
Secure and Dependable Multi-Cloud Network Virtualization
Max Alaluna Eric Vial Nuno Neves Fernando M. V. Ramos

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
{malaluna, evial}@lasige.di.fc.ul.pt, nuno@di.fc.ul.pt, fvramos@ciencias.ulisboa.pt

Abstract
Existing multi-tenant network virtualization platforms

have so far focused on the offer of conventional network-
ing services by a single cloud provider. As such, they face
limitations in terms of security and dependability, both in
terms of the infrastructure itself and of the services offered
to its customers. To address these challenges we present
the design and implementation of Sirius, a network virtu-
alization platform for multi-cloud environments. Contrary
to existing solutions, Sirius considers not only connectiv-
ity and performance, but also security and dependability as
first class citizens, leveraging from a substrate infrastructure
composed of both public clouds and private data centers.

CCS Concepts •Networks→ Programmable networks

Keywords network hypervisor; cloud computing; virtuali-
sation; Network topology

1. Introduction
The advances in computing and storage virtualization that

enabled cloud computing have not been met by networking.
Traditional forms of network virtualization (VLANs, etc.)
do not present the scalability and flexibility that is necessary
in current cloud environments. The reason lies fundamen-
tally in the complexity of network management and con-
trol. In particular, networking has lacked unifying abstrac-
tions to enable network-wide visibility and control. As a re-
sult, network provisioning is typically orders of magnitude
slower when compared to its computing and storage coun-
terparts [10].

The current state of affairs has recently started to change
with the emergence and rapid adoption of Software-Defined
Networking (SDN). By decoupling the networking planes
and by logically centralizing control, SDN offers opera-
tors network-wide visibility and direct control over traffic
in the network [11]. These capabilities have led to the de-
velopment of production-quality network virtualization plat-
forms [10] that allow the creation of virtual networks, each

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

XDOMO’17 April 23, 2017 - Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4937-6/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3071064.3071066

with independent service models, topologies, and addressing
schemes, over the same substrate network.

Current multi-tenant network hypervisors target single-
provider deployments and traditional services, such as flat
L2 or L3, as their goal is to enable tenants to use their ex-
isting cloud infrastructures. Such single-cloud paradigm has
inherent limitations in terms of scalability, security, and de-
pendability, which may potentially dissuade critical systems
to be migrated to the cloud. For instance, a tenant may want
to outsource part of its compute and network infrastructure
to a public cloud, but may not be willing to trust the same
provider to store its confidential business data or to run sen-
sitive services, which should stay in a more trusted environ-
ment (e.g., a private datacenter). To avoid cloud outages dis-
rupting its services – a type of incident increasingly com-
mon [15] – the tenant may also wish to spread its services
across clouds, to avoid Internet-scale single points of fail-
ures.

To address this challenge, we propose Sirius, a multi-
cloud network virtualization platform. Contrary to previ-
ous approaches, Sirius leverages from a substrate infras-
tructure that entails both public clouds and private datacen-
ters. This brings with it several important benefits. First, it
increases resilience. Replicating services across providers
avoids single points of failure, making a tenant immune to
any datacenter outage. Second, it can improve security, for
instance by exploring the interaction between public and
private clouds. A tenant that needs to comply with privacy
legislation may demand certain data or specific services to
be placed in trusted locations. In addition, it can improve
performance and efficiency. For example, the placement of
virtual machines may consider service affinity to reduce la-
tencies. Specific workloads can also be migrated to clouds
which consume less energy [6]. Dynamic pricing plans from
multiple cloud providers can also be explored to improve
cost-efficiency [17]. The multi-cloud model has been suc-
cessfully applied in the context of computation [16] and stor-
age [7] recently. To the best of our knowledge, this is the first
time the model is applied for network virtualization.

In our platform users can define virtual networks (VN)
with arbitrary topologies, while making use of the full ad-
dress space. Sirius further improves over existing network
virtualization solutions by allowing users to specify security
and dependability requirements for all virtual resources. In
this paper we present the design of Sirius along with its mul-
tiple challenges. We also include an initial evaluation of the
current prototype.

