
Cramér-Rao lower bound for breakpoint distance
estimation in a path-loss model
J. Manuel Castro-Arvizu‡ , Pau Closas†, Juan A. Fernández-Rubio‡

‡ Universitat Politècnica de Catalunya (UPC) Campus Nord, 08034 Barcelona (Spain)
†Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) Av. Carl Friedrich Gauss 7, 08860

Castelldefels, Barcelona (Spain)

Abstract—This paper addresses the problem of determining
the Cramér-Rao lower bound (CRLB) for the parameters and
breakpoint distance in a Path-Loss Channel model for Received
Signal Strength (RSS) measurements. The path loss model is
usually assumed for corrupted RSS measurements due to the
shadow fading channel feature. In this paper the two-slope
path loss model is considered, in which RSS measurements are
modeled differently for close and far distances. Closed-form
expressions for the CRLB parameters are derived for unknown
breakpoint distance. For unknown parameters and breakpoint
distance value, a Bayesian estimation method is proposed. The
CRLB is then compared with the performance of the herein
proposed method. The comparison illustrates convergence and
efficiency of the Bayesian estimator.

I. INTRODUCTION

Indoor location positioning systems have become very
popular in recent years. Due to the poor performance in
indoor and urban areas by Global Navigation Satellite Systems
(GNSS) features, new techniques for indoor location have
been proposed. The growth in indoor applications in medical,
industry, public safety, transport and logistics has focused the
research in new techniques to face these needs.

There have been a multitude of emerging approaches for
localization based on WLAN (IEEE 802.11x), UWB (IEEE
802.15.4), Zigbee, and other non-GNSS technologies. Wireless
Indoor Positioning has become a trend because the inexpensive
hardware and the already dense deployment of Access Points
(APs) in urban areas. This work will focus on the signals
of IEEE 802.11 wireless networks as the primary source of
information to approach the localization problem.

For indoor environments, an alternative to estimate the
distance between the user and the device (AP) is using the
emitted signal strength. Signal attenuation methods attempt to
calculate the signal path loss due to propagation. Theoretical
and empirical models are used to translate the difference
between the transmitted and received signal strength into a
estimated range [1], [2]. Most of the network-based location
estimations use RSS measurements.

This work is centered in WLAN RSS-based positioning sys-
tems. Although fingerprinting techniques are widely used [3],
this paper is focused on geometric or statistical techniques [4]
that are based on previous knowledge of the radio propagation
channel model.

Propagation model can built the radio map and also ac-
count any changes in the environment. In order to evaluate

the effectiveness of a given channel coding and processing
technique before construction, a model of the channel that
adequately describes the environment must be developed. Such
analysis reduces the cost of developing a complex system by
reducing the amount of hardware that has to be developed for
performance evaluation.

There are several channel models in literature to characterize
this channel [5], [6]. This work considers the IEEE 802.11x
channel model to develop a novel calibration algorithm based
on Bayesian statistics as well as to derive the theoretical
accuracy bound of a method calibrating such a model. IEEE
802.11x channel model does not require an accurate floor plan
of the building and can be implemented without using a third
party software [7].

The paper is organized as follows. In Section II the RSS
channel model is presented, which has the particularity of
having two path loss regions depending on the distance to the
transmitter. The theoretical estimation bound for such model is
formulated in Section III and the estimation of the parameters
of the path loss model is presented in Section IV following
Bayesian approach. Section V shows computer simulations
and Section VI concludes the paper.

II. TWO-SLOPE PATH LOSS CHANNEL MODEL

IEEE 802.11x channel models were originally based on the
HiperLAN/2 channel models [2]. They were then updated to
provide a better representation of indoor environments [8] such
as small offices and residences providing six parameterizations
of the model (termed A to F).

The multipath and shadowing fading present in indoor
environments when the base-portable distance increases, the
number of intervening obstacles and other reasons, make that
path loss model do not always hold. Because this particular
reason, the parameters employed in this model is site-specific
[8] [9].

The path loss model considered in this work is summarized
in this section. Path loss refers to the average loss in signal
strength over distance. For indoor environments, the path loss
depends on the relative distance between the AP and the
sensing device [10]. For far distances (5 ≤ d ≤ 30 meters),
path reflections from the environment (specially reflections
from surrounding walls) generally result in a steeper overall
drop in the signal strength at the receiver.



