
 The IoT will facilitate a wide variety of applications in 

different domains such as smart cities, smart grids, industrial 

automation (Industry 4.0), smart driving, elderly assistance, or 

home automation, among others. Billions of heterogeneous 

smart devices with different application requirements will be 

connected to the networks and will generate huge aggregated 

volumes of data that will be processed in distributed cloud 

infrastructures. On the other hand, there is also a general 

trend to deploy functions as software instances in cloud 

infrastructures (e.g., NFV or MEC). Thus, the next generation 

of mobile networks, the so-called 5G, will need not to only 

develop new radio interfaces or waveforms to cope with the 

expected traffic growth but also to integrate heterogeneous 

networks from end-to-end with distributed cloud resources to 

deliver end-to-end IoT and mobile services. This paper 

presents the first-known end-to-end 5G platform that is being 

developed by CTTC, capable of reproducing such ambitious 

scenario.  

Introduction 

The fifth generation of mobile networks technology (5G) 

is not only about the development of new radio interfaces or 

waveforms. It also deals with the design of end-to-end 

converged network and cloud infrastructure to facilitate both 

traditional human-based and emerging Internet of Things (IoT) 

services. This converged infrastructure, illustrated in Fig. 1, is 

composed of: i) end-to-end heterogeneous network segments  

covering radio and fixed access, metro aggregation, and core 

transport with heterogeneous wireless and optical technologies; 

ii) massive distributed cloud computing and storage 

infrastructures; and iii) large amounts of heterogeneous smart 

devices and terminals for traditional mobile broadband services 

(e.g., smartphones, tablets, etc.) and IoT services (e.g. sensors, 

actuators, robots, cars, drones, etc.).  

At the network level, the requirements for 5G include high 
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Figure 1 5G end-to-end scenario integrating distributed cloud, heterogeneous networks, IoT and mobile broadband services. 



flexibility, low-latency, and high-capacity in order to support 

the forecasted 1000x growth in mobile data traffic with sub-

millisecond latency [1]. On the control/management side, 5G 

networks also require to deliver end-to-end (E2E) connectivity 

services between distributed cloud infrastructures and between 

any end user (i.e., devices and terminals) and the distributed 

cloud infrastructure. This requirement can only be met by 

efficiently integrating heterogeneous access (RAN, fixed 

access, satellite, Wi-Fi, personal area networks), 

optical/wireless crosshaul (fronthaul/backhaul), metro 

aggregation packet networks and high-capacity optical core 

transport networks. 

At the cloud level, 5G requires massive computing and 

storage infrastructures. This is needed to store and process (e.g. 

Big Data) the data being generated by billions of smart devices 

connected collecting information like temperature monitoring, 

distance measurement, energy consumption, etc. In addition, 

the impending growth of Network Function Virtualization 

(NFV) [2] and Mobile Edge Computing (MEC) [3] also require 

cloud services for the deployment of software functions (e.g., 

mobile Evolved Packet core – EPC-, local cache, firewalls,  

etc.,). Originally, cloud services have been implemented in 

core data centers (DCs) for high-computational or long-term 

processing. However, the cloud is being spread to the edge of 

the network (e.g., in edge DCs located in the metro network, or 

even in network nodes or mobile base stations with cloud 

capabilities) in order to reduce the latency of services for the 

end user. This concept is referred to as fog computing. 

Therefore, 5G networks need a global orchestration for the 

distributed cloud implementation and the management of 

heterogeneous networks. This orchestration shall dynamically 

allocate computing and storage resources to deploy functions 

where needed, and provide the required connectivity in order to 

achieve the desired end-to-end functionality or service.  

Conducting real-life demonstrations of such a complex 

system is not easy. CTTC is working in the development of the 

first-known 5G end-to-end experimental platform for testing 

advanced end-to-end IoT and mobile services. The approach 

consists in integrating various existing experimental facilities 

already available at CTTC which cover activities from the PHY 

layer to the application/service layer for mobile networks. The 

building blocks of this demonstration platform are shown in 

 

Figure 3 Integration of ADRENALINE and EXTREME testbeds. 