1

VM1

Network Hypervisor
SDN controller

VM1

Container
Hypervisor

VM1
VM1

VM1C
o

n
ta

in
er

Container
Hypervisor

OvS

Public cloud VM manager

Container
Hypervisor

G
A

TE
W

A
Y

VM1

Container
Hypervisor

SECURE TUNNEL

Cloud provider 1 Cloud provider 2

Public cloud VM manager

VM1
VM1

Container
Hypervisor

VM1

Container
Hypervisor

Private cloud

SECURE TUNNEL

Multi-Cloud
Orchestrator

C
o

n
ta

in
er

C
o

n
ta

in
er

C
o

n
ta

in
er

C
o

n
ta

in
er

C
o

n
ta

in
er

C
o

n
ta

in
er

C
o

n
ta

in
e

r

C
o

n
ta

in
er

C
o

n
ta

in
er

OvS OvS OvS OvS OvSGRE TUNNELGRE TUNNELGRE TUNNEL

. . .
Vitual Network

of Tenant 1
Vitual Network

of Tenant N

VM VM

G
A

TE
W

A
Y

G
A

TE
W

A
Y

VM VM VM
VM

Figure 1. Sirius architecture.

2. Design of Sirius
Sirius allows an organization to manage resources be-

longing to multiple clouds, which can then be transparently
shared by various users (or tenants). Resources are organized
as a single substrate infrastructure, effectively creating the
abstraction of a cloud that spreads over several clouds, i.e., a
cloud-of-clouds [12]. In this paper, the considered resources
are interconnected virtual machines (VM) that are either ac-
quired from public cloud providers or are placed in local fa-
cilities (i.e., private clouds). Envisioned extensions include
other cloud resources, such as storage services.

Users can define virtual networks composed of a number
of containers interconnected according to an arbitrary topol-
ogy. Sirius deploys these virtual networks in the substrate
infrastructure, ensuring isolation of the traffic by setting up
separated datapaths (or flows). While specifying the virtual
network, it is possible to indicate several requirements for
the nodes and links, for example with respect to the needed
bandwidth, security properties, and fault tolerance guaran-
tees. These requirements are enforced during embedding by
laying out the containers at the appropriate locations, where
the substrate infrastructure still has enough resources to sat-
isfy the particular demands. In addition, the datapaths are
configured to follow adequate routes through the network.

2.1 Architecture
The architecture of Sirius is displayed in Figure 1 and is

a significant evolution of the solution proposed in [5]. This
paper focuses on the main advances since its previous in-
carnation: the multi-cloud orchestrator, the network embed-
ding module, and the isolation mechanisms. An important
improvement was the addition of the orchestrator module to
the design. The cloud orchestrator is responsible for the dy-
namic creation of the substrate infrastructure by deploying
the VMs and containers. It also configures secure tunnels
between gateway modules, normally building a fully con-
nected topology among the participating clouds. A gateway
acts like an edge router, receiving local packets whose des-
tination is in another cloud and then forwarding them to its
peer gateways, allowing data to be sent securely to any con-
tainer in the infrastructure. Intra-cloud communications be-
tween tenant containers use GRE tunnels setup between the
local VMs, to ensure isolation.

The network hypervisor runs as an application on top of
an SDN controller. It takes all decisions related to the place-
ment of the virtual networks, and setups the network paths
by configuring software switches (OvS [14]) that are in-
stalled in all VMs (along with OpenFlow hardware switches
that may exist in private clouds, not shown in the figure).
The hypervisor intercepts the control messages between the
substrate infrastructure and the users’ virtual networks, and
vice-versa, thus enabling full network virtualization.

The hypervisor was developed using a shared controller
approach (the solution also adopted in [10]). Alternative
solutions, including OVX [3], assume one controller per
tenant. Ours is a more lightweight solution, as only one
logically-centralized component is needed for all tenants. It
is also simpler to implement as it can take advantage of the
high-level APIs offered by the SDN controller, instead of
having to deal with “raw” Openflow messages when inter-
acting with the switches. Finally, this architecture follows a
fate sharing design as the controller and the network hyper-
visor reside in the same host. This facilitates replication for
fault-tolerance.

2.2 Overview of Sirius operation
The deployment of a virtual network in the platform in-

volves the execution of a few tasks. The first task is to as-
semble the substrate infrastructure. The administrator of Sir-
ius within the organization needs to indicate the resources
that are available to build the infrastructure. She interacts
with a graphical interface1 offered by the cloud orchestrator
that allows the selection of the cloud providers, the type and
number of VMs that should be created, and the provision
of the necessary access credentials. The network topology is
also specified, pinpointing for instance the connections be-
tween clouds. For each provider, it is possible to specify a
few attributes, such as the associated trust level.

