental approaches with 
only few data used during initialization. And they show that 
their incremental feature learning methods performs more 
adaptively and robustly to highly nonstationary input data 
distribution. 

Dong et al. [3] proposed a 2-step anomaly detection 
mechanism with incremental autoencoders. They 
implemented the model with ensembled autoencoders in 
multithreads in order to leverage parallel computing when 
large volumes of data arrive. In the 2- step mechanism, they 
check anomaly in the first step and verify anomaly data with 
previous and subsequent data (to distinguish between 
anomalous state and concept drift) in the second step to 
reduce false-positive rate in anomaly detection. In the 
experimental results, they show that their model outperforms 
commonly used tree-based streaming anomaly detection 
models especially when concept drift presents. And they 
speed up the online processing with mini-batch learning and 
online learning in multithreads. 

Ghazikhani et al. [4] introduced an online neural network 
model for streaming data towards to the two major problems 
of online learning, concept drift and imbalanced classes. In 
term of concept drift, they applied a forgetting function that 
weights recent instances to navigate the model to the drifted 
model, so that the model always learns pattern from latest 
data. Besides, for class imbalance, they proposed an error 
function for two-class imbalance problem with the basic idea 
that the error function generating higher error signals for 
instances in the minority class. 

Kochurov el at. [6] Designed incremental learning 
framework for deep neural networks based on Bayesian 
inference. They argued that, naïve deep learning approaches 
for incremental learning applies Stochastic Gradient Descent 
(SGD), which intent to keep previous learned model 
remembered, and enhanced with current batch of new data. 
However, by SGD, the neural network model is likely to 
converge to the local optimal of the latest batch of data 
without preserving the previous knowledge. Their Bayesian 
framework estimates the posterior distribution over the 
weights of the model in the condition of previous knowledge 
and use the Bayesian rule to sequentially update the posterior 
distribution in the incremental learning. 

In this work, we implement a LSTMs-autoencoder based 
incremental streaming data anomaly detection model. The 
LSTMs-autoencoder is close to the model introduced by 
Malhotra et al. 
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[8], and we design an online model updating strategy as 
well as the updating data buffers used for model updating, 
which collect fresh knowledge from the last seen instances. 

III. METHODOLOGY 

The proposed model is a full flow from data stream 
generation, anomaly detection with autoencoder-based model 
and online model incremental updating. Figure 4 shows the 
general pipeline. The first received batches of streaming data 
are used for decision of model hyper-parameters and the 
model initialization. Hyper-parameters includes the hidden 
layer size, batch size, input window length as well as the 
number of epochs. Once the hyper-parameters are 
determined, an autoencoder will be constructed and 
initialized with random weights. A subset of the streaming 
data is used for model initialization (only normal data used 
for training). Furthermore, the model is used for online 
anomaly detection, and evaluated based on the labels 
provided by experts. After evaluation, the data windows with 
bad performance are collected as hard examples in buffers for 
updating. Model will be updated when the updating condition 
is triggered. As shown in Algorithm 1, if a batch of streaming 
data is available, the model will start do prediction, 
evaluation, and check whether current window is useful to 
store for later updating. If so, the window of data will be 
appended to the updating buffer, with the instance order not 
been destroyed. As a consequence of anomalies’ rare 

appearance, we keep all seen anomalous windows for 
determination of anomaly score threshold during updating. 

1) Encoder-decoder architecture 

The LSTMs-Autoencoder consists of two LSTM units, 
one as encoder and the other as decoder. The encoder inputs 
are fix length vectors with shape <MB, T, D>, where MB is 
the number of data windows contained in a mini-batch, T is 
the numbers of data points within each data window, and D 
represents the number of data dimensionality. Here, MB and 
T are learned as hyper-parameter in the initialization phase. 
And on the decoder side, it is supposed to output exactly the 
same format data vector for each mini-batch. The LSTM unit 
copies its cell state for itself as one of the cell input at next 
timestamp. 

