
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

55

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

Abstract: With the increasing fame of Android OS over the past

few years, the quantity of malware assaults on Android has

additionally expanded. In the year 2018, around 28 million

malicious applications were found on the Android platform and

these malicious apps were capable of causing huge financial

losses and information leakage. Such threats, caused due to these

malicious apps, call for a proper detection system for Android

malware. There exist some research works that aim to study static

manifest components for malware detection. However, to the best

of our knowledge, none of the previous research works have

aimed to find the best set amongst different manifest file

components for malware detection. In this work, we focus on

identifying the best feature set from manifest file components

(Permissions, Intents, Hardware Components, Activities, Services,

Broadcast Receivers, and Content Providers) that could give better

detection accuracy. We apply Information Gain to rank the

manifest file components intending to find the best set of

components that can better classify between malware applications

and benign applications. We put forward a novel algorithm to find

the best feature set by using various machine learning classifiers

like SVM, XGBoost, and Random Forest along with deep learning

techniques like classification using Neural networks. The

experimental results highlight that the best set obtained from the

proposed algorithm consisted of 25 features, i.e., 5 Permissions, 2

Intents, 9 Activities, 3 Content Providers, 4 Hardware

Components, 1 Service, and 1 Broadcast Receiver. The SVM

classifier gave the highest classification accuracy of 96.93% and

an F1-Score of 0.97 with this best set of 25 features.

Keywords: Android Security, Machine Learning, Malware

Detection, Manifest File Components, Mobile Malware, Static

Solution.

I. INTRODUCTION

With smartphones being a regular part of our lives these

days, we can say that nearly every individual has a

smartphone in the 21st century. They are one among many of

the cheapest and simplest ways to connect to the World Wide

Web, i.e., Internet. As per a recent report [1], the share of

smartphones and desktop systems is 54.49% and 45.51% in

the business market respectively. This highlights the

Manuscript received on May 11, 2021.

Revised Manuscript received on May 17, 2021.

Manuscript published on May 30, 2021.
* Correspondence Author

Kartik Khariwal*, Discipline of Mathematics and Computing,

Department of Applied Mathematics, Delhi Technological University,
Delhi, India. Email: kartik.khariwal@gmail.com

Rishabh Gupta, Discipline of Mathematics and Computing,
Department of Applied Mathematics, Delhi Technological University,

Delhi, India. Email: rishabhmgupta@gmail.com

Jatin Singh, Discipline of Mathematics and Computing, Department of

Applied Mathematics, Delhi Technological University, Delhi, India. Email:

jatinsingh0710@gmail.com
 Anshul Arora, Discipline of Mathematics and Computing, Department

of Applied Mathematics, Delhi Technological University, Delhi, India.

Email: anshul15arora@gmail.com

popularity of smartphones in users across the globe.

Moreover, the presence of feature rich apps in smartphones

make them more popular than desktops and laptops. Among

all mobile operating systems, Android has the highest

shareholder with 81% [2] in the current market. These reports

portray the developing popularity of mobile devices,

specifically Android based, and it is predicted to increment

further in the upcoming years.
With the expanding interest of users in smartphones, the

danger to these smartphones is likewise expanding. As per

the reports [3], nearly 10 million mobile devices were

infected with malware through a "Samsung

Update". Another recent report [4] shows that thousands of

malignant applications are randomly uploaded on various app

stores, which are disguised as they are legitimate

applications. A malware known as Dress-code was carried

out by these malicious apps. Dress-code is programmed in

such a way that it is able to infiltrate deep networks and is

able to steal data from the system. These examples depict

how weak the current security of smartphones is and how

easy it is to get targeted by attackers. These malicious

apps pose threats like data leaks, system damage, huge

monetary losses, etc.

Since more users are opting for Android over other mobile

OS nowadays, that’s why it is coming out to be a major target

by attackers. In 2017, around 26 million malicious

applications were detected on Android platform [5].

Whereas, In May 2019, around 45,000 users with Android

OS were infected by an unknown malware named xhelper

[6]. Presence of such attacks in Android demand stronger and

stealthier mechanisms to detect malicious apps with greater

accuracy.

A. Motivation

A great amount of research has been done in the detection

of Android apps containing malicious behavior which can be

categorized into three detection types: Static, Dynamic, and

Hybrid detection. Dynamic and Hybrid malware detection

focuses on analysing the runtime behavior of apps which is

very computationally complex. Therefore, our research

focuses on the static detection of malicious apps.
Among the components present in the manifest file,

permissions is the most used feature in static detection of

Android malware, followed by Java Code, intents, and then

other components. Manifest file components have been used

in a few research works for Android malware detection. For

example, authors in [7], [8], [9], [10], and [11] have used

features from manifest files for Android malware detection.

R-MFDroid: Android Malware Detection using

Ranked Manifest File Components

Kartik Khariwal, Rishabh Gupta, Jatin Singh, Anshul Arora

R-MFDroid: Android Malware Detection using Ranked Manifest File Components

56

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

However, to the best of our knowledge, none of the

previous works done on the static detection of malware apps

have aimed to find the best set of different manifest file

components, i.e., best set comprising of Permissions, Intents,

Hardware Components, Activities, Services, Broadcast

Receivers and Content Providers which can distinguish

between benign and malicious apps with better accuracy.
Therefore, in this paper, we aim to identify the best feature

set of manifest components which gives better detection

accuracy. This work is an extension of our previous work

[21] where we studied permissions and intents for Android

malware detection. In this extended version, we have

considered seven features that can be extracted from an

Android manifest file, i.e., Permissions, Intents, Hardware

components, Activities, Services, Content Providers, and

Broadcast Receivers, for Android malware detection.

B. Contributions

The proposed work is divided into three basic yet effective

steps which are highlighted below:

1. Firstly, for each feature, i.e., for each manifest file

component, we created a Bag-of-Words model which is

a matrix representation with all apps as rows and each

unique feature represented as a column.

2. We ranked all the features based on Information Gain

(I.G.) Score by calculating I.G. for each unique feature.

3. Further, to find the best set of combined features from

different manifest file components, we proposed a novel

algorithm to find the best set comprising of all the

features by executing several machine learning models

along with deep learning techniques.

C. Organization

The rest of the paper is organized as follows. In section

II, we review the related works in the field of Android

malware detection. The proposed methodology is elaborated

in Section III. Section IV discusses the experimental results

and we conclude with future work directions in Section V.

II. RELATED WORK

In this section, we review the research works put forward

for Android malware detection. Related works can be divided

into three different categories - Static, Dynamic, and Hybrid

detection. We review each of the detection types in the

upcoming subsections.