Based on such data, the orchestrator constructs the sub-
strate infrastructure by interacting with the cloud providers
and by setting up the VMs. In each VM a few skeleton con-
tainers are started with minimal functionality. The gateways
are also interconnected with the secure tunnels. The next step
is for the hypervisor to be initialized by obtaining, from the
orchestrator, information about the infrastructure. Then, it
contacts each network switch to obtain data about the exist-
ing interfaces, port numbers and connected containers. After
populating the hypervisor’s internal data structures, Sirius is
ready to start serving the users’ VN requests.

The second task is run on demand, whenever a user of
the organization needs to run an application in the cloud.
The user employs a graphical interface of the orchestrator
to represent a virtual network with the various containers
that implement the application. Containers are then intercon-
nected with the desired (virtual) switches and links. Com-
plete flexibility is given on the choice of the network topol-
ogy and addressing schemes. Attributes may be associated
with the containers and links, specifying particular require-

1 The same sort of information can also be provided through configuration
files, to simplify the use of scripts.

2

ments with respect to security and dependability. For exam-
ple, certain links may need to have backup paths to allow for
fast fail-over, while certain containers may only be deployed
in clouds with the highest trust levels.

The orchestrator receives the VN request and forwards
it to the hypervisor to perform the virtual network embed-
ding. The embedding algorithm decides on the location of
the containers and network paths considering all constraints,
namely the available resources in the substrate infrastruc-
ture and the security requirements. The computed mapping
is transmitted to the orchestrator so that it can be displayed
upon request of the Sirius administrator. Hereafter, the or-
chestrator and the hypervisor work in parallel to start the
VN. The orchestrator downloads and initializes the contain-
ers images in the chosen VMs, and configures the IP and
MAC addresses based on the tenant’s request. The hypervi-
sor enables connectivity by configuring the necessary routes
by setting up the flows in the switches, while enforcing iso-
lation between tenants.

2.3 The multi-cloud orchestrator
The multi-cloud orchestrator combines three main fea-

tures. First, it manages interactions with users through a
web-based graphical interface. Users with administrator
privileges can design the substrate infrastructure topology
(Admin GUI), indicating the kind of VMs that should be
deployed in each cloud provider. Similarly, normal users
can represent virtual networks of containers (User GUI),
and later request their deployment. The graphical interface
also displays the mappings between the containers and links
in the substrate infrastructure and the status of the various
components.

Second, it keeps information about the topologies of the
substrate and virtual networks and their mappings. This in-
formation is kept updated, as virtual networks are created
and destroyed, thus offering a complete view of how the in-
frastructure is currently organized. In addition, it maintains
in external storage a representation of the different networks
that were specified, allowing their re-utilization when users
want to run similar deployments.

Third, it configures and bootstraps VMs in the clouds in
cooperation with the network hypervisor and setups the tun-
nels for the inter-cloud connections. Apart from that, when
a virtual network is started, it also initiates the containers in
the VMs selected by the hypervisor. A storage of VM and
containers is kept locally, in case the users prefer to work
and save the images within the organization.

C
lo

u
d

 B

C
lo

u
d

 A

Gateway VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
e

r

OvS

IPT IPT IPT

Gateway VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
e

r

OvS

IPT IPT IPT

Local VM

OVS

C
o

n
ta

in
e

r

Container
Hypervisor

C
o

n
ta

in
er

C
o

n
ta

in
er

OvS

IPT IPT IPT

Internet

GRE Tunnel IPpriv
IPpriv

Secure tunnel

GRE Tunnel

IPpub
IPpub

Figure 2. Intra- and inter-clouds connections.

Figure 2 shows the main connections that are managed
within the infrastructure. Gateways have public IPs that
work as endpoints of secure tunnels between the clouds.
In our current implementation, OpenVPN with asymmetric
key authentication is employed as the standard solution as
it presents the advantage of being generic and independent
from the provider’s gateway service (e.g. VPC service for
Amazon EC2). Links between VMs rely on GRE tunnels.
We chose this simple approach as intra-cloud communica-
tions are expected to be performed within a controlled en-
vironment and inter-cloud traffic is protected by the secure
tunnel. The containers use the IP addresses defined by the
tenants (without restrictions), and isolation is achieved by
the network hypervisor properly configuring the switches’
flow tables (an aspect to be detailed in Section 2.5).