At the last timestamp of encoder, the cell state of LSTM 
unit is the hidden representation of the input data vector and 
copied to the decoder unit as initial cell state, so the hidden 
information can be passed to the decoder. The size of hidden 
layer representation vector, namely the size of cell state is 
another hyper-parameter need to be learn in the initialization 
phase. The larger the hidden vector, the more information can 
be captured during the process, so it is a feature highly 
depends on the data. Similar to previous study [13], we also 
train the encoder and decoder with time series in reverse 
order. For example, if the input data fragment are data points 
from timestamp t1 to t2, then the decoder will predict data 
point at t2 at first, and then back to t1 step by step, while this 
trick makes the gradient escarpment between last state of 
encoder and first state of decoder smaller and easier to learn. 

In order to let the whole process happen online, the model 
initialization also utilizes streaming data. Once a small subset 
of streaming data is available, hyper-parameters are learned, 
and then another dataset that consists only of normal data is 
collected from stream used for training. Assume that once an 
anomaly detection task is determined, the anomalous state is 
explicit defined and a subset of anomalous data is available 

for model initialization. We split the normal data into four 
subsets, N1 for hyper-parameters tuning, N2 for model 
training, N3 for early stopping, and scoring parameters 
learning, N4 for testing. And abnormal data are split into two 
subsets, A1 for decision of anomaly score threshold, A2 for 
testing. 

 

 
Figure 1: Online anomaly detection flowchart 

2)  Online anomaly detection 

The autoencoder reconstructs the input with its 
knowledge of normal data, so if the input data contains 
anomalies, the reconstruction error will be obviously larger 
due to the lack of anomalous knowledge. For input X(i), the 
reconstruction error is 

e(i) = X(i) − X0(i) (1) 
  

, similar to [8], the reconstruction error of data points in 
N3 is used to estimate the parameters µ and Σ of a normal 

distribution N(µ, Σ) using maximum likelihood estimation. 

The anomaly score for a point xt
(i) is defined as 

a(i) = (e(i) − µ)TΣ−1(e(i) − µ)    (2) 
During the initialization phase, an anomaly score threshold τ 

is also learned using N3 and 
A1 as 

τ = argmaxAUC(a(N3), a(A1))      (3) 
 

The anomaly score of every instance in a window is 
compared with τ, and values over τ are predicted as 
anomalies. If a window contains more than τN anomalous 
values, this window is predicted as anomaly. The threshold τN 

is determined by dataset study. 

 Online learning 

However, if the model is utilized for streaming data, the 
autoencoder will possibly become outdated because of the 
relative small and simple initialization dataset and concept 
drift that happed along with the time.  
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So the update of model is indispensable. In this section, 
we introduce the updating strategy of the 
LSTMs-Autoencoder. 

Updating dataset 

Once the LSTMs-Autoencoder is initialized, it is ready 
for online prediction. There is a multi-thread setting in the 
online learning architecture. A sub-thread collects data 
instances continuously from the stream, and in the meantime, 
the main-thread works on real-time anomaly detection as 
long as mini-batches of data is provided by the sub thread. 
For each single window in the mini-batch, every instance is 
reconstructed and the anomaly score is calculated using 
Equation (4.2) on the preceding page. The system maintains 
two data buffers for updating, one for normal data windows, 
and the other one for anomalous windows. Considering the 
fact that a well mastered window leads to lower 
reconstruction error, and higher error indicates new features 
in the data, we can measure this reconstruction error level by 
the predefined normal distribution on reconstruction error. 
After each batch, the label for each data window is 
determined by experts. We predefine a performance 
threshold PN for normal data. Normal data windows that 
containing more than PN over τ instances are regarded as not 

good mastered and will be appended into the normal buffer 
for updating. Normally, we set PN lower than τN, so that not 
only wrongly predicted, but also ’hardly predicted’ data are 
collected for model updating. As anomalies appear rarely in 
the stream, we collect all anomalous windows in the 
abnormal buffer for score threshold determination during 
updating. 

