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Abstract: With the increasing fame of Android OS over the past 

few years, the quantity of malware assaults on Android has 

additionally expanded. In the year 2018, around 28 million 

malicious applications were found on the Android platform and 

these malicious apps were capable of causing huge financial 

losses and information leakage. Such threats, caused due to these 

malicious apps, call for a proper detection system for Android 

malware. There exist some research works that aim to study static 

manifest components for malware detection. However, to the best 

of our knowledge, none of the previous research works have 

aimed to find the best set amongst different manifest file 

components for malware detection. In this work, we focus on 

identifying the best feature set from manifest file components 

(Permissions, Intents, Hardware Components, Activities, Services, 

Broadcast Receivers, and Content Providers) that could give better 

detection accuracy.  We apply Information Gain to rank the 

manifest file components intending to find the best set of 

components that can better classify between malware applications 

and benign applications. We put forward a novel algorithm to find 

the best feature set by using various machine learning classifiers 

like SVM, XGBoost, and Random Forest along with deep learning 

techniques like classification using Neural networks. The 

experimental results highlight that the best set obtained from the 

proposed algorithm consisted of 25 features, i.e., 5 Permissions, 2 

Intents, 9 Activities, 3 Content Providers, 4 Hardware 

Components, 1 Service, and 1 Broadcast Receiver. The SVM 

classifier gave the highest classification accuracy of 96.93% and 

an F1-Score of 0.97 with this best set of 25 features. 

Keywords: Android Security, Machine Learning, Malware 

Detection, Manifest File Components, Mobile Malware, Static 

Solution.  

I. INTRODUCTION 

With smartphones being a regular part of our lives these 

days, we can say that nearly every individual has a 

smartphone in the 21st century. They are one among many of 

the cheapest and simplest ways to connect to the World Wide 

Web, i.e., Internet. As per a recent report [1], the share of 

smartphones and desktop systems is 54.49%  and 45.51% in 

the business market respectively. This highlights the 
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popularity of smartphones in users across the globe. 

Moreover, the presence of feature rich apps in smartphones 

make them more popular than desktops and laptops.  Among 

all mobile operating systems, Android has the highest 

shareholder with 81% [2] in the current market. These reports 

portray the developing popularity of mobile devices, 

specifically Android based, and it is predicted to increment 

further in the upcoming years.  
With the expanding interest of users in smartphones, the 

danger to these smartphones is likewise expanding. As per 

the reports [3], nearly 10 million mobile devices were 

infected with malware through a "Samsung 

Update".  Another recent report [4] shows that thousands of 

malignant applications are randomly uploaded on various app 

stores, which are disguised as they are legitimate 

applications.  A malware known as Dress-code was carried 

out by these malicious apps. Dress-code is programmed in 

such a way that it is able to infiltrate deep networks and is 

able to steal data from the system. These examples depict 

how weak the current security of smartphones is and how 

easy it is to get targeted by attackers. These malicious 

apps  pose threats like data leaks, system damage, huge 

monetary losses, etc.  

Since more users are opting for Android over other mobile 

OS nowadays, that’s why it is coming out to be a major target 

by attackers. In 2017, around 26 million malicious 

applications were detected on Android platform [5]. 

Whereas, In May 2019, around 45,000 users with Android 

OS were infected by an unknown malware named xhelper 

[6]. Presence of such attacks in Android demand stronger and 

stealthier mechanisms to detect malicious apps with greater 

accuracy. 

A. Motivation  

A great amount of research has been done in the detection 

of Android apps containing malicious behavior which can be 

categorized into three detection types: Static, Dynamic, and 

Hybrid detection. Dynamic and Hybrid malware detection 

focuses on analysing the runtime behavior of apps which is 

very computationally complex. Therefore, our research 

focuses on the static detection of malicious apps. 
Among the components present in the manifest file, 

permissions is the most used feature in static detection of 

Android malware, followed by Java Code, intents, and then 

other components. Manifest file components have been used 

in a few research works for Android malware detection. For 

example, authors in [7], [8], [9], [10], and [11] have used 

features from manifest files for Android malware detection.  
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However, to the best of our knowledge, none of the 

previous works done on the static detection of malware apps 

have aimed to find the best set of different manifest file 

components, i.e., best set comprising of Permissions, Intents, 

Hardware Components, Activities, Services, Broadcast 

Receivers and Content Providers which can distinguish 

between benign and malicious apps with better accuracy.  
Therefore, in this paper, we aim to identify the best feature 

set of manifest components which gives better detection 

accuracy. This work is an extension of our previous work 

[21] where we studied permissions and intents for Android 

malware detection. In this extended version, we have 

considered seven features that can be extracted from an 

Android manifest file, i.e., Permissions, Intents, Hardware 

components, Activities, Services, Content Providers, and 

Broadcast Receivers, for Android malware detection. 