 

Figure 4 Message exchange diagram of E2E provisioning 

services between ADRENALINE and EXTREME Testbeds. 
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Figure 2 CTTC 5G end-to-end experimental platform. 

 



Fig.2. These facilities cover complementary technologies 

ranging from terminals, sensors and machines, to radio access 

networks, aggregation/core networks, and cloud/fog 

computing. Specifically, the five existing experimental 

facilities involved are namely: i) the ADRENALINE Testbed® 

[4] for  wired fronthaul/backhaul (SDN-enabled packet 

aggregation and optical core network, distributed cloud and 

NFV services in core and metro data-centers); ii) the 

EXTREME Testbed® [5] and LENA LTE-EPC protocol stack 

emulator for wireless fronthaul/backhaul and mobile core 

(SDN-enabled wireless HetNet and backhaul, edge data center 

and distributed computing nodes for cloud and NFV services); 

iii) the GEDOMIS® testbed [6] for LTE/5G PHY real-time 

prototyping based on FPGAs and software-defined radio 

(SDR), and the CASTLE testbed (a highly configurable 

software tool allowing LTE/5G/Satellite PHY layer 

development and testing); iv) an LTE/5G analog  front-end 

µwave & mmwave (antenna, power amplifier, filter, mixer, 

etc.,) including digital pre-distortion (SHAPER), and energy 

harvesting devices for the IoT; and v) the IoTWorld Testbed 

[7] integrating sensors, actuators, and wireless/wired gateways. 

The aim of this paper is to describe how all these facilitates are 

integrated with each other to build a complete end-to-end 

(E2E) 5G demonstration infrastructure. 

Integrating wireless and optical transport 

networks for E2E connectivity 

Hierarchical SDN Orchestration has been proposed as a 

feasible solution to handle the heterogeneity of different 

network domains, technologies, and vendors. It focuses on 

network control and abstraction through several control 

domains, whilst using standard protocols and modules. The 

need of hierarchical SDN orchestration has been previously 

justified with two purposes: scaling and security. 

Fig. 3 shows the proposed hierarchical SDN architecture 

for the integration of wireless and optical transport networks 

[8]. In the wireless segment, implemented over the EXTREME 

Testbed®, an SDN controller is in charge of the programming 

of the wireless network (access and backhaul). This SDN 

controller tackles the specificities of the wireless medium, 

implementing the proper extensions to control wireless devices. 

In the optical segment, implemented over the ADRENALINE 

Testbed®, we consider an SDN-enabled MPLS-TP aggregation 

network, while a core network uses an Active Stateful PCE 

(AS-PCE) on top of a GMPLS-controlled optical network.  

In the proposed architecture, we introduce a Global E2E 

SDN Orchestrator, which is responsible for the provisioning of 

E2E connections through different network segments. It has 

been implemented using the parent ABNO (pABNO) in [9]. 

The pABNO is able to orchestrate several network segments: 

an SDN-enabled wireless segment and an optical transport 

network segment controlled by a child ABNO (cABNO). 

ABNO is an IETF RFC which describes the internals of an 

SDN Controller.  

Fig. 4 shows the proposed message exchange between a 

pABNO and a wireless SDN controller/cABNO. It can be 

observed that an E2E connection is requested (POST Call) to 

the pABNO. The pABNO computes the involved network 

controllers (Wireless SDN/cABNO) and requests the 

underlying connection to them. We can observe how the 

workflow follows inside a cABNO, which is responsible for 

another level of hierarchical SDN orchestration. 

Integrating the IoT and Optical metro 

Aggregation Networks with Distributed Cloud 

computing 

SDN is a key enabler technology to address all the 

technical challenges posed by the IoT. SDN aims to overcome 

the limitations of traditional IP networks, which are complex 

and hard to manage in terms of network configuration and 

reconfiguration due to faults and changes. SDN can be viewed 

as a network operating system which interacts with the data 

plane and the network applications by means of Application 

Programmable Interfaces (APIs). In this regard, also the 

different needs in networking resources such as bandwidth and 

delay can be managed more easily thanks to the software 

programmability approach facilitated by SDN in the network 

control. Another important benefit of SDN is that it paves the 

way for the integration of smart objects with fog and cloud 

computing. More specifically, thanks to the flexibility provided 

by SDN, the data flows of information between IoT nodes and 

fog or cloud computing can be easily managed. This enables 

collaborative analytics between geo-distributed smart things.  