Because the out-of-date buffer not might be collect from 
previous concept drift time period, and not benefits to current 
updating, we maintain the retain buffers with a queue 
structure, so that only a specific amount of most fresh data 
can stay in the buffer. To this end, once a updating process is 
triggered, only not well mastered fresh normal data are used 
for updating. 

 
Figure 2: Updating data buffer 

Updating trigger 

During the online processing, if the system detects that 
the model doesn’t fit the current data any more, then the 

model updating is triggered and done with the latest collected 
data in the two buffers. During experiments we found that, 
anomalies only appears rarely in the stream, so it often 
happens that the model need updating to fit the latest data, but 
still lack of anomaly data in the buffer to update the anomaly 
score threshold. To this end, we trigger the updating so long 
as the anomaly buffer is not empty. If the anomaly data are 
not enough to make up a single batch, then we duplicate the 
windows in anomaly buffer until buffer fits the batch size. In 
case of the normal buffer reaches a predefined size and 
anomaly buffer is not empty, the model is updated in a sub 
thread while the main thread keeps processing the stream. 

The updating trigger strategy depends on the buffer size. 
If concept drift happens, large amount of data arrives quickly 
to enrich the updating buffers, and trigger updating in time. 
And the trigger highly depends on the hard window criterion 
that decides when a data window from stream should be 
appended to the buffers. In case it is necessary to react very 
quickly after the concept drift, then the criterion of ‘hard’ 

should be lower, so that more windows during concept drift 
will be added to the buffer. 

Model updating 

Once the updating process is triggered, the model will be 
updated using data from the buffers. Windows of normal 
buffer are divided into updating training set and updating 
validation set. Once the online phase starts, the 
LSTMs-Autoencoder is loaded into memory, and further 
model updating are all done in memory. The updating is a 
continuation of the initialization or previous updating (last 
check point) with identical data format. Parameters mu, 
sigma as well as anomaly score threshold are learned from 
the updating validation set and anomaly buffer data. The 
parameters mu and sigma are the mean and variance (or 
covariance for multivariate data) of reconstruction error 
estimated by normal validation set during training. So we 
learn new parameters in the updating using normal validation 
set as well. 

IV. DATASET AND EXPERIMENTAL SETUP 

We use 5 datasets in our experiments, PowerDemand, 
SMTP, HTTP, SMTP+HTTP and ForestCover. Those are 
widely used datasets in the streaming data mining area 
[8][3][14]. Statistical features are listed in Table 5.1. 
PowerDemand is a small univariate time series that records 
the power demand over a period of one year. Weekdays’ 

power demand is higher than weekends’ and daytime is 

higher than nights, power demand of special days (e.g. 
festivals) are abnormal. The aim is to find out such contextual 
anomalous weeks instead of single strange data point. The 
experimental data is an subsampling of original set. We 
demonstrate a synthetic example with visualization using this 
dataset while the trends and anomalous states are relative 
obviously. SMTP, HTTP, SMTP+HTTP are streaming 
anomaly data extracted from KDD Cup 99 dataset. 
According to Tan et al. [14], HTTP contains sudden surges of 
anomalies and SMTP does not, but possibly exhibits some 
distribution changes within the stream. Because of the 
difficulty to point out where the distribution changes occur in 
the stream, the HTTP+SMPT dataset is derived by 
connecting SMTP and HTTP, so that a distribution change is 
occurred when the communication protocol is switched.  

The ForestCover dataset is from the UCI repository, 
which contains 7 kinds of forest cover types. Similar as Dong 
et al. [3], we defined the smallest class Cottonwood/Willow 
with 2747 instances as anomaly, and the rest 6 classes as 
normal class with distribution changes. 
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Table 1: Datasets information 

Dataset Size Dimensionality 
Anomaly 
proportion 
(%) 

PowerDemand 35 040 1 2.19 

SMTP 96 554 34 1.23 

HTTP 623 091 34 0.65 

SMTP+HTTP 719 645 34 0.73 

ForestCover 581 012 7 0.47 

    

We separate each dataset into initialization set and 
streaming set, both contain normal and abnormal data. 
Further, the initialization set is divided into: 

• GS(n&a): for grid search 

• INIT(n): for model initial training 

• PL(n&a): for model parameter learning 

• TEST(n&a): for testing during initialization 

Where “n” represents normal data and “a” represents 

abnormal data. And the streaming set is published to Kafka to 
generate data stream (Figure 3). 