A. Static Detection

In static techniques, the Android malware are detected

without executing the malicious apps on smartphones. Static

features like manifest file components, Java code, API calls,

etc. are used in static detection.

i. Manifest File Based Detection

In this subsection, we discuss the related works that have

studied various manifest file components for Android

malware analysis or detection. The authors in [10] calculated

a specific score of each permission by dividing the number of

malware samples containing that permission by the total

number of malware present in the dataset. They further used

this permissions score to detect malicious apps. Moonsamy et

al. [11] analysed the harmful and dangerous patterns of

permissions defined within the malicious apps.

Idrees et al. [12] identified the significant intents and

permissions defined in malicious samples as well as the

normal apps and used them for detecting malware. The

authors in [13] applied Hamming Distance to find the

similarity between the malware and normal apps based on the

static features of permissions, intents, and API's. Qiu et al.

[14] applied multi-label classification models on the set of

extracted features like permissions, API calls, network

addresses, etc. with an aim to detect zero-day malware

families. FAMD (Fast Android Malware Detector) model

proposed in [15] extracted permissions and Dalvik code

sequences from the Android samples. They further applied

N-gram technique to reduce the feature dimensionality and

CatBoost classifier for malware detection. The authors in

[16] extracted several static features from manifest files and

source code and applied a linear SVM algorithm for

malicious apps detection. Few more works like [17], [18],

[19] and [20] extract static features for malware detection on

Android platform. In our previous work [21], we ranked

permissions and intents with Information Gain and further

used that ranking for malware detection. In that work, we

aimed to identify the best set of intents and permissions for

better detection accuracy. In this paper, however, we aim to

identify the best set of all the manifest features to further

improve the detection accuracy.

The authors in [22] applied Factorization Machine

architecture on the set of manifest components to detect

malicious Android apps. Sato et al. [23] evaluated the malign

score for each of the manifest file components depending

upon the number of malicious applications the component is

present in. They further used that malign score for malware

detection. The work done in [24] is about a Feature

transformation-based Android Malware detector which takes

well-known features and introduces three new types of

feature transformations that transform these features

irreversibly into a new feature domain.

None of the above-discussed works have aimed to find the

best feature set comprising manifest file components for

malicious apps detection in Android. However, our work

aims to find the best feature set that could give better

detection accuracy.

ii. API Calls Based Detection

Some of the researchers have used static API calls to detect

Android malware. User-trigger dependence and sensitive

APIs in malicious apps were analyzed by [25] while the

authors in [26] constructed the dependency graphs of API

calls and categorized the malicious apps into their own

corresponding Android malware families with similarity

metrics. Similarly, the work proposed in [27] analyzed API

calls and their call graphs for malware detection. A model

was proposed with the capabilities of both binary file feature

representation and feature selection for malware detection in

[28] while in [29] the authors have used the code semantic

structure features to reflect deep semantic information and

proposed a pre-processing method of APK files to generate

graphics that reflect the code semantic features.

B. Dynamic Detection

Static detection mechanisms do not run or execute the

applications, hence, such solutions may leave the malicious

component undetected because such

malicious components

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

57

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

Figure 1: System Design of R-MFDroid Model

May be downloaded at the update time. Therefore,

dynamic solutions were proposed by the authors for Android

malware detection. We can further split these solutions into

two types: OS-based malware detection and Network Traffic

based malware detection.

i. OS-Based Detection

The API and system calls were analyzed by the authors in

[30] to detect malicious apps in Android. Feng et al.

[31] analyzed dynamic system-level behavior traces in

addition to application-level malicious behaviors like

premium service subscription, stealing of personal

information, and malicious service communication to detect

malicious activities at run-time. The authors in [32] analyzed

the system calls of apps to distinguish malware from benign

ones. Iqbal et al. [33] analyzed several dynamic features such

as CPU usage, memory consumption, and system call events

to detect malicious apps. The authors in [34] leveraged

customized deep neural networks to provide a real-time and

responsive detection environment on mobile devices against

malware while in [35] the authors proposed a robust, scalable

and efficient Cuda-empowered multi-class malware

detection technique leveraging Gated Recurrent Unit (GRU)

to identify sophisticated Android malware. Surendran et al.

[36] found the occurrence of common malicious system call

codes in the system call sequence of several malware

families.

The dynamic features extraction, for example system calls,

is computationally complex and has huge overheads as

compared to static techniques, therefore, in this paper, only a

static detection model is presented.

ii. Network Traffic Based Detection

Now, we review the related works that have used Internet

traffic features for Android malware detection. Wang et al.

[37] applied Natural Language Processing techniques on the

HyperText Transfer Protocol (HTTP) headers to detect the

malware. The authors in [38] extracted network-level

features and applied multiple classifiers to detect malicious

activity in the network traffic. Igor et al. [39] observed the

patterns of 14 features from TCP / IP headers of the normal

and malicious traffic files to detect malware network traffic.

On similar lines, the authors in [40] and [41] proposed

models to detect Android malware based upon network

traffic analysis.

All the above-discussed related works can solely be used to

detect those malware that produce some amount of network

traffic. However, these solutions fail for those which do not

generate any traffic, for example, malware that only sends

SMS in the background. Therefore, in this work, we have

neither

considered a network traffic based or an OS-based detection

solution.

C. Hybrid Detection

To combine the advantages of both static and dynamic

solutions, few hybrid solutions exist in the literature wherein

both static and dynamic features can be combined to propose

a hybrid detection model.

The authors in [42] applied deep artificial neural networks

on both static and dynamic layers for malware detection. The

authors used static permissions and intents, and dynamic API

calls for detection. Mahindru et al. [43] extracted features

such as permissions, dynamic API calls, apps rating, and the

number of users download and further applied machine

learning techniques to detect malware. AdDroid model

presented in [44] analyzed Android actions such as Internet

connections, uploading of a file to a server, installing

packages on the device, etc. to detect malicious activities on

the device. Zhu et al. [45] observed permissions, sensitive

APIs, and run-time system-related events to detect Android

malware. Apart from this, the authors in [46] and [47]

proposed two completely different hybrid detection

techniques by merging and combining the network traffic

features with permissions. In [48], a novel hybrid analysis

approach for identifying malicious behaviors concealed

within dynamically loaded code through reflective calls is

proposed.

Because the hybrid detection involves both static as well

as dynamic features, they involve computational overheads

too, similar to dynamic mechanisms. Therefore, we have

aimed to propose a static detection in our model.