B. Contributions 

The proposed work is divided into three basic yet effective 

steps which are highlighted below: 

1. Firstly, for each feature, i.e.,  for each manifest file 

component, we created a Bag-of-Words model which is 

a matrix representation with all apps as rows and each 

unique feature  represented as a column. 

2. We ranked all the features  based  on Information Gain 

(I.G.) Score by calculating I.G. for each unique feature.  

3. Further, to find the best set of combined features from 

different manifest file components, we proposed a novel 

algorithm to find the best set comprising of all the 

features by executing several  machine learning models 

along with deep learning techniques.  

C. Organization 

The rest of the paper is organized as follows. In section 

II,  we review the related works in the field of Android 

malware detection. The proposed methodology is elaborated 

in Section III. Section IV discusses the experimental results 

and we conclude with future work directions in Section V. 

II.  RELATED WORK 

In this section, we review the research works put forward 

for Android malware detection. Related works can be divided 

into three different categories - Static, Dynamic, and Hybrid 

detection. We review each of the detection types in the 

upcoming subsections. 

A. Static Detection 

In static techniques, the Android malware are detected 

without executing the malicious apps on smartphones. Static 

features like manifest file components, Java code, API calls, 

etc. are used in static detection. 

i. Manifest File Based Detection 

In this subsection, we discuss the related works that have 

studied various manifest file components for Android 

malware analysis or detection. The authors in [10] calculated 

a specific score of each permission by dividing the number of 

malware samples containing that permission by the total 

number of malware present in the dataset.  They further used 

this permissions score to detect malicious apps. Moonsamy et 

al. [11] analysed the harmful and dangerous patterns of 

permissions defined within the malicious apps.    

Idrees et al. [12] identified the significant intents and 

permissions defined in malicious samples as well as the 

normal apps and used them for detecting malware.  The 

authors in [13] applied Hamming Distance to find the 

similarity between the malware and normal apps based on the 

static features of permissions, intents, and API's. Qiu et al. 

[14] applied multi-label classification models on the set of 

extracted features like permissions, API calls, network 

addresses, etc. with an aim to detect zero-day malware 

families.  FAMD (Fast Android Malware Detector) model 

proposed in [15] extracted permissions and Dalvik code 

sequences from the Android samples. They further applied 

N-gram technique to reduce the feature dimensionality and 

CatBoost classifier for malware detection.  The authors in 

[16] extracted several static features from manifest files and 

source code and applied a linear SVM algorithm for 

malicious apps detection. Few more works like [17], [18], 

[19] and [20]  extract static features for malware detection on 

Android platform. In our previous work [21], we ranked 

permissions and intents with Information Gain and further 

used that ranking for malware detection. In that work, we 

aimed to identify the best set of intents and permissions for 

better detection accuracy. In this paper, however, we aim to 

identify the best set of all the manifest features to further 

improve the detection accuracy. 

The authors in [22] applied Factorization Machine 

architecture on the set of manifest  components to detect 

malicious Android apps. Sato et al. [23] evaluated the malign 

score for each of the manifest file components depending 

upon the number of malicious applications the component is 

present in. They further used that malign score for malware 

detection.  The work done in  [24]  is about a Feature 

transformation-based Android Malware detector which takes 

well-known features  and introduces three new types of 

feature transformations that transform these features 

irreversibly into a new feature domain. 

None of the above-discussed works have aimed to find the 

best feature set comprising manifest file components for 

malicious apps detection in Android.  However, our work 

aims to find the best feature set that could give better 

detection accuracy. 

ii. API Calls Based Detection 

Some of the researchers have used static API calls to detect 

Android malware. User-trigger dependence and sensitive 

APIs in malicious apps were analyzed by [25] while the 

authors in [26] constructed the dependency graphs of API 

calls and categorized the malicious apps into their own 

corresponding Android malware families with similarity 

metrics.  Similarly, the work proposed in [27] analyzed API 

calls and their call graphs for malware detection. A model 

was proposed with the capabilities of both binary file feature 

representation and feature selection for malware detection in 

[28] while in [29] the authors have used the code semantic 

structure features to reflect deep semantic information and 

proposed a pre-processing method of APK files to generate 

graphics that reflect the code semantic features.  