2.4 Hypervisor architecture and components
The design of the hypervisor software follows a modular

approach. We present its building blocks in Figure 3.
The Embedder addresses the problem of mapping the

virtual networks specified by the tenants into the substrate
infrastructure [8]. As soon as a virtual network request ar-
rives, the secure Virtual Network Embedding (VNE) mod-
ule finds an effective and efficient mapping of the virtual
nodes and links onto the substrate network, with the objec-
tives of minimizing the cost of the provider and maximizing
its revenue. This objective takes into account, firstly, con-
straints about the available processing capacity of the sub-
strate nodes and of the available bandwidth resources on
the links. Moreover, we consider security and dependability
constraints based on the requirements specified by the ten-
ants to each virtual resource. These constrains address, for
instance, concerns about attacks on virtual machines or on
substrate links (e.g., replay/eavesdropping). As such, each
particular node may have different security levels, to guar-
antee for instance that sensitive resources are not co-hosted
on the same substrate resource as potentially malicious vir-
tual resources. In addition, we consider the coexistence of
resources (nodes/links) in multiple clouds, both public and
private, and assume that each individual cloud may have dis-
tinct levels of trust from a user standpoint. As future work we
plan to include latency as an additional requirement. In the
current version of the hypervisor the VNE problem is solved
using a MILP formulation. For more details we invite the
interested reader to [4].

The Substrate Network (sNet) Configuration module
is responsible for maintaining information about the sub-
strate topology. It reaches its goals by performing two main
functions. First, it retrieves information from the orchestra-
tor about the substrate nodes and links, alongside their se-
curity and dependability characteristics. Second, it interacts
with each switch to set itself as its master controller, and
to collect more detailed information, including switch iden-
tifiers, port information (e.g., which ports are connected to
which containers), etc. This information is maintained in ef-
ficient data structures to speed up data access.

The Virtual Network (vNet) Configuration module is
responsible for maintaining information about the virtual

3

Multi-Cloud Network Hypervisor

sNet topology
specifier & config

sNet config

sNet topology
data collector

vNet topology
specifier & config

vNet config

vNet routingsecure VNE

Embedder

virtual-substrate
mapper

flows handler
network

monitoring

virtual-substrate
handler

packet-In
handler

components
isolation handler

Hypervisor core

Interfaces handler

External Interfaces

Figure 3. Modular architecture of the network hypervisor.

network topologies. This includes both storing tenant re-
quests and the mapping that is result of the embedding phase.
As the embedding module outputs only the substrate topol-
ogy that maps to the virtual network request, this module
runs a routing algorithm to define the necessary flow rules to
install in the switches (without populating them – that’s left
for the next module).

The Hypervisor core module is configured as a con-
troller module (in our case, Floodlight). Its first component
is the virtual-substrate mapper that, after interacting with the
substrate topology and virtual topology modules, requests a
specific mapping to the embedder. When the output of the
VNE returns successfully, the mapping is stored in specific
data structures of the core module and this information is
shared with other interested modules (namely, the vNet con-
figuration module).

Network monitoring is responsible to detect changes in
the substrate topology when a reconfiguration occurs (e.g.,
due to failures in the substrate network). This module then
sends requests to the virtual-substrate handler to update its
data structures accordingly. As ongoing work we are imple-
menting mechanisms to respond to network changes.

Isolation is handled by several sub-modules, including
the isolation handler, the packet-in handler and the flows
handler. These components’ goal is to guarantee that each
tenant perceives itself as the only user of the infrastruc-
ture. We currently use four main techniques for this pur-
pose. First, as we have control over the entire infrastruc-
ture, from the core to the edge, we uniquely identify each
tenants’ host by its precise location. Second, based on this
unique identification and on the tenant ID we perform ad-
dress translation at the edge from the tenant’s MAC to an
ephemeral MAC address (eMAC) and install the required
flows based on the eMAC. The flows for communication be-
tween all virtual nodes are initially installed pro-actively by
the flow handler module in such a way as to guarantee iso-
lation between tenant’s traffic. For efficiency reasons, flows
are installed with predefined timeouts. When a timeout ex-
pires (which means a particular pair of nodes has not com-
municated during that period) the flow is removed from the
switches to save flow table resources. If communication en-
sues between those nodes afterwards, the first packet of the
flow generates a packet-in that is sent to the hypervisor, trig-
gering the packet-in handler to install the required flows in

switches. Third, we perform traffic isolation during the ini-
tial steps of communication, namely, by treating ARP re-
quests and replies. Finally, flow table isolation is guaranteed
by each virtual switch having its own virtual flow table, with
a predefined size limit. We detail these techniques further in
the next section.