III. METHODOLOGY

In this section, we discuss the proposed methodology of

our model R-MFDroid. There are two phases in our

approach: The training phase and the detection phase, as

summarized in Figure 1. We discuss both of them in detail in

the upcoming subsections.

R-MFDroid: Android Malware Detection using Ranked Manifest File Components

58

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

A. Training Phase

In the training phase, we extract several features from the

Android manifest files of the apps in the dataset, and further

aim to rank those features using Information Gain. The

training phase is further divided into various sub-phases as

discussed below.

i. Dataset

We gathered 10,414 benign apks & 5707 malicious apks

for our research work. We took the normal dataset of apps

from the Android Play Store. Trending apps like Whatsapp,

BeautyCam, etc. were also part of our dataset. Hereafter, we

checked the normal dataset from the VirusTotal website to

ensure that the normal apps downloaded from the Google

App Store are not malignant. We collected the malicious

dataset from the following sources: Drebin[16], Genome[49]

and Koodous[50].

ii. Manifest File Extraction

Static features that we intend to use in our research work

are defined inside the manifest file of Android applications.

Hence, to begin with, we first extract the manifest files of the

applications using Apktool. This tool breaks the application

(apk package file) into several components, including its

manifest file.

iii. Features Extraction

After extracting manifest files, we wrote scripts in Python

to extract the required features, i.e., Intents, Permissions,

Hardware Components, Services, Activities, Content

Providers and Broadcast Receivers. We extract these features

from all the benign and malicious apps in our dataset. We

briefly explain each of the features below:

Permissions

An Android smartphone's various resources can only be

accessed by an app if permissions are granted by the user at

the time of its installation. Android’s resources include the

data access stored in the mobile device, for example, media

files, contact list, or access to hardware components such as a

microphone or a camera. These permissions required by an

app are not granted on their own, instead, they are needed to

be granted by the user.

Intents

An intent is similar to a messaging system that can request

an action from a component of another app. Some basic

functions of intents include the start time activity, launch

activity, web page display, contact list display, and message

broadcasting.

Activities

An Android activity is nothing but the screen of an

Android app’s UI which is the same as of the windows in any

desktop application. An Android application might contain

two or more activities. An application's activity goes through

a life cycle in which the Android application is started with

main activity followed by three other states served to the

user: created, started and resumed.

Broadcast Receivers

Receivers or Broadcast Receivers are the components that

allow you to register for system or application related events.

All receivers, registered for an event, are notified at runtime

of the Android app, once this particular event happens.

Content Providers

They help to supply the content among applications when

requested. Such requests can be handled by the methods of

the class called ContentResolver. Content providers can use

different techniques to store their data and this data can be

stored in files, databases, or even over a network.

Hardware Components

Hardware components, as the name suggests, are one of

the most important components of an Android app. They

provide essential support to hardware features such as

cameras and other possible sensors.

Services

A Service is a component of an application that can

perform tasks even in the background. It doesn't have any UI.

When initiated, service assistance may keep running for quite

a while, even after the client changes to another application.

Moreover, a component can tie to service, an interface with it,

and hence inter-process communication can be performed.

iv. Bag-of-Words Model

After extracting the seven features from the manifest files

of all the apps, we use the Word Embedding Technique in

NLP for creating the Bag-of-Words Model for each of the

seven features, represented by the sets S(1), S(2), S(3),....S(7),

i.e., S(i) for i ranging from 1 to 7. A bag-of-words model is

just a matrix that represents the occurrence of various words

that are present in a corpus or document. The current model

only focuses on whether a particular word, i.e., feature in our

case, occurs in the manifest file or not.

The proposed methodology helps in the matrix

representation of each manifest file component, which is later

used by machine learning algorithms; wherein each unique

entry in the feature set is represented as a column and

applications as rows. Say the matrix is represented as

M[A][B]. The entries in M[A][B], are either 0 or 1.

The entry of 1, i.e., M[A][B] = 1 signifies that Ath app of

the dataset contains the Bth feature of S(i) feature set. The

entry of 0, i.e., M[A][B] = 0 signifies that Ath app of the

dataset does not contain the Bth feature of S(i) feature set.

v. Feature Ranking

After creating the Bag-of-Words model for each manifest

component in the matrix form, we calculate the Information

Gain (I.G.) score for each unique feature present in S(i)

feature set. Information Gain gives the measure of the

information gained about a random variable by observing

another random variable. In other words, it can be used to

determine, amongst a given set of features, which one is the

most distinguishing, i.e., the feature that can better

differentiate between several categories. Entropy defines the

uncertainty in all the features and I.G. determines the

reduction in that uncertainty. The I.G. of the feature F for C

is evaluated by the following equation, where H(C)

represents entropy for class C, and H(C/F) denotes the

uncertainty in class C for any feature F.

I.G.(C/F) = H(C) - H(C/F) (1)

We calculate I.G. for each unique feature in each feature

set, i.e, S(1) ..S(7) using the above equations. Higher the

value of I.G. score, lower the entropy, and better the feature

in distinguishing between malware & benign Apps. We rank

the features in each feature set in the descending manner of

the I.G. score. We rank all the feature sets separately. Hence,

we get seven ranked lists, one each

for each feature set, at the end of

this phase.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

59

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

B. Detection Phase

For our experiments, we have separately kept the training

and testing samples, i.e., the samples used for training and

testing are different. We extracted all seven manifest

components from each of the testing samples. We used three

machine learning algorithms: Random Forest, XGBoost, and

Support Vector Machines (SVM) and Deep Learning

technique of Neural Networks for classifying apps as benign

or malicious.

We have divided the detection phase into two Algorithms:

Algorithm 1 summarizes the method that gives the best set of

each manifest component. For instance, with Algorithm 1, we

get one best set of permissions that gives better detection

results as compared to all other permissions. Similarly, we

get one best set of each of the other manifest components that

give better accuracy.Ranked feature sets obtained from the

I.G. scores during the Training phase are used by Algorithm

1. Let us see the working of Algorithm 1 with the case of

Intents. Firstly, the

Algorithm 1: Returns Best Set of Individual Manifest File

Components

1. Input: Testing Dataset (TSet), Ranked Permissions List (PList),

Ranked Intents List (IList), Ranked Activities List (AList),

Ranked Services List (SList), Ranked Content Providers List

(CPList), Ranked Broadcast Receivers List (BRList), and

Ranked Hardware Components List (HCList)

2. Output: Best Set of Permissions (BestSetP), Intents (BestSetI),

Activities (BestSetA), Services (BestSetS), Content Providers

(BestSetCP), Broadcast Receivers (BestSetBR), and Hardware

Components (BestSetHC)