 
Figure 3: Data stream Publisher-Consumer architecture 
 

For each dataset, we use around 20% data for 
initialization and the other half for online prediction. Each 
subset used for training and prediction are pre-processed 
locally in batch, in order to scale them into [0, 1] to fit the 
LSTM activation function. 

A. Parameter tuning 

For each dataset, we carry out a grid search step to tune 
the model hyper-parameters. Here we try multiple 
combinations of window length and hidden size for each data 
set. The grid search set GS contains 5% -15% anomalies. 
Because of the uncertainty of the random neural network 
weight initialization, we do each experiment 10 times and 
take the average result to reduce the impact. To be noted that 
during every divisions, the consistency of streaming data is 
persisted, or in other words, there is no random sampling 
during the process. A good model should make the 
reconstruction error as large as possible in order to make the 
classification easier.  
 
 

Table 2: Hyper-parameters 

Dataset 
Window 
length 

Hidden 
size 

#Grid 
Search 
instance 

PowerDemand 80 15 1 000 

SMTP 10 15 5 000 

SMTP+HTTP 10 15 5 000 

HTTP 30 35 10 000 

ForestCover 10 25 10 000 

 

Experimental results: 

Autoencoders are trained for each dataset with the 
beginning of streaming data. The anomaly detection 
performance is indicated by AUC. For each dataset, we 
compare the AUC of online phase that without and with 
continuously model and parameter updating (Table 3). For 
the PowerDemand dataset, retrain trigger depends on the 
batch performance. And for the rest datasets, retraining only 
triggered when retrain buffers are full. The retraining brings 
overall performance improvement on all datasets comparing 
to stationary models. Especially in the SMTP+HTTP dataset, 
the stationary without learning concept drifted knowledge 
performs clearly worth than the model with updating. 
 

Table 3: Performance 
Dataset AUC(without 

retraining) 
AUC(with 
retraining) 

#retrain 

PowerDemand 0.91 0.97 2 
SMTP 0.94 0.98 2 
HTTP 0.76 0.86 2 

SMTP+HTTP 0.64 0.85 3 

ForestCover 0.74 0.82 8 
 

In order to compare the performance with and without 
retraining, after each model updating, we calculate the AUC 
value for each specified time period. As Shown in Figure 6 on 
the following page, the x-axis represents the periods, for 
example, before first retraining (shown as P1 in each 
subplot), between first and second retraining (P2), and so on. 
For each dataset, we compare the AUC value of stationary 
model (trained with only initialization set) and adaptive 
model (online updated). For most cases, the adaptive models 
outperform stationary models, which shows the models 
profits from the knowledge updating over streaming data. To 
be notice that the SMTP+HTTP set contains sudden concept 
drift around P3, which leads to a sharp decline of the 
stationary model. In the meantime, the adaptive model is only 
slightly influenced by the mixed knowledge at P3 but keeps 
outstanding performance when the stream switches to HTTP 
side. 
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Figure 4: AUC comparison between stationary and 
adaptive models over stream. The x-axis represents 
specific periods over stream. For example, P1 is the 

period from beginning to the first retraining, and P2 is 
the the period between first and second retraining etc. 

 

 
The above Figure5 shows the run time used for both 

stationary models and adaptive models for each data set. The 
updating takes more time for HTTP, SMTP+HTTP and 
ForestCover than PowerDemand and SMTP is due to that 
larger datasets take more time for prediction, and trigger 
more updating events. And for each retraining, the retrain 
buffers also contain larger retraining sets 

V. ANOMALY DETECTION OVER STREAMS 

Generally, the autoencoder reconstructs normal data with 
relative lower reconstruction error while anomaly data with 
significant larger reconstruction error. Figure 6 demonstrates 
two typical data windows (weeks) in PowerDemand, one 
normal and one anomaly. The Monday of anomaly week 
(right) is a special data, which has an abnormally low power 
demand. Even so, the autoencoder still reconstructs the 
Monday as usual with a higher score, therefore the 
reconstruction error is obviously larger on Monday, and the 
model labels this week as anomaly. 