2.5 Virtualization runtime: achieving isolation
The main requirement of our multi-tenant platform is

to provide full network virtualization. To achieve this goal
it is necessary to virtualize the topology, addressing, and
service models, and guarantee isolation between tenants’
networks. Topology virtualization is achieved in our system
by means of the embedding procedure already described. In
this section we focus on the other three aspects.

Sirius allows tenants to configure their VMs with any
L2 and L3 addresses. Tenants thus have complete auton-
omy to manage their address space. They can also retain
their preferred L2 and L3 service models (for instance, they
can use VLAN services). Giving tenants with these options
precludes the use of labeling techniques for virtualization,
such as using VLAN tags to identify tenants (as this would
break the L2 service model) or inserting tenant-based tags in
the L2 or L3 address (as this would restrict the addressing
choices).

To achieve these two goals and guarantee isolation we
create a unique identifier for each tenant’s hosts based on
their location. We then perform edge-based translation of
the host MAC address to an ephemeral MAC address that
includes this ID. Finally, we setup tunnels between every
OvS (i.e., between every VM of the substrate infrastructure).

An alternative solution that would also fulfill our require-
ments would be to setup tunnels between all tenant’s hosts
(in our solution this would mean setting up tunnels between
containers). This would avoid the need to maintain host loca-
tion information and of edge-based translation. The problem
of this option is scalability. The number of tunnels would
grow with the number of containers (i.e., with the number
of tenant’s hosts), whereas our solution scales much better,
as it grows with the number of provider VMs (in a produc-
tion setting, each VM is expected to run hundreds or even
thousands of containers).

Uniquely identifying hosts. The tenant’s hosts of our
solution are containers. We opted for this operating system
virtualization technology as it provides functionality similar
to a VM but with a lighter footprint [9]. Each container (i.e.,
each tenant’s host) has its own namespace (IP and MAC
addresses, name, etc.) and its own resources (processing
capacity, memory), and as such can be seen as a lightweight
VM.

To uniquely identify a tenants’ host, at this stage we use
its network location (we do not yet consider host migration –
that’s part of future work). Each container is connected to a
specific software switch (identified by a DatapathID), being
attached to a unique port. As such, we use as hostID the tuple
〈switch port,DatapathId〉. Figure 4 shows an example.

Edge address translation. Packets generated in a virtual
network cannot be transmitted unmodified in the substrate

4

OvS 1
DatapathId 1:

00:00:d1:9e:1a:d7:b8:4d

2
1

3
…

p1

host ID (host location) Tenant

< 1, 00:00:d2:9e:1a:d7:b8:4d >

< 2, 00:00:d2:9e:1a:d7:b8:4d >

< 3, 00:00:d2:9e:1a:d7:b8:4d >

... ...

< p2, 00:00:e3:6a:18:33:b5:11 >

OvS 2
DatapathId 2:

00:00:e3:6a:18:33:b5:11

…

p2
…

...

TENANT N

TENANT 1

TENANT 2

1
2C

o
n

ta
in

er
 1

C
o

n
ta

in
er

 j

C
o

n
ta

in
er

 2
C

o
n

ta
in

er
 3

C
o

n
ta

in
er

 t

2

1

Figure 4. (Switch port, DatapathId) = host ID
network. As different tenants can use the same addresses,
collisions could occur. For this reason, we perform edge-
based address translation to ensure isolation. We assign an
ephemeral MAC address – eMAC – at the edge, to replace
the host’s MAC address. The translation occurs at the edge
switch. Every time traffic originates from a container its host
MAC is converted to the eMAC. Before the traffic arrives at
the receiving container the reverse operation occurs at the
edge switch. The eMAC is composed of a tenant ID and a
shortened version of the hostID, unique per tenant.

This mechanism guarantees isolation in the data plane.
The control plane guarantees are provided by the hypervi-
sor, as it has network-wide control and visibility. For this
purpose the hypervisor populates the flow tables with two
types of rules: translation rules in the edge switches, as just
explained; and forwarding rules that enable communication
between all hosts from a single tenant.

ARP handling. Hosts use the ARP protocol to map an
IP address to an Ethernet address. As we want unmodified
hosts to run in our platform, Sirius emulates the behavior of
this protocol. When an ARP message arrives at a switch, it is
forwarded directly to the destination host. Flooding is never
needed as the switches are configured by the hypervisor.
Even in those cases where the packet arriving at the switch
does not match any flow rule – because it has expired –
a packet-in is sent to the hypervisor, which populates the
required tables with the necessary flow rules for the packet
to be forwarded to the destination.

Flow table virtualization. As forwarding tables have
limited capacity, in terms of TCAM entries (hardware switches)
or memory (software switches), in Sirius each tenant has a
finite quota of forwarding rules in each switch. This is im-
portant because the failure to isolate forwarding entries be-
tween users might allow one tenant to overflow the number
of forwarding rules in a switch and prevent others from in-
serting their flows. Our hypervisor maintains a counter of the
number of flow entries used per tenant switch, and ensures
that a preset limit is not exceeded.

The hypervisor controls the maximum number of flows
allowed per tenant, in both physical and virtual switches.
This control is performed using the OpenFlow field cookie
(an opaque data value that allows flows to be identified [13]).
When the hypervisor inserts a new flow in a switch (which
only occurs if the limit was not exceeded), the cookie field
is properly set to identify its tenant owner, and the counter
for the number of flows in this switch that belong to this
particular tenant is incremented. When a flow is removed
the hypervisor is informed, extracts from the cookie the

tenant owner of the flow just removed, and decrements the
corresponding counter.

3. Implementation
The Sirius network hypervisor is implemented in Java

as a Floodlight controller module. The orchestrator runs
in an Apache Tomcat server. The client GUI is written in
Javascript/ JQuery and implements the vis.js [2], an
open-source library for network visualization. Communica-
tion between the HTTP client and server is performed using
Servlet technology. We have deployed the Linux VMs and
the Docker containers in two cloud infrastructures: Amazon
EC2 as public cloud, and a private platform based on a set of
VMs running in VirtualBox. In order to interconnect clouds
we use openvpn tunnels installed in each gateway VM (as
illustrated in Figure 1). To interconnect the OvS of each VM
we use GRE tunnels. We manage the public cloud using
jclouds. Apache jclouds [1] is a library that offers a simple
interface to manage VMs running in public clouds. More
importantly, it supports a large number of cloud providers
and its generic API assures higher portability, which will
facilitate future integration of other public clouds into the
substrate infrastructure.

4. Evaluation
The evaluation of Sirius addresses two questions: First,

how long does it take to bootstrap a set of containers, in
both public and private clouds? This question is important
to understand the cost to integrate the computation elements
in the virtual infrastructure. Second, how long does it take
to setup a virtual network, and what is the influence of the
different components (embedding, container configuration,
setting up flows)?

We consider one public (Amazon EC2 in Germany –
Frankfurt) and one private (the private cloud is our datacen-
ter in Portugal – Lisbon) cloud in the evaluation. In Ama-
zon EC2 we use t2.medium as gateway VMs and t2.micro
as normal VMs. The private cloud is based on a rack of Dell
R420, with 2 Intel Xeon E5520 quad-core, 2.2 GHz, and 32
GB RAM. VirtualBox managed the VMs, which were con-
figured with 1 CPU and 2GB RAM. The VMs run Ubuntu
with Docker (1.13.1) and OvS (2.5.0). The containers were
also based in Ubuntu.

Figure 5. Time to create and destroy containers.

For the first experiments we assume that 10 VMs had al-
ready been created, and measure the time it takes to set up

5

and destroy a group of basic containers. These operations oc-
cur to scale up or scale down the substrate infrastructure. In
the experiments, the location of the containers was selected
randomly. Container bootstrapping involves two fundamen-
tal steps: the build operation of Docker with an available im-
age in the VM, and linking the containers’ network interface
to OvS. Container destruction corresponds to the reverse op-
erations. Figure 5 shows the results from this experience. We
can observe that the time to create and destroy containers is
relatively similar in private and public clouds. Moreover, it
is possible to observe that the time for both operations grows
linearly in either cloud. Roughly, it takes around one second
to setup an additional container.

Figure 6. Time to setup a virtual network.