3. Parameters Initialization: AccMaxI = 0, ISet ← ɸ ,

BestSetI ← ɸ

4. for each intent Ij in IList do

5. ISet ← ISet ∪ Ij

6. Train Machine Learning Classifiers on ISet and

 identify the detection accuracy(AccDet)

7. if AccDet > AccMaxI then

8. BestSetI ← BestSetI ∪ Ij

9. AccMaxI ← AccDet

10. else

11. ISet ← ISet - Ij

12. end if

13. end for

14. Return BestSetI

Repeat the entire algorithm again for each of the manifest

component to obtain BestSetP, BestSetA, BestSetS, BestSetCP, BestSetBR,

and BestSetHC

Algorithm 2: Returns Best Set of Combined Manifest File

Components

1. Input: Testing Dataset (TSet), Best Set of Permissions (BestSetP),

Intents (BestSetI), Activities (BestSetA), Services (BestSetS),

Content Providers (BestSetCP), Broadcast Receivers

(BestSetBR), and Hardware Components (BestSetHC)

2. Output: Best Combined Set of Manifest Components

(BestSetCOMB)

3. Parameters Initialization: AccMax = 0, FSet ← ɸ, BestSetCOMB ←

ɸ

 FList ← BestSetP ∪ BestSetI ∪ BestSetA ∪ BestSetS ∪

 BestSetCP ∪ BestSetBR ∪ BestSetHC

4. Sort the features in FList in decreasing order of I.G. score.

5. for each intent Fi in FList do

6. FSet ← FSet ∪ Fi

7. Train Machine Learning Classifiers on FSet and find the

detection accuracy(AccDet)

8. if AccDet > AccMax then

9. BestSetCOMB ← FSet

10. AccMax ← AccDet

11. else

12. Continue

13. end if

14. end for

Return BestSetCOMB

Algorithm selects the highest-ranked intent, i.e., Intent with

the highest Information Gain score. We then train

classification algorithms on the selected intent and find the

initial classification accuracy. BestSetI denotes the best set of

Intents. The top-ranked Intent is put into the set BestSetI.

Thereafter, we select the second top Intent, put it into our

BestSetI, train the classification algorithms on the

merged set, and determine the detection accuracy. If this

detection accuracy, obtained after adding the second intent,

is greater than the previous one, i.e., with the top ranked

Intent alone, only then we merge the second top Intent with

the top ranked intent in the BestSetI.

Otherwise, we ignore the second top intent, go to the third

top Intent, and follow the same procedure again. After

iterating through all the Intents, the algorithm, as an output,

gives the BestSetI, i.e., the best set of Intents that returns better

detection accuracy. We repeat the procedure for each of the

manifest component to find the best set of other components,

i.e., best set of Permissions BestSetP, best set of Hardware

Components BestSetHC, best set of Content Providers

BestSetCP, best set of Activities BestSetA, best set of Broadcast

Receivers BestSetBR, and best set of Services BestSetS.

 Now, in this work, we aim to find the best set of combined

manifest file features, hence, we further use the sets: BestSetP,

BestSetI, BestSetA, BestSetS, BestSetCP, BestSetBR, and BestSetHC.

Algorithm 2 describes the method that generates, as an

output, the best set of combined features that gives better

detection results. We merge all seven sets into a single set

denoted by FList.

Furthermore, we sort the features present in FList in

descending order of I.G. score. The proposed algorithm

returns the best set of features combined, i.e., BestSetCOMB.

We should keep in mind here that to find this best set

BestSetCOMB , we do not use the whole of individual feature

sets. With the help of Algorithm 1, firstly, we find the best set

of feature sets separately.

Thereafter, in Algorithm 2, we make use of these best sets,

i.e., BestSetP, BestSetI, BestSetA, BestSetS, BestSetCP, BestSetBR,

and BestSetHC to identify the combined best set BestSetCOMB.

Different machine learning classifiers give different BestSetP,

BestSetI, BestSetA, BestSetS, BestSetCP, BestSetBR, and BestSetHC,

and hence, different accuracy. We have applied three

machine learning classifiers: Random Forest, XGBoost , and

SVM and Neural networks in Deep learning for

classification. Therefore, for each of the classifiers, we have a

different BestSetCOMB. In the next section, we discuss the

detection results obtained from the proposed approach.

R-MFDroid: Android Malware Detection using Ranked Manifest File Components

60

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

IV. RESULTS AND DISCUSSION

In this section, we discuss the results obtained with our

proposed methodology. After extraction of features,

i.e., Intents, Permissions, Hardware Components, Activities,

Services, Content Providers, and Broadcast receivers from

the manifest file of all the apps, we identified the

unique/distinct features from each feature set. For instance,

there are 280 unique permissions in the entire permission set

of our dataset. Table I, on the similar lines, summarizes the

unique number of entries in each feature set.

Table II summarizes the top 10 features in each of the

feature sets ranked in the decreasing order of Information

Gain score. Note that, this ranking is obtained when we have

kept the seven feature sets separately from each other.

However, in Table III, we show the top 20 features, if we

Table- I: Unique Entries in Different Feature Sets.
Feature Set Number of Unique Entries

Permissions 280

Intents 815

Hardware Components 72

Activities 43381

Services 7462

Content Providers 1275

Broadcast Receivers 5568

combine all the seven feature sets into a single set, ranked

in the decreasing order of information gain.

A. Permission Analysis

First, we discuss the detection results if we use the

permissions alone for detection. We use Algorithm 1 to find

the best set of permissions, i.e., BestSetP and further calculate

the detection accuracy with permissions alone. We used

SVM, Random Forest, XGBoost, and Neural Networks for

classification, and we get different results for each of the

classifiers. Table IV summarizes the results for each of the

classifiers.

Let us interpret the results obtained. SVM classifier gave

the detection accuracy of 95.13% and an F1-score of 0.9523

with the best set of 24 permissions. Corresponding to the

SVM classifier, the last column in Table IV summarizes the

rank of those 24 permissions which form the best set of

permissions and hence give better accuracy as compared to

any other set of permissions with the SVM classifier. On

closely analyzing the results, we observe that the top three

permissions are present in the best set. When the algorithm

adds fourth ranked permission into the best set, the detection

accuracy decreases. Therefore, the fourth-ranked permission

gets discarded by the algorithm and is not added into the best

set. We find that with the case of SVM, the proposed

detection algorithm went up to 70th ranked permission.

Similarly, the results with other classifiers can be

understood. When we compare the results of SVM with those

obtained from XGBoost, Random Forest, and Neural

Network, we find that Random Forest gave its best accuracy

of 95.13% and F1-Score of 0.9510 on the best set of 25

permissions. Neural Networks gave its best accuracy of

94.62% and an F1-score of 0.9459 on the best set of 21

permissions.