The classical two-slope model assumes a linear dependence
between the path loss (expressed in dB) and the logarithm of
the distance d between the transmitter and the receiver [11]:

L(d) =

{

Sα1
(d) if d ≤ dbp

Sα1
(dbp) + 10 α2 log10(d/dbp) if d > dbp

(1)
where the first equation gives the path loss (in decibels)
for close distances (distances less than dbp, known as the
breakpoint distance) and the second equation gives the path
loss beyond dbp. The α1 and α2 values are the slopes before
and after dbp, respectively. Also known as the path loss
exponents.

The function Sα1
(d) was obtained by measurement cam-

paigns using radio signal ray tracing methods, premeasured
RSS contours centered in the receiver or multiple measure-
ments at several base stations [12], [13], [14]. This expression
applies to distances less than dbp and has a slope of α1. The
expression for free space path loss S(d) comes from the Friis
equation with path loss α1 [12]:

Sα1
(d) = −10 log10

[

GtGrλ
2

(4πd)2
·

1

dα1

]

, (2)

where Gt, Gr are the transmitter and receiver antenna gains,
respectively, d is the distance between them in meters, and λ is
the wavelength of the transmitted carrier frequency. Assuming
isotropic antennas, (2) becomes for d ≤ dbp,

Sα1
(d) = Lo + 20 log10(d) + 10α1 log10(d) , (3)

and, for d > dbp,

Sα2
(d) = Sα1

(dbp) + 10(c2 + α2) log10(d/dbp) (4)

where Lo is a known constant and c2 = 3.5 [8], [11].
For any given transmitter/receiver configuration, the regions

surrounding these stations can differ, resulting in the received
signal with strength differing from the nominal (1). This
variation (known as shadow fading or log-normal shadowing)
can be modeled by an additive zero-mean Gaussian random
variable. The notation, χσ2 ∼ N (0, σ2) is used.

Then, including shadow fading to (1), the model is

L(d) =

{

Sα1
(d) + χσ2

1

if d ≤ dbp
Sα2

(d) + χσ2

2

if d > dbp
(5)

As happens for the path loss exponents, the variance values
differ before and after the breakpoint distance. Typically the
values depend on the scenario but in all cases it is observed
that σ2

1 < σ2
2 and α1 < α2.

The standard deviation of the received power before and
after breakpoint distance, σ1 and σ2, is expressed in units of
dB and is assumed relatively constant with distance. Figure
1 represents a simulation of real measurements taken from
the two-slope path loss model at different relative distances
between the AP and the sensing device.

The goal in this work is to estimate the parameters of the
model (α1, α2, σ2

1 , σ2
2 , dbp) based on raw RSS measurements.

In Section III the theoretical lower bound is derived under the
assumption of an unknown dbp which has not been addressed
previously in the literature.
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Fig. 1. Simulation of a two-slope path loss model with σ1 = 3 dB, σ2= 5 dB,
α1=2, α2=3.5, and dbp = 5 meters. Four RSS measurements per distance
were recorded.

III. CRAMÉR RAO LOWER BOUND

This section derives closed-form expressions for the CRLB
of the unknown parameters θ = (α1, σ

2
1 , α2, σ

2
2 , dbp)

T . It
is important to note that the CRLB derived in this section
considers the case of unknown dbp.

It is considered the typical case where N independent
observations are recorded at known distances to the AP under
calibration, {dn}Nn=1 and y = {yn , L(dn)}Nn=1. The lower
bounds are useful as a benchmark to judge estimation methods
as well as to evaluate their consistency.

The likelihood function of the N independent measurements
for the two-slope model conditioned to the unknown θ is:

p(y | θ) = p(y1, y2, · · · , yNdbp
| θ)

· p(yNdbp
+1, yNdbp

+2, · · · , yN | θ) (6)

where {y1, · · · , yNdbp
} are distributed according to the first

model (before dbp) and {yNdbp
+1, · · · , yN} following the

second model (after dbp), as defined in (5).