Integrating IoT and SDN can also increase the efficiency 

of the network by responding to changes or events detected by 

the IoT which might imply network reconfiguration. For 

example, SDN can be used in IoT applications where the data 

are transmitted from the sensors periodically in specific time 

frames to schedule the requested bandwidth on the 

transmission paths only during the active duty cycles. Such 

dynamic reconfiguration of the forwarding devices is only 

possible via centralized applications which orchestrate IoT 

collected information and network resources information 

jointly. SDN security can also be applied to IoT gateways in 

order to enforce security at the network edges. 



We have deployed an SDN/NFV-enabled Edge Node in 

ADRENALINE Testbed® for integrating wired IoT gateways 

from the IoTWorld Testbed by means of E2E SDN 

Orchestration of integrated Cloud/Fog and network resources 

[10]. E2E SDN orchestration will provide network connectivity 

between IoT gateways and deployed virtual machines (VMs) 

which might be allocated in the proposed edge node or in a DC 

located in the core network.  

Fig. 5 shows the considered system architecture. At the top 

of the figure, the Integrated Cloud/Fog and Network 

Orchestrator [11] is responsible for handling Virtual Machine 

(VM) and network connectivity requests, which are processed 

through the Cloud and SDN orchestrators. The orchestration 

process consists of two different steps: the VM creation and 

network connectivity provisioning. The integrated Cloud/Fog 

and Network Orchestrator requests the creation of virtual 

instances (VMs) to the Cloud Orchestrator, which, is 

responsible for the creation of the instances. It is also 

responsible to attach the VMs to the virtual switch inside the 

host node (at the edge node or in a core DC). When the VMs 

creation is finished, the Cloud Orchestrator replies the VM’s 

networking details to the integrated Cloud/Fog and network 

orchestrator (MAC address, IP address and physical computing 

node location). The SDN orchestrator is the responsible to 

provision E2E network services. The SDN orchestrator will 

provide the E2E connectivity between the requested IoT 

gateway and the deployed VM. Finally, data from IoT gateway 

will flow to the processing resources located in the proposed 

SDN/NFV-enabled edge node.  

Fig. 6 shows the cloud and network topology as seen by 

the Cloud/Fog and Network Orchestrator. Each network 

domain (network elements controlled by a single SDN 

controller) are abstracted as a single node (either packet or 

optical). It can also be observed that the provisioned VMs are 

connected to the packet network. 

Integrating the IoT with wireless access and 

backhaul networks  

Experimenting with cellular networks, including the 

wireless backhaul, and the IoT is a challenging venture. A 

powerful alternative for research purposes would consist in 

using Software Define Radios (SDR) to deploy an IoT network 

which is LTE-enabled. This would mean that every single IoT 

device is equipped with an SDR LTE radio and connects with 

an SDR-based eNodeB. Then the various eNodeBs could be 

interconnected using another SDR-based solution. 

Unfortunately, both the technical complexity and the cost of 

designing, deploying, and operating such a complex solution 

would become prohibitive, especially if the number of devices 

of the IoT network has to be large.  

As an alternative, the solution presented in the E2E 

Testbed of CTTC consists in connecting real IoT devices to 

EXTREME Testbed® in various ways. Towards this end, it is 

first necessary to integrate the category-0 UE in the LENA 

modules. Such integration would then enable the following 

levels of connection between the IoTWorld and EXTREME 

Testbed®: 

1) First option would consist in running LENA in the 

gateways, e.g. Raspberry-Pi modules of IoTWorld. LENA 

could operate in emulation mode with an instance of a UE 

fetching the data packets actually received via radio, routing 

them through the protocol stack of LENA, and emulating their 

transmission to the eNodeB. The EPC would also be emulated 

in LENA, thus offering an E2E solution. This approach is 

shown in Figure 7. 

2) The main limitation of the first option is that it would 

only be possible to run a single gateway connected to a single 

eNodeB, thus limiting the capability of the joint testbed to 

emulate a realistic IoT network where more than one Machine-

to-Machine (M2M) Gateway is expected to be deployed at the 

same time to run an IoT application. In order to overcome this 

limitation, the second option would consist in setting up a 

central server where LENA runs with various instances of UEs. 