B. Intents Analysis

Similar to the analysis done with permissions in the

previous subsection, we review the results, in this subsection,

if we use the intents

Table- II: Top 10 Ranked Manifest File Components (Seven Feature Sets Kept Separately).

Top Permissions Top Intents Top Activities
Top Hardware

Components
Top Services

Top Broadcast

Receivers

Top Content

Providers

Read SMS Browsable GoogleApi TouchScreen Firebase Instance Id Firebase Instance Id FirebaseInit

Read Phone State View Ad Activity
Touchscreen

Multitouch
App Measurement App Measurement FacebookInit

Send SMS Boot Completed Facebook Activity Touchscreen Distinct
App Measurement

Job
App Install Referrer Crashlytics Init

Write SMS Sig Str Custom Tab Main Camera
Component

Discovery

Access Token

Expiration

Content.File

Provider

Receive SMS Default Sign In Hub Location GPS Firebase Messaging Analytics Mobileads Init

Wake Lock User Present Audience Network Location Revocation Bound Update Receiver Facebook Content

Write APN

Settings

Battery

Changed
CustomTab Camera Autofocus Analytics Basea Marketing Init

Restart Packages Input Method RemoteAN Wi-Fi Analytics Job Multiple Install
Arch.Process

Lifecycle Owner

Read External

Storage

My Package

Replaced

AppLovin

Confirmation
Location Network Ads Messenger Network State Firebase Perf

Read Logs
UMS

Connected

AppLovin

Interstitial

Sensor

Accelerometer
AdsProcess Priority Campaign Tracking

Process Lifecycle

Owner Initializer

Table- III: Top 20 Ranked Manifest File Components

(Seven Feature Sets Combined).
Rank Feature Name Feature type

1 GoogleApi Activity

2 Firebase Instance Id Broadcast Receiver

3 Firebase Init Content Provider

4 Firebase Instance Id Services

5 App Measurement Broadcast Receiver

6 App Measurement Services

7 App Measurement Install Referrer Broadcast Receiver

8 App Measurement Job Services

9 Component Discovery Services

10 Ad Activity Activity

11 Read SMS Permission

12 Firebase Messaging Services

13 Read Phone State Permission

14 Send SMS Permission

15 Facebook Activity Activity

16 Write SMS Permission

17 Browsable Intent

18 Receive SMS Permission

19 Custom Tab Main Activity

20 Facebook Init Content Provider

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

61

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

Feature alone for detection. Again, we apply Algorithm 1

to find the best set of intents and the corresponding accuracy.

Table V summarizes the results obtained with intents. Similar

to the results obtained with the permissions, we observe that

Neural Networks gave the highest accuracy of 85.66%

amongst all the classifiers. And the best set consisted of only

17 intents. The best set generated with other classifiers was

higher than that obtained with Neural Networks. Hence, we

can argue that the Neural Networks was better than all other

classifiers as far as Intents feature is concerned.

C. Activities Analysis

On similar lines, we review the results if we use the

activities alone for malware detection. Again, we apply

Algorithm 1 to find the best set of activities and the detection

accuracy with that best set of activities. Table VI summarizes

the results obtained with activities. We observe that SVM

gave the highest accuracy of 95.52% amongst all the

classifiers. However, the detection algorithm went up to

601st ranked activity and the best set consisted of 24

activities, higher than all other classifiers.

D. Broadcast Receivers Analysis

In this subsection, we review the results if we use the

broadcast receivers alone for Android malware detection.

Again, we apply Algorithm 1 to find the best set of broadcast

receivers and the detection accuracy with the best set of

receivers. Table VII summarizes the results obtained with

receivers. Again, we observe that SVM gave the highest

accuracy of 91.04% amongst all the classifiers. However, the

detection algorithm went up to 675th ranked broadcast

receiver and the best set consisted of 35 receivers, higher than

all other classifiers.

TABLE- IV: Detection Results with Permissions

Classifier
Detection

Accuracy (in %)
F1 Score

Best

Set
Rank of Permissions Involved

SVM 95.13 0.9523 24 1, 2, 3, 6, 7, 8, 11, 13, 15, 16, 18, 21, 22, 24, 30, 32, 35, 36, 38, 47, 63, 68,69, 70

Random Forest 95.13 0.9510 25
1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 28, 32, 35, 37, 41, 47,62, 74,

101
XG Boost 95.26 0.9534 23 1, 2, 3, 6, 7, 8, 11, 13, 14, 15,18, 21, 26, 32, 33, 35, 36, 37, 38, 47, 60, 63,65

Neural Networks 94.62 0.9459 21 1, 2, 3, 6, 7, 8, 9, 13, 15, 24, 25, 29, 30, 32, 33, 35, 62, 63, 66, 101, 214

TABLE- V: Detection Results with Intents

Classifier
Detection

Accuracy (in %)
F1 Score

Best

Set
Rank of Intents Involved

SVM 86.43 0.8567 19 1, 3, 4, 6, 9, 10, 12, 13, 19, 21, 23, 29, 33, 43, 45, 50, 65, 102, 778

Random Forest 86.55 0.8605 18 1, 3, 4, 6, 9, 10, 12, 13, 16, 18, 19, 21, 29, 35, 38, 44, 47, 70
XG Boost 86.56 0.8591 17 1, 3, 4, 6, 9, 10, 12, 13, 19, 21, 23, 29, 44, 50, 56, 74, 797

Neural Networks 85.66 0.8486 17 1, 3, 4, 6, 7, 9, 10, 12, 15, 18, 19, 29, 33, 44, 50, 79, 83

TABLE- VI: Detection Results with Activities

Classifier
Detection

Accuracy (in %)
F1 Score

Best

Set
Rank of Activities Involved

SVM 95.52 0.9567 24
1, 2, 3, 9, 10, 22, 24, 27, 31, 36, 44, 45, 79, 82, 96, 103, 128, 135, 157, 166,

167, 182, 337, 601
Random Forest 94.11 0.9436 14 1, 2, 3, 22, 36, 71, 72, 79, 128, 129, 135, 167, 168, 975

XG Boost 93.73 0.9402 9 1, 2, 3, 44, 67, 71, 128, 337, 975

Neural Networks 94.37 0.9466 20 1, 2, 5, 6, 9, 24, 25, 36, 52, 55, 66, 78, 88, 125, 150, 296, 298, 346, 540, 975