Under the assumption that measurements are independent
and Gaussian distributed we have that

p(y | θ) ∼

Ndbp
∏

n=1

N (µ1(n), σ
2
1)

N
∏

n=Ndbp
+1

N (µ2(n), σ
2
2) (7)

where

µ1(n) =Lo + 20 log10(d) + 10α1 log10(d)

µ2(n) =L0 + 20 log10(dbp) + 10α1 log10(dbp)+

+ 10(c2 + α2) log10(d/dbp). (8)



Then, by definition,

p(y | θ) =

Ndbp
∏

n=1

1

(2πσ2
1)

Ndbp
2

exp

[

−
(yn − µ1(n))

2

2σ2
1

]

·
N
∏

n=Ndbp
+1

1

(2πσ2
2)

N−Ndbp
2

exp

[

−
(yn − µ2(n))

2

2σ2
2

]

(9)

and applying natural logarithm to (9), we obtain

ln p(y | θ) = −
Ndbp

2
(ln 2π + lnσ2

1)−

−
N −Ndbp

2
(ln 2π + lnσ2

2)−

−
1

2σ2
1

Ndbp
∑

n=1

(yn − µ1(n))
2−

−
1

2σ2
2

N
∑

n=Ndbp
+1

(yn − µ2(n))
2 . (10)

The i, j element of the Fisher Information Matrix (FIM) is
defined by,

Iij(θ) = −E

{

∂2 ln p(y | θ))

∂θi∂θj

}

(11)

Pluggin (10) in (11), the non-null FIM elements are calcu-
lated. This yields to:

I11 =
100

σ2
1

Ndbp
∑

n=1

(log10(dn))
2 +

100(log10(dbp))
2

σ2
2

(N −Ndbp
)

I22 =
Ndbp

2σ4
1

I33 =
100

σ2
2

N
∑

n=Ndbp
+1

(

log10
dn
dbp

)2

I44 =
N −Ndbp

2σ4
2

I55 =
100(N −Ndbp

)(α2 − α1)
2

σ2
2d

2
bp

I13 = I31 =
100 log10(dbp)

σ2
2

N
∑

n=Ndbp
+1

log10
dn
dbp

I51 = I15 =
100(N −Nd)(2α1 − α2) log10(dbp)

σ2
2dbp

I53 = I35 =
100(α1 − 2α2)

σ2
2dbp

N
∑

n=Ndbp
+1

log10
dn
dbp

, (12)

and finally the FIM is formed as

I =













I11 0 I13 0 I15
0 I22 0 0 0
I31 0 I33 0 I35
0 0 0 I44 0
I51 0 I53 0 I55













.

The lower bound is obtained as the inverse of the FIM. This
results in,

CRLB(θ) =













M11 0 M13 0 M15

0 1

I22
0 0 0

M31 0 M33 0 M35

0 0 0 1

I44
0

M51 0 M52 0 M55













where,

M11 =
I11I33MCRLB + [I15(I11I33 − I213)− I13(I11I35 − I13I15)]

2

I11(I11I33 − I213)MCRLB

M33 =
I11(I11I55 − I215)

MCRLB

M55 =
I11(I11I33 − I213)

MCRLB

, (13)

and

MCRLB = (I11I55 − I215)(I11I33 − I213)− (I11I35 − I13I15)
2

(14)

The diagonal contains the values of the variance bounds of
the parameter θ. The crossed values for α1 and α2 and with
respect to dbp (elements M13, M15 and M35), appear because
each part of the two-slope path loss model depend on α1.

IV. MODEL PARAMETER ESTIMATION BY BAYESIAN

INFERENCE

This section addresses the design of an estimation method
for θ . The statistical problem is to detect the change point
in the means and variances of the RSS measurements, as well
as estimating the other model parameters. The measurements
follow the Gaussian distribution discussed in Section 2. Recall
that the particularity is that mean and variance may change at
one specific distance. Since the Bayesian approach is followed,
an a priori distribution for θ has to be set. In this paper it is
assumed a distribution that factorizes as:

θ ∼ π(θ) = π(α1)π(α2)π(σ
2
1)π(σ

2
2)π(dbp) (15)

An uniform prior over the full range of possible distances
(defined as dmax) is assumed for the dbp, and conjugated priors
are given to the path losses and the variances:

αi ∼ π(αi) = N (0,V2
αi
)

σ2
i ∼ π(σ2

i ) = Γ−1(ai, bi)

dbp ∼ π(dbp) = U(0, dmax) , (16)

where i = {1, 2}. V2
αi

, ai and bi control the initial uncertainty
on the parameters of the model. Since little knowledge is
assumed, V2

αi
=0.0001, ai=0.1 and bi=0.0001 values are used

in the results section.
The problem of inferring the posterior distribution over the

latent variables α1, σ2
1 , α2 and σ2

2 could be solved analytically
via Bayes theorem [15]. However, due to the unknown dbp,
computational methods such as Markov Chain Monte Carlo
(MCMC) methods are needed. The MCMC algorithm com-
bines the prior distribution with the likelihood to obtain the



posterior distribution. MCMC algorithms are typically run for
a large number of iterations (to achieve the convergence to the
target posterior). Because samples from the early iterations are
not from the target posterior, they are discarded. The discarded
iterations is referred as the burn-in period [16].