B. Dynamic Detection 

Static detection mechanisms do not run or execute the 

applications, hence, such solutions may leave the malicious 

component undetected because such 

malicious components  
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Figure 1: System Design of R-MFDroid Model 

 

May be downloaded at the update time. Therefore, 

dynamic solutions were proposed by the authors for Android 

malware detection. We can further split these solutions into 

two types: OS-based malware detection and Network Traffic 

based malware detection. 

i. OS-Based Detection 

The API and system calls were analyzed by the authors in 

[30] to detect malicious apps in Android. Feng et al. 

[31]  analyzed dynamic system-level behavior traces in 

addition to application-level malicious behaviors like 

premium service subscription, stealing of  personal 

information, and malicious service communication to detect 

malicious activities at run-time.  The authors in [32] analyzed 

the system calls of apps to distinguish malware from benign 

ones. Iqbal et al. [33] analyzed several dynamic features such 

as CPU usage, memory consumption,  and system call events 

to detect malicious apps. The authors in [34]  leveraged 

customized deep neural networks to provide a real-time and 

responsive detection environment on mobile devices against 

malware while in [35] the authors proposed a robust, scalable 

and efficient Cuda-empowered multi-class malware 

detection technique leveraging Gated Recurrent Unit (GRU) 

to identify sophisticated Android malware. Surendran et al. 

[36] found the occurrence of common malicious system call 

codes in the system call sequence of several malware 

families. 

The dynamic features extraction, for example system calls, 

is computationally complex and has huge overheads as 

compared to  static techniques, therefore, in this paper, only a 

static detection model is presented. 

ii. Network Traffic Based Detection 

Now, we review the related works that have used  Internet 

traffic features for Android malware detection. Wang et al. 

[37]  applied Natural Language Processing techniques on the 

HyperText Transfer Protocol (HTTP) headers to detect the 

malware.  The authors in [38] extracted network-level 

features and applied multiple classifiers to detect malicious 

activity in the network traffic.  Igor et al. [39] observed the 

patterns of 14 features from TCP / IP headers of the normal 

and malicious traffic files to detect malware network traffic. 

On similar lines, the authors in [40] and [41] proposed 

models to detect Android malware based upon network 

traffic analysis.  

All the above-discussed related works can solely be used to 

detect those malware that produce some amount of network 

traffic. However, these solutions fail for those which do not 

generate any traffic, for example, malware that only sends 

SMS in the background. Therefore, in this work,  we have 

neither  

considered a network traffic based or an OS-based detection 

solution. 

C. Hybrid Detection 

To combine the advantages of both static and dynamic 

solutions, few hybrid solutions exist in the literature wherein 

both static and dynamic features can be combined to propose 

a hybrid detection model. 

The authors in [42] applied deep artificial neural networks 

on both static and dynamic layers for malware detection. The 

authors used static permissions and intents, and dynamic API 

calls for detection. Mahindru et al. [43] extracted features 

such as permissions, dynamic API calls, apps rating,  and the 

number of users download and further applied machine 

learning techniques to detect malware. AdDroid model 

presented in [44] analyzed Android actions such as Internet 

connections, uploading of a file to a server, installing 

packages on the device, etc. to detect malicious activities on 

the device. Zhu et al. [45] observed permissions, sensitive 

APIs, and run-time system-related events to detect Android 

malware. Apart from this, the authors in [46] and [47] 

proposed two completely different hybrid detection 

techniques by merging and combining the network traffic 

features with permissions. In [48], a novel hybrid analysis 

approach for identifying malicious  behaviors concealed 

within dynamically loaded code through reflective calls is 

proposed. 

Because the hybrid detection involves both   static as well 

as dynamic features, they involve computational overheads 

too, similar to dynamic mechanisms. Therefore, we have 

aimed to propose a static detection in our model. 

III. METHODOLOGY 

In this section, we discuss the proposed methodology of 

our model R-MFDroid. There are two phases in our 

approach: The training phase and the detection phase, as 

summarized in Figure 1.  We discuss both of them in detail in 

the upcoming subsections. 
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A. Training Phase 

In the training phase, we extract several features from the 

Android manifest files of the apps in the dataset, and further 

aim to rank those features using Information Gain. The 

training phase is further divided into various sub-phases as 

discussed below. 

i. Dataset 

We gathered 10,414 benign apks & 5707 malicious apks 

for our research work. We took the normal dataset of apps 

from the Android Play Store. Trending apps like Whatsapp, 

BeautyCam, etc. were also part of our dataset. Hereafter, we 

checked the normal dataset from the VirusTotal website to 

ensure that the normal apps downloaded from the Google 

App Store are not malignant. We collected the malicious 

dataset from the following sources: Drebin[16], Genome[49] 

and Koodous[50].  

ii. Manifest File Extraction 

Static features that we intend to use in our research work 

are defined inside the  manifest file of Android applications. 