TABLE- VII: Detection Results with Broadcast Receivers

Classifier
Detection

Accuracy (in %)
F1 Score

Best

Set
Rank of Broadcast Receivers Involved

SVM 91.04 0.9188 35
1, 2, 4, 5, 9, 12, 16, 17, 25, 26, 28, 30, 35, 51, 57, 67, 82, 93, 106, 121, 156,

179, 237, 264, 285, 344, 345, 407, 539, 542, 557, 590, 611, 651, 675

Random Forest 89.50 0.9064 24
1, 2, 4, 5, 9, 12, 16, 17, 25, 26, 30, 35, 51, 57, 82, 93, 106, 156, 179, 264, 344,

345, 611, 651
XG Boost 87.84 0.8929 14 1, 2, 4, 5, 9, 12, 16, 17, 30, 51, 57, 106, 179, 285

Neural Networks 89.50 0.9062 26 1, 2, 4, 5, 9, 12, 16, 17, 25, 26, 28, 30, 32, 35, 51, 57, 59, 82, 83, 93, 156, 179,

264, 285, 345, 611

E. Content Providers Analysis

In this subsection, we review the results if we use the

content providers alone for Android malware detection.

Again, we apply Algorithm 1 to find the best set of content

providers and the detection accuracy with the best set of

providers. Table VIII summarizes the results obtained with

content providers. Again, we observe that SVM gave the

highest accuracy of 90.91% amongst all the classifiers.

However, the detection algorithm went up to 956th ranked

content provider and the best set consisted of 23 providers,

higher than all other classifiers.

R-MFDroid: Android Malware Detection using Ranked Manifest File Components

62

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

F. Hardware Components Analysis

In this subsection, we review the results if we use the

hardware components alone for Android malware detection.

Again, we apply Algorithm 1 to find the best set of hardware

components and the detection accuracy with the best set of

components. Table IX summarizes the results obtained with

hardware components. Again, we observe that SVM gave the

highest accuracy of 76.31% amongst all the classifiers.

However, the best set with SVM consisted of 17 components,

higher than all other classifiers.

G. Services Analysis

In this subsection, we review the results if we use the

services alone for Android malware detection. Again, we

apply Algorithm 1 to find the best set of services and the

detection accuracy with the best set of services. Table X

summarizes the results obtained with services. Again, we

observe that SVM gave the highest accuracy of 90.65%

amongst all the classifiers. However, the best set with SVM

consisted of 29 services, higher than all other classifiers.

TABLE- VIII: Detection Results with Content Providers

Classifier
Detection

Accuracy (in %)
F1 Score

Best

Set
Rank of Content Providers Involved

SVM 90.91 0.9179 23
1, 2, 3, 4, 5, 6, 8, 17, 19, 23, 51, 52, 64, 67, 303, 331, 406, 607, 730, 753, 764,

904, 956
Random Forest 89.50 0.9064 12 1, 2, 3, 4, 5, 6, 8, 17, 19, 23, 52, 67

XG Boost 89.12 0.9033 9 1, 2, 3, 4, 5, 6, 8, 17, 52

Neural Networks 89.50 0.9064 12 1, 2, 3, 4, 5, 6, 8, 17, 19, 23, 52, 67

Table- IX: Detection Results with Hardware Components

Classifier
Detection

Accuracy (in %)
F1 Score

Best

Set
Rank of Hardware Components Involved

SVM 76.31 0.7996 17 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 20, 21, 25, 29, 36

Random Forest 75.03 0.7923 11 1, 3, 4, 5, 6, 7, 8, 10, 13, 20, 22
XG Boost 75.03 0.7923 13 1, 3, 4, 5, 6, 7, 8, 10, 11, 15, 16, 18, 31

Neural Networks 74.52 0.7885 9 1, 3, 4, 5, 9, 14, 25, 27, 36

TABLE- X: Detection Results with Services

Classifier
Detection

Accuracy (in %)
F1 Score

Best

Set
Rank of Services Involved

SVM 90.65 0.9158 29
1, 2, 4, 6, 7, 9, 18, 27, 29, 36, 40, 41, 56, 61, 71, 72, 136, 149, 152, 196, 247,

249, 288, 443, 523, 663, 734, 755, 815
Random Forest 89.24 0.9043 21 1, 2, 4, 6, 7, 9, 18, 27, 29, 40, 41, 56, 61, 71, 72, 136, 137, 249, 250, 443, 451

XG Boost 87.45 0.8901 12 1, 2, 4, 6, 7, 9, 18, 27, 40, 56, 71, 149

Neural Networks 89.88 0.9095 24 1, 2, 4, 6, 7, 9, 18, 27, 29, 36, 40, 41, 56, 61, 71, 72, 136, 149, 152, 216, 247,

249, 288, 755

TABLE- XI: Detection Results with Merged Best Set of Manifest File Components

Classifier

Best Set Count
Accuracy

(in %)

F1-Score

Permissions
Intent

s
Activity

Broadcast

Receivers

Content

provider

Hardware

Components
Services Merged

SVM 24 19 24 35 23 17 29 171 96.80 0.9690

Random

Forest
25 18 14 24 12 11 21 125 96.41 0.9650

XG Boost 23 17 9 14 9 13 12 97 95.52 0.9569

Neural

Networks
21 17 20 26 12 9 24 129 96.54 0.9664

H. Combined Manifest Components Analysis

In this subsection, we discuss the results when we merge

all the manifest components together for malware detection.

Algorithm 2 aims to find the best set of manifest components

that give better accuracy than any other set of components.

However, before reviewing the results from Algorithm 2, we

discuss the detection results if we merge the best set of each

manifest component obtained from Algorithm 1. Table XI

summarizes the results if we merge the best set of each

manifest component and then find the accuracy.

We observe that the SVM classifier gave the best

accuracy of 96.80% amongst other classifiers when we merge

the best set of each manifest component. However, the

number of components in the best set was relatively higher

with SVM, i.e., 171 as compared to other classifiers. Other

classifiers like Random Forest and Neural Networks also

gave nearly the same accuracy (around 96%) with a lower

merged best set count. Next, we review the results obtained

with the proposed Algorithm 2, i.e., rather than combining

the best set of each component, the proposed approach itself

finds the best set of all manifest components by iterating

through the ranked list of components. Table XII

summarizes the detection results with the proposed approach.

Again, the SVM classifier gave better accuracy (96.93%) as

compared to other classifiers. We also observe that other

classifiers also gave nearly the same accuracy (around 96%).