The statistical model was implemented with Gibbs Sam-
pling [17], which provides the joint posterior distribution of
interest. To be implemented, the Gibbs sampler requires the
posterior conditional for each of the latent variables. They are
obtained, after applying basic probability theory, as

α1 ∼ p(α1|σ
2
1 , α2, σ

2
2 , dbp,y) = (17)

N





V2
α1

∑Ndbp

n=1 yn

σ2
1 + V2

α1
·Ndbp

,
σ2
1 · V

2
α1

σ2
1 + V2

α1
·Ndbp





σ2
1 ∼ p(σ2

1 |α1, α2, σ
2
2 , dbp,y) = (18)

Γ−1

(

a1 +
Ndbp

2
, b1 +

∑Ndbp

n=1 (yn − µ1(n))

2

)

α2 ∼ p(α2|α1, σ
2
1 , σ

2
2 , dbp,y) = (19)

N





V2
α2

∑N

n=Ndbp
+1

yn

σ2
2 + V2

α2
· (N −Ndbp

)
,

σ2
2 · V

2
α2

σ2
2 + V2

α2
· (N −Ndbp

)





σ2
2 ∼ p(σ2

2 |α1, σ
2
1 , α2, dbp,y) = (20)

Γ−1



a2 +
N −Ndbp

2
, b2 +

∑N

n=Ndbp
+1

(yn − µ2(n))

2





dbp ∼ p(dbp|α1, σ
2
1 , α2, σ

2
2 ,y) ∝ p(y|θ) · π(dbp) , (21)

and thus the Bayesian solution based on Gibbs Sampling can
be easily implemented.

V. RESULTS

In this work the model IEEE 802.11c is used with the
parameters set as in Figure 1. These values represent a
typical office environment. The Gibbs sampler for the break-
point distance model was implemented using WinBugs [18].
Two MCMC chains were simulated, each with 104 Monte
Carlo runs and 300 burn-in samples. The performance of
the proposed algorithm was evaluated with 250 iterations to
obtain the RMSE of each parameter in θ. These simulations
illustrate the convergence shape of the RMSE according to its
corresponding CRLB plot.

Two experiments were performed:

1 The experiment consisting in evaluating the effect of N
(number of samples) on θ̂. In the simulation. The distance
dmax = 30 meters was fixed and by adjusting N (from
10 to 100) with one sample per distance, the granularity
of RSS measurements in distance was adjusted.

2 N was fixed in 10 and the amount of RSS measurements
was modified by increasing from 1 to 15 samples per
each distance.

The results of the first experiment are shown in Figure 2.
The RMSE for every latent variable in comparative with their
respective CRLB is plotted. The label CRLB0 refers to the
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Fig. 2. Lower bounds of α1, σ2
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case when the parameters were estimated taking each part of
the model separate and independently. CRLBdbp is the lower
bound derived in this work.

It can be observed that the RMSE of the proposed algorithm
attains the derived CRLB, regardless the assumptions of the
bound are more optimistic when dbp is known. Figure 3 is for
the second experiment with the same comparative as well as
the first one.

According to every before established experiment, Figure 4
and 5 show the RMSE values for dbp and its corresponding
lower bound.

These results show that the inference of θ parameters
achieve an asymptotically efficient performance. When RSS
measurements samples are taken for fixed N , and number of
samples per every interval distance are greater than one, the
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results are promising.

VI. CONCLUSIONS

In this paper, a Bayesian approach for estimating the break-
point distance, and the two-slope path loss model parameters
in corrupted RSS measurements is presented. Additionally, this
work proposes an implementation based on Gibbs sampling for
which all the necessary posterior conditional distributions are
shown. The CRLB for the case of unknown dbp is derived.
The bound was compared with the evaluated RMSE of the
proposed method, which estimates dbp, The results are tight
to the bound, thus indicates that the Bayesian method is
estimating the five parameters in a consistent manner. Also, the
joint estimation of the two-slope model parameters provides
better results than individual fitting considering measurements
from each of the models. Future work includes the evalua-
tion of other a a priori distributions that could have better
performance than the a a priori used in this work. Including
the proposed methodology with real measurements is also
envisaged.
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