Hence, to begin with, we first extract the manifest files of the 

applications using Apktool. This tool breaks the application 

(apk package file) into several components, including its 

manifest file. 

iii. Features Extraction 

After extracting manifest files, we wrote scripts in Python 

to extract the required features, i.e., Intents, Permissions, 

Hardware Components, Services, Activities, Content 

Providers and Broadcast Receivers. We extract these features 

from all the benign and malicious apps in our dataset. We 

briefly explain each of the features below: 

Permissions  

An Android smartphone's various resources can only be 

accessed by an app if permissions are granted by the user at 

the time of its installation. Android’s resources include the 

data access stored in the mobile device, for example, media 

files, contact list, or access to hardware components such as a 

microphone or a camera. These permissions required by an 

app are not granted on their own, instead, they are needed to 

be granted by the user.   

Intents 

An intent is similar to a messaging system that can request 

an action from a component of another app. Some basic 

functions of intents include the start time activity, launch 

activity, web page display, contact list display, and message 

broadcasting.  

Activities 

An Android activity is nothing but the screen of an 

Android app’s UI which is the same as of the windows in any 

desktop application. An Android application might contain 

two or more activities. An application's activity goes through 

a life cycle in which the Android application is started with 

main activity followed by three other states  served to the 

user: created, started and resumed.  

Broadcast Receivers 

Receivers or Broadcast Receivers are the components that 

allow you to register for system or application related events. 

All receivers, registered for an event, are notified at runtime 

of the Android app, once this particular event happens.  

Content Providers 

They help to supply the content among applications when 

requested. Such requests can be handled by the methods of 

the class called ContentResolver.  Content providers can use 

different techniques to store their data and this data can be 

stored in files, databases, or even over a network.  

Hardware Components 

Hardware components, as the name suggests, are one of 

the most important components of an Android app.  They 

provide essential support to hardware features such as 

cameras and other possible sensors.  

Services 

A Service is a component of an application that can 

perform tasks even in the background. It doesn't have any UI. 

When initiated, service assistance may keep running for quite 

a while, even after the client changes to another application. 

Moreover, a component can tie to service, an interface with it, 

and hence inter-process communication can be performed.  

iv. Bag-of-Words Model 

After extracting the seven features from the manifest files 

of all the apps, we use the Word Embedding Technique in 

NLP for creating the Bag-of-Words Model for each of the 

seven features, represented by the sets S(1), S(2), S(3),....S(7), 

i.e., S(i) for i ranging from 1 to 7.  A bag-of-words model is 

just a matrix that represents the occurrence of various words 

that are present in a corpus or document. The current model 

only focuses on whether a particular word, i.e., feature in our 

case, occurs in the manifest file or not. 

The proposed methodology  helps in the matrix 

representation of each manifest file component, which is later 

used by machine learning algorithms; wherein each unique 

entry in the feature set is represented as a column and 

applications as rows. Say the matrix is represented as 

M[A][B].   The entries in  M[A][B], are either 0 or 1. 

The entry of 1, i.e., M[A][B] = 1 signifies that Ath app of 

the dataset contains the Bth feature of S(i) feature set. The 

entry of 0, i.e.,  M[A][B] = 0 signifies that Ath app of the 

dataset does not contain the Bth feature of S(i) feature set.  

v. Feature Ranking 

After  creating the Bag-of-Words model for each manifest 

component in the matrix form, we calculate the Information 

Gain (I.G.) score  for each unique feature present in S(i) 

feature set. Information Gain gives the measure of the 

information gained about a random variable by observing 

another random variable. In other words, it can be used to 

determine, amongst a given set of features, which one  is the 

most distinguishing, i.e., the feature that can better 

differentiate between several categories. Entropy defines the 

uncertainty in all the features and I.G. determines the 

reduction in that uncertainty. The I.G. of the feature F for  C 

is evaluated by the following equation, where H(C) 

represents entropy for class C, and H(C/F) denotes the 

uncertainty in class C for any feature F.  
 

I.G.(C/F) = H(C) - H(C/F)   (1) 
 

We calculate I.G. for each unique feature in each feature 

set, i.e, S(1) ..S(7) using the above equations. Higher the 

value of  I.G. score, lower the entropy, and better the feature 

in distinguishing between malware & benign Apps. We rank 

the features in each feature set in the descending manner of 

the I.G. score. We rank all the feature sets separately. Hence, 

we get seven ranked lists, one each 

for each feature set, at the end of 

this phase. 
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B. Detection Phase 

For our experiments, we have separately kept the training 

and testing samples, i.e., the samples used for training and 

testing are different. We extracted all seven manifest 

components from each of the testing samples. We