From these results we make two important observations:

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

63

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

• On comparing the detection accuracy obtained from

the best set of permissions (Table IV), best set of intents

(Table V), best set of activities (Table VI), best set of

Broadcast receivers (Table VII), best set of Content

Providers (Table VIII), best set of Hardware

Components (Table IX), best set of Services (Table X),

and merged best set of all components (Table XI) with

the accuracy obtained from the proposed Algorithm 2

(Table XII), we observe that the proposed approach

gives better detection accuracy as compared to all other

cases for all the classifiers.

• When we compare Tables XI and XII, we note that

the number of manifest file components in the best set is

also less with Algorithm 2 as compared to merging the

best set of each component.

TABLE- XII: Detection Results with Combined Manifest File Components (Algorithm 2).

Classifier

Best Set Count
Accuracy

(in %)
F1-Score

Permissions Intents Activity
Broadcast

Receivers

Content

provider

Hardware

Components
Services Merged

SVM 5 2 9 1 3 4 1 25 96.93 0.9702

Random

Forest
6 4 3 1 3 2 0 19 96.41 0.9655

XG Boost 4 2 3 2 3 3 0 17 96.16 0.9631

Neural
Networks

3 2 3 3 1 1 2 15 96.80 0.9689

Therefore, we conclude that combining all components

using the proposed approach for malware detection is better

than using the individual components

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a static model named

R-MFDroid for Android malware detection by analyzing the

manifest file components. To begin with, we ranked all the

manifest file components using Information Gain. Further,

we proposed a novel method that applied various machine

learning and deep learning algorithms on the ranked

components. The algorithm produced the best set of

components that gave better accuracy as compared to any

other set of components. The results highlighted that

combining all the manifest file components for malware

detection gave better results than the individual

components. In our future work, we will put forward a novel

technique that combines, with manifest file

components, other features such as API calls, system calls,

network traffic, etc., to detect the stealthier malware samples.

ACKNOWLEDGMENT

The authors would like to thank the authors of Genome,

Drebin and Koodous for providing us the malware samples

for our experiments

REFERENCES

1. Desktop vs Mobile vs Tablet Market Share Worldwide, Available

Online. https://gs.statcounter.com/platform641

market-share/desktop-mobile-tablet/.
2. Android dominates 81% of the world smartphone market, Available

Online. https://www.cnet.com/news/android643
dominates-81-percentof-world-smartphone-market/.

3. Critical Warning Issued Regarding 10 Million Samsung Phone

Updates, Available On line.
https://www.forbes.com/sites/daveywinder/2019/07/05/critical-warni

ng-issued-regarding-10-million-samsung-phone-updates/.
4. Hundreds of Malicious Apps are showing up on the Google Play

Store, disguised as legitimate Applications, Available

Online.https://us.norton.com/internetsecurity-emerging-threats-hundr
eds-of-android-apps-containing-dresscode-malware-hiding-in-google

-play-store.html/.
5. Development of new Android malware worldwide from June 2016 to

May 2019, Available Online.

https://www.statista.com/statistics/680705/global-android-malware-v

olume/.
6. 45,000 Android devices infected by new unremovable xHelper

malware, Available On line.
https://thenextweb.com/security/2019/10/30/45000-android-devices-i

nfected-by655 new-unremovable-xhelper-malware/.

7. A. Feizollah et al., ”A review on feature selection in mobile malware
detection”, Digital Investigation, vol. 13, pp. 22-37, 2015.

8. M. Grace, W. Zhou, X. Jiang, and A. Sadeghi, ”Unsafe exposure
analysis of mobile in-app advertisements”, 5th ACM WiSec, 2012.

9. W. Enck, M. Ongtang, and P. McDaniel, ”On Lightweight Mobile

Phone Application Certifi661 cation”, 16th ACM CCS, 2009.

10. K. Talha, D. Alper, and C. Aydin, ”APK Auditor: Permission-based

Android malware detection system”, Digital Investigation, vol. 13,
pp. 1-14, 2015.

11. V. Moonsamy, J. Rong, and S. Liu, ”Mining permission patterns for

contrasting clean and malicious android applications”, Future
Generation Computer Systems, vol. 36, pp. 122-132, 2014.

12. F. Idrees, and M. Rajarajan, ”Investigating the Android Intents and
Permissions for Malware detection”, 7th International Workshop on

Selected Topics in Mobile and Wireless Computing, 2014.

13. R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and
M. Conti, "Similarity-based Android malware detection using

Hamming distance of static binary features", Future Generation
Computer Systems, vol. 105, pp. 230-247, 2020.

14. J. Qiu et al., "A3CM: Automatic Capability Annotation for Android

Malware," IEEE Access, vol. 7, pp. 147156-147168, 2019.
15. H. Bai, N. Xie, X. Di and Q. Ye, "FAMD: A Fast Multifeature

Android Malware Detection Framework, Design, and
Implementation," IEEE Access, vol. 8, pp. 194729-194740, 2020.

16. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,

”DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket”,NDSS,2014.

17. M. Varsha, P. Vinod, and K. Dhanya, "Identification of malicious
android app using manifest and opcode features", Journal of

Computer Virology and Hacking Techniques, vol. 13,

pp. 125–138, 2017.
18. A. Mahindru, and A. Sangal, "FSDroid:- A feature selection

technique to detect malware from Android using Machine Learning
Techniques", Multimedia Tools and Applications, 2021.

19. V. Dharmalingam, and V. Palanisamy, "A novel permission ranking

system for android malware detection—the permission grader",
Journal of Ambient Intelligence and Humanized Computing, 2020.

20. A. Arora, S. K. Peddoju and M. Conti, "PermPair: Android Malware
Detection Using Permission Pairs," IEEE Transactions on

Information Forensics and Security, vol. 15, pp. 1968-1982, 2020.

R-MFDroid: Android Malware Detection using Ranked Manifest File Components

64

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89510510721
DOI: 10.35940/ijitee.G8951.0510721

21. K. Khariwal, J. Singh and A. Arora, "IPDroid: Android Malware
Detection using Intents and Permissions," 4th World Conference on

Smart Trends in Systems, Security and Sustainability (WorldS4),

London, United Kingdom, pp. 197-202, 2020.

22. C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang and H. Kinawi, "Android

Malware Detection Based on Factorization Machine," IEEE Access,
vol. 7, pp. 184008-184019, 2019.

23. R. Sato, D. Chiba, and S. Goto, "Detecting Android Malware by
Analyzing Manifest Files", Proceedings of the Asia-Pacific Advanced

Network, vol. 36, pp. 23-31, 2013.

24. Q. Han, V. S. Subrahmanian and Y. Xiong, "Android Malware
Detection via (Somewhat) Robust Irreversible Feature

Transformations," IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 3511-3525, 2020.