Figure 6 presents the time to setup a virtual network. This
graph shows the main overheads associated with the deploy-
ment of a virtual network in VMs distributed in public and
private clouds. Recall that the first step of the process is vir-
tual network embedding. Then, it is necessary to initiate the
container image and perform network configuration (setting
IP and MAC addresses, etc.). Finally, it is necessary to pop-
ulate the flow table of switches with the required rules.

Overall, the observed performance is acceptable, taking
approximately 1 minute to startup a virtual network with
around 40 containers. The time to setup containers is the
main component. As concluded before, this time increases
linearly. Setting up flows is the second main contributor to
the total time. The table insertion time increases with the
number of containers, as more flow table entries have to be
configured, but this is still well below container setup. How-
ever, its growth rate (considering an increasing number of
containers) seems higher, so we anticipate the need to op-
timize this process for larger scale networks. The time for
embedding is the smallest contributor to overall time, which
means that for these relatively small scale networks using
a MILP formulation to address this problem is acceptable.
Anyway, although this may not be immediately visible in
the graph, the time for embedding grows very fast with the
number of switches (from about 300 milliseconds with 2
switches to 3 seconds with 5 switches). This increase is a
consequence of using a MILP solution for optimal embed-
ding. For this reason, an important future direction of work
is to develop efficient heuristics to the secure VNE problem.

5. Conclusions
In this paper we presented Sirius, a multi-cloud network

virtualization platform. The design of Sirius extends the

guarantees of connectivity and performance of virtual net-
works offered by existing solutions with security and de-
pendability. This is achieved by leveraging from multiple
cloud infrastructures (both public and private) and by con-
sidering resiliency requirements from users during the vir-
tual network embedding process. The evaluation of the cur-
rent prototype demonstrates its feasibility and sheds light on
some of the necessary future work.

Acknowledgments
This work was partially supported by the EC through

project SUPERCLOUD (H2020-643964), and by national
funds of Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/00408/2013 (LaSIGE).

References
[1] jclouds. https://jclouds.apache.org/, 2017. Accessed:

2017-02-20.
[2] VIS.JS. http://visjs.org/, 2017. Accessed: 2017-02-20.
[3] A. Al-Shabibi et al. OpenVirteX: Make your virtual SDNs

programmable. In HotSDN, 2014.
[4] M. Alaluna, L. Ferrolho, J. Rui Figueira, N. Neves, and

F. M. V. Ramos. Secure Virtual Network Embedding in a
Multi-Cloud Environment. ArXiv, 2017.

[5] M. Alaluna, F. Ramos, and N. Neves. (Literally) Above the
Clouds: Virtualizing the Network Over Multiple Clouds. In
Proc. IEEE NetSoft, 2016.

[6] J. Baliga, R.Ayre, K. Hinton, and R. Tucke. Green cloud com-
puting: Balancing energy in processing, storage, and trans-
port. Proceedings of the IEEE, 2011.

[7] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia,
M. Pasin, and P. Verissimo. Scfs: A shared cloud-backed file
system. In Proc. USENIX ATC, 2014.

[8] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hes-
selbach. Virtual network embedding: A survey. IEEE Com-
munications Surveys Tutorials, 2013.

[9] J. Higgins, V. Holmes, and C. Venters. Orchestrating docker
containers in the HPC environment. In Proc. ISC High Per-
formance, 2015.

[10] T. Koponen et al. Network virtualization in multi-tenant
datacenters. In Proc. USENIX NSDI, 2014.

[11] D. Kreutz, F. M. V. Ramos, P. Verı́ssimo, C. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 2015.

[12] M. Lacoste, M. Miettinen, N. Neves, F. Ramos, M. Vukolic,
F. Charmet, R. Yaich, K. Oborzynski, G. Vernekar, and
P. Sousa. User-Centric Security and Dependability in the
Clouds-of-Clouds. IEEE Cloud Computing, 3(5), 9 2016.

[13] ONF. OpenFlow Switch Specification, 2015.
[14] B. Pfaff et al. The design and implementation of open vswitch.

In Proc. USENIX NSDI, 2015.
[15] USA TODAY. Massive amazon cloud service outage disrupts

sites, February 2017.
[16] D. Williams, H. Jamjoom, and H. Weatherspoon. The xen-

blanket: Virtualize once, run everywhere. In Proc. ACM
EUROSYS, 2012.

[17] L. Zheng, C. Joe-Wong, C. Tan, M. Chiang, and X. Wang.
How to bid the cloud. In Proc. ACM SIGCOMM, 2015.

6