Even there will be concept drift over the stream, which 
will lead to an entirely increase or decrease in the input side, 
and the decoder output side remaining, our model can still 
deal with this problem with its online parameter updating 
ability. While the anomaly scores are calculated by the 
mahalanobis distance to the estimated normal distribution of 
normal data reconstruction errors in the validation set, by 
every model updating, the model estimates new normal 
distribution and relevant parameters with the latest collected 
validation set, so that the reconstruction error-based anomaly 
detection is robust against concept drift. 

 

 
Figure 6: Reconstruction error of Power Demand data 

A. Reaction of concept drift 

Figure 7, y-axis magnitude and x as time stamps shows 3 
continual days power demand in normal state. Due to the lack 
of knowledge for current pattern, the autoencoder 
reconstructs the input time series higher than desired on day 1 
(left diagram). This could be caused by seasonal changes on 
the power demand, which is slightly, gradually, and would 
potentially cause misclassification. The increase of normal 
data reconstruction error makes the margin between two 
classification classes smaller, and harder to make decision. 
As a consequence, the model retraining process is triggered 
after the second day with last seen data in the buffers, and the 
model performs well again on the third day. 

 

 
 

Figure 7: Retraining effect on Power Demand dataset 
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B. Model updating 

During the online phase, the model is retrained two times, 
before batch No.10 and No. 27. After retraining, the normal 
data reconstruction error becomes lower while for abnormal 
data becomes higher, so that the classification becomes 
easier. 

 
Figure 8: Power Demand dataset online learning scores. 

For each window, the anomaly score is the highest 
pointwise scores within the window 

 
After each updating process, the parameters mu, sigma 

and threshold of anomaly scores are also updated. Figure 
shows the parameter changes over the stream. As there is no 
clear concept drift during the power demand stream, the 
parameters change just slightly in order to learn latest 
knowledge from the retrain buffer. 

 
Figure 9: Power Demand dataset online parameter 

updating 

C. Reaction of sudden and drastic concept drift 

The main advantage of online model is its ability to take 
reaction against sudden data distributional changes over time. 
The SMTP+HTTP data set is composed by directly 
connecting HTTP set after SMTP, so there is a sudden 
concept drift in between. The model is initialized with only 
SMTP data, so HTTP is completely unknown knowledge for 
the model. Here it shows the scores for both normal and 
abnormal data over the SMTP+HTTP stream. In the 
beginning, only SMTP data in the stream, and partially used 
for model initialization. In the online prediction phase, once 
the HTTP data arrives, the first peak of normal data scores’ 

curve appears, and then the model updating is triggered, with 
buffer data being few hard SMTP data and most HTTP data. 
After the first model updating, the performance of model is 
still suboptimal due to the lack of enough HTTP data, 
therefore there are two further model updating process 
triggered during the following stream. As a result, the overall 
anomaly detection for SMTP+HTTP stream is good only 
except the short period after concept drift. The model 
updating are triggered in time after concept drift, and 
afterwards no redundant updating are triggered. 

 
Figure 10: SMTP+HTTP stream concept drift. 

D. Reaction of serial concept drift 

Sometimes concept drift over the stream are slight, 
periodically, and potentially repeated. A single slight concept 
drift may not be able to trigger the retraining, but new 
knowledge should be saved into retraining buffer, so that 
once the model retrained with the fresh knowledge, tshe 
model should perform well when the same concept drift 
happens. We experiment with the ForestCover dataset. There 
are 7 kinds of forest cover types as labels. We take the least 
TYPE4 as anomaly while the rest 6 kinds as normal. The 
ForestCover stream is generated type by type, as shown in the 
bottom chart of  figure 11 on the facing page. During the 
beginning phase, TYPE1 data appears in the stream, part of 
which is used for model initialization. Afterwards follows 
instances from TYPE2, TYPE3, TYPE5, TYPE6, TYPE7 
and finally TYPE2 appears again during the ending phase. 
Anomaly data (TYPE4) is randomly distributed in the stream. 
Because the model is only initialized with TYPE1 data, every 
appearance of a new cover type will potentially cause a 
performance decrease. The concept drift under this setting is 
then the type changes over stream. 