25. K. Elish et al., ”Profiling user-trigger dependence for Android

malware detection”, Computers & Security, vol. 49, pp. 255-273,
2015.

26. M. Zhang et al., ”Semantics-Aware Android Malware Classification
Using Weighted Contextual API Dependency Graphs”, ACM CCS,

2014.

27. H. Zhang, S. Luo, Y. Zhang and L. Pan, "An Efficient Android

Malware Detection System Based on Method-Level Behavioral

Semantic Analysis," IEEE Access, vol. 7, pp. 69246-69256, 2019.
28. M. Y. -Azar, L. Hamey, V. Varadharajan and S. Chen, "Byte2vec:

Malware Representation and Feature Selection for Android," The

Computer Journal, vol. 63, no. 1, pp. 1125-1138, 2020.
29. Y. Zhang and B. Li, "Malicious Code Detection Based on Code

Semantic Features," IEEE Access, vol. 8, pp. 176728-176737, 2020,
30. V.M. Afonso et al., ”Identifying Android malware using dynamically

obtained features”, Journal of Computer Virology and Hacking

Techniques, vol. 11, pp.9-17,2015.
31. P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma, "A Novel Dynamic Android

Malware Detection System With Ensemble Learning," IEEE Access,
vol. 6, pp. 30996-31011, 2018.

32. M. Jaiswal, Y. Malik and F. Jaafar, "Android gaming malware

detection using system call analysis," 6th International Symposium on
Digital Forensic and Security (ISDFS), Antalya, pp. 1-5, 2018.

33. S. Iqbal and M. Zulkernine, "SpyDroid: A Framework for Employing
Multiple Real-Time Malware Detectors on Android," 13th

International Conference on Malicious and Unwanted Software

(MALWARE), Nantucket, MA, USA, pp. 1-8, 2018.
34. R. Feng, S. Chen, X. Xie, G. Meng, S. -W. Lin and Y. Liu, "A

Performance-Sensitive Malware Detection System Using Deep
Learning on Mobile Devices," IEEE Transactions on Information

Forensics and Security, vol. 16, pp. 1563-1578, 2021.

35. I. Bibi, A. Akhunzada, J. Malik, J. Iqbal, A. Musaddiq and S. Kim, "A
Dynamic DL-Driven Architecture to Combat Sophisticated Android

Malware," IEEE Access, vol. 8, pp. 129600-129612, 2020.
36. R. Surendran, T. Thomas and S. Emmanuel, "On Existence of

Common Malicious System Call Codes in Android Malware

Families," IEEE Transactions on Reliability, vol. 70, no. 1, pp.
248-260, 2021.

37. S. Wang, et al., ”Detecting Android Malware Leveraging Text
Semantics of Network Flows”, IEEE Transactions On Information

Forensics And Security, vol. 13, pp. 1096-1109, 2018.

38. J. Feng, L. Shen, Z. Chen, Y. Wang and H. Li, "A Two-Layer Deep
Learning Method for Android Malware Detection Using Network

Traffic," IEEE Access, vol. 8, pp. 125786-125796, 2020.
39. I. J. Sanz, M. A. Lopez, E. K. Viegas and V. R. Sanches, "A

Lightweight Network-based Android Malware Detection System,"

IFIP Networking Conference (Networking), Paris, France, pp.
695-703, 2020.

40. A. Arora, S. Garg, and S.Peddoju,”Malware detection using network
traffic analysis in android based mobile devices”, 8th IEEE

NGMAST,2014.

41. A. Arora, and S. Peddoju, ”Minimizing Network Traffic Features for
Android Mobile Malware Detection”, 18th ACM ICDCN, 2017.

42. S. Imtiaz, S. Rehman, A. Javed, Z. Jalil, X. Liu, and W. Alnumay,
"DeepAMD: Detection and identification of Android malware using

high-efficient Deep Artificial Neural Network", Future Generation

Computer Systems, vol. 115, pp. 844 – 856, 2021.
43. A. Mahindru, A. Sangal, "MLDroid—framework for Android

malware detection using machine learning techniques", Neural
Computing & Applications, 2020.

44. A. Mehtab et al., "AdDroid: Rule-Based Machine Learning

Framework for Android Malware Analysis", Mobile Networks
and Applications, vol. 25, pp. 180–192, 2020.

45. H. Zhu et al., "HEMD: a highly efficient random forest-based
malware detection framework for Android," Neural Computing &

Applications, vol. 30, pp. 3353–3361, 2018.

46. A. Arora, and S. Peddoju, ”NTPDroid: A Hybrid Android Malware
Detector Using Network Traffic and System Permissions”, 17th IEEE

TrustCom, 2018.

47. A. Arora, S. Peddoju, V. Chauhan, and A. Chaudhary, ”Hybrid

Android Malware Detection by Combining Supervised and

Unsupervised Learning”, 24th ACM MobiCom, 2018.
48. M. Alhanahnah et al., "DINA: Detecting Hidden Android Inter-App

Communication in Dynamic Loaded Code," IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 2782-2797, 2020.

49. Y. Zhou, and X. Jiang, ”Dissecting android malware: Characterization

and evolution”, IEEE Symposium on Security and Privacy, 2012.
50. Koodous Malware Dataset, ”www.koodous.com”.

51. A. Taha, and S. Malebary, "Hybrid classification of Android malware
based on fuzzy clustering and the gradient

boosting machine", Neural Computing and Applications, 2020.

AUTHORS PROFILE

Kartik Khariwal, is a final year undergraduate

student at Delhi Technological University, India. He is

pursuing B.Tech in the Discipline of Mathematics &
Computing. He has the experience of internship with

Samsung Research and Development, India. His areas
of interests include Machine Learning, Competitive

Programming, and Android Security.

Rishabh Gupta, is a final year B.Tech student in the

Discipline of Mathematics and Computing at Delhi
Technological University, India. His areas of interest

include Mathematics, Machine Learning, Data

Analysis, Android Security and Competitive Coding.
He also has work experience with American Express

as a Risk Analyst.

Jatin Singh, is a final year B.Tech student in the
Discipline of Mathematics and Computing at Delhi

Technological University, India. His interest lies in
competitive coding and Android Security, and he is

enthusiastic about new technology.

Anshul Arora, is currently working as Assistant
Professor in Discipline of Mathematics and

Computing, Delhi Technological University Delhi,

India. He has pursued Masters and Ph.D. from
Department of Computer Science and Engineering,

Indian Institute of Technology Roorkee, India. His
areas of research include Mobile Security, Mobile

Malware Detection, and Network Traffic Analysis.