Then, the data traffic actually received by each gateway via 

radio, i.e. raspberry-pi, would be connected to each of the UE 

instances of the server. Such interconnection would enable the 

emulation of various M2M gateways simultaneously connected 

to a common eNodeB and the EPC. This approach is shown in 

Figure 8. With any of the above two approaches, the IoTWorld 

testbed could also benefit from the existing connections 

between EXTREME and ADRENALINE, thus enabling for a 

complete E2E experimentation of an IoT deployment. In this 
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case, data would be transported via SDN-controlled wireless 

and optical backhaul networks acting as heterogeneous multi-

domain transport layer, as shown in Figure 8. 

Integrating 5G/LTE Phy-layer and virtual mobile 

protocol stack for flexible HW/SW partitioning  

The integration of a 5G/LTE PHY-layer provided by 

either the GEDOMIS testbed or CASTLE testbed with the 

LENA LTE-EPC emulated protocol stack [12] running over the 

EXTREME Testbed will allow full-stack experimentation of 

multiple 5G use cases that exploit the flexibility of SDN/NFV 

when applied to mobile networks (e.g., virtual base stations or 

self-organized networking). This may consider, for example, 

the virtual base station use case defined by the ETSI NFV 

group, or experiments on coverage and capacity optimization 

involving the whole radio protocol stack and its interactions 

with core network elements and real applications. The 

availability of full-stack mobile network testbed allowing 

experimentation from PHY up to applications and services is 

currently rare. In fact, experiments on the above topics are 

often limited to either 1) PHY layer platforms with minimal 

MAC layer support, due to the cost of commercial protocol 

stacks, and the limitations of open source ones, or 2) IP-level 

testbeds with limited access to low-level PHY configuration. In 

contrast, our integrated testbed will allow evaluating full-stack 

NFV solutions in a real wireless propagation environment with 

GEDOMIS testbed, or in a real-time emulation environment 

with CASTLE emulator, with the possibility of combining both 

emulated and real (e.g., fiber) backhaul/aggregation network 

links and applications, and of including additional emulated 

cells in order to achieve a larger experiment scale.  

Fundamental to realize this vision is to develop the tools 

allowing to exploit the flexibility that NFV brings to mobile 

networks. In this sense, it is important to underline that the 

flexible HW-SW partitioning is widely perceived nowadays as 

a key technology enabler for fully exploiting the network 

programmability brought by SDN and NFV. In this way, the 

software programmable data plane combined with intelligent 

hardware that dynamically collaborates with control plane SW, 

will allow addressing the performance, flexibility, and security 

challenges of 5G mobile networking. At the same time, the 

requirements for low latency communications (including signal 

processing), low power operation and high performance 

parallel computation will be made more stringent, thus 

imposing dedicated hardware solutions for some functions. 

There are three main issues related to the HW-SW split i) the 

physical location where communication stacks are 

implemented (e.g., base station, cloud), ii) the technology of 

the processing elements that is used (e.g., entirely 

programmable system-onchip -SoC-, FPGAs, general purpose 

processors -GPP-) and iii) the granularity of the partitioning 

(e.g., at communication stack level, at function or process 

level). In this use case, the main idea is: 1) to flexibly distribute 

functions of the communication stack among different 

processing elements (e.g., SoCs, FPGAs, GPPs), which are 

physically residing either in communication nodes (e.g., base 

stations) or in cloud/fog processing architectures, and 2) to 

adaptively change processing topologies (e.g., base stations, 

intermediate nodes or cloud processing architectures). The 

decision for the distribution of the HW-SW functions will be 

made based on experiments made at design time (static mode), 

which will reflect specific 5G operating scenarios, as shown in 

Fig. 9.  