The points on the time axis in Figure 11 indicates the 
model updating. In the anomaly score chart, the scores for 
anomaly data are generally larger than normal data except 
when concept drifts take place. Once data stream from a new 
cover type appears in the stream, there are always peaks in 
the normal data score plot, and the difference to anomaly data 
scores decreases. After performance being impacted, the 
normal buffer is filled with hard windows shortly that triggers 
the model updating quickly after the concept drift. 

During the experiment, there are two cases delay the 
updating. Firstly, because of the fixed size of buffer, if a 
model updating is just triggered shortly before a concept 
drift, then the hard windows from new cover type need more 
time to fill the buffer and trigger updating. In Figure, before 
TYPE3 arrive, there was a updating at the end of TYPE2, and 
buffered was emptied, so that the model didn’t take any 
action against the concept drift.  

Secondly, if a concept drift only appears in a short period, 
e.g. the TYPE7, which is also not enough to fill the buffer and 
trigger updating. However, under both aforementioned cases, 
the new information of concept drift, namely the new cover 
types, are stored in the buffer, and will be used for next model 
updating. If the concept drift missed model updating due to 
too short appearance period, we suppose that this would also 
not cause catastrophic effect over the stream prediction. 

http://www.ijrte.org/


International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-10 Issue-2, July 2021 

241 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.B62940710221 
DOI: 10.35940/ijrte.B6294.0710221 
Journal Website: www.ijrte.org 
 
 

 
Figure 11: Forest Cover stream concept drift. The chart 
on the bottom shows the cover type over the stream. The 

top chart shows average anomaly scores for every 100 
windows 

VI. CONCLUSION 

Anomaly detection attracts more and more attention in the 
data mining field and have been applied to plenty of 
industrial use cases, which achieved perfect effectiveness and 
avoids large amount of financial spending. At the same time, 
the industrial applications need critically anomaly detection 
models under the big data background, specifically, ability to 
deal with high-volume, high-velocity data. In this paper, we 
proposed an adaptive LSTMs-autoencoder for streaming data 
anomaly detection. In the previous works, autoencoders are 
widely used in NLP tasks, e.g. language translation, sentence 
understanding. Vanilla autoencoders and deep autoencoders 
are also have been used to anomaly detection based on 
reconstruction error. [8] is the first work that use LSTMs 
autoencoder for anomaly detection, with concentration to 
protection of temporal dependency between time series data. 
Our work uses similar LSTMs-autoencoder architecture, and 
enable the model to work with streaming data, and update 
model according to specific criterions. Our model shows 
good performance in detecting anomalies and outperforms 
the stationary models. 

In terms of streaming data anomaly detection, we mainly 
focus on the concept drift over steam and model 
reinforcement by the last seen data. In the experiment with 
SMTP+HTTP dataset, our model shows robustness against 
sudden concept drift and adjusted the new data distribution 
very quickly. In the experiment with ForestCover dataset, the 
model master’s serried and slight concept drifts also well. We 

also demonstrated an intuitive model online learning process 
with the small Power Demand dataset, which shows the 
impact of model updating between data windows in this small 
univariate dataset clearly. 

Our model is designed under the assumption that there are 
expert labelling available during the online phase, which 
make the hard window collection become possible, and they 
are used for model updating. In the future work, a further 
research direction is to scale the model into fully automated 
without expert labelling online. Similar verification step as in 
[3] could be added after online prediction to make the model 
prediction more reliable, so that the data labelling can be 
directly according to the model prediction. 
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