Such function distribution may be done based on multiple 

criteria, such as high performance, low energy, low 

communication latency or a tradeoff of the previous. Apart 

from shifting functions from dedicated hardware co-processors 

to software processing space to guarantee the performance goal 

of the identified scenarios, a number of baseband parameters 

will be tunable. The tuning of these parameters will be 

performed at system level and, potentially, could also be based 

on different criteria. Initially, for this particular use case, the 

decisions will be driven by energy aware communications 

criteria. Essentially, these system level decisions will be based 

on using different communication primitives that can adjust 

certain parameters associated with a given energy cost. 

Indicative parameters of this type might be: i) the modulation 

and coding scheme, ii) the use of single or multi-antenna 

configurations (e.g., improve SNR or data rate), iii) the signal 

bandwidth, iv) the type of waveform (e.g., from 4G to 5G 

ones), v) the use of fragmented spectrum (e.g., coexistence of 

 

Figure  7 M2M Gateway connected to UE Stack of LENA 

running inside a single LENA process that includes the eNodeB 

and the Core Network. 

 

Figure 8. End-to-End MTC Testbed with emulated RAN and 
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radio transmissions) [13], vi) the type of digital predistortion 

and crest factor reduction applied for the linearization of the 

power amplifier output (e.g., affecting the baseband processing 

requirements, DAC and ADC usage and power amplifier 

energy cost), vii) the energy consumption operation mode (e.g., 

switch off dynamic power consumption in portions of the 

FPGA baseband implementation), and viii) the traffic volume 

density allowing to switch off parts of the network. Fig. 10 

shows two example of virtual mobile network function splitting 

and deployment developed in GEDOMIS and EXTREME 

testbed.  

Integrating analog front-end and energy 

harvesting devices 

Wireless communication is ultimately demonstrated 

through analog front-ends suitable to address the stringent 

requirements and diverse features of the physical layer digital 

signal processing of 5G systems acquired through GEDOMIS 

and CASTLE test-beds. At the same time, energy harvesting 

technologies exploiting existing light, thermal, vibration and 

electromagnetic ambient energy availability can further extend 

the energy autonomy of low power, Internet-of-Things 

communication, sensor and actuator devices, and improve the 

energy efficiency of the underlying analog front-ends and 

digital circuitry [14][15].  

CTTC’s test-bed facilities span a diverse set of fabrication 

technologies including traditional printed circuit board milling 

but also laser prototyping and inkjet printing able to provide 

the necessary resolution for low cost prototyping of analog 

front-ends up to millimeter wave frequencies and using 

different materials from flexible substrates suitable for 

wearables and Internet-of-Things wireless sensor devices, to 

high performance substrate materials suitable for millimeter 

wave applications. In addition, testing capabilities include 

signal generators, vector network analyzers, and an anechoic 

chamber suitable for testing wireless front-ends under 

controlled propagation environments. The use of off-the-shelf 

circuit components, and traditional microwave substrate 

materials and fabrication methods allow one to obtain low cost 

easily customized front-end designs, and additionally they 

permit a fast turnaround time of high performance prototypes.  

In particular, the development and testing of analog front-ends 

capable to interface the digital baseband output from 

GEDOMIS and CASTLE testbeds and introduce the necessary 

operating frequency translation and efficient amplification and 

filtering of the underlying signals into reconfigurable antenna 

arrays with beam-forming capabilities is of particular interest 

as it ultimately permits the real world testing of 5G systems 

and, more importantly, it enables the joint optimization of the 

baseband circuitry and analog front-end, which is not always 

possible when utilizing commercially available solutions. 

Similarly, the ability to implement and integrate different 

energy harvesters with the analog front-end, enables one to 

explore different circuit architectures and materials, low cost 

and mechanically conformal designs which can be jointly 

optimized and tailored to efficiently power wireless sensor 

circuits. 

Conclusions 

Conducting real-life demonstrations of an end-to-end 5G 

scenario including both IoT and mobile broadband services, 

requiring the integration of heterogeneous wireless access and 

optical transport networks, distributed cloud computing, and 

wireless sensor and actuators networks is a very challenging 

task.  CTTC has been working on the development of the first-

known end-to-end 5G platform capable of reproducing such an 

ambitious scenario. This paper has described the existing and 

planned integration, supported functionalities, use cases, and 

preliminary results among the different experimental facilities 

available at CTTC. 
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Figure 10 a) Intelligence to the Edge, b) Cloud Stack with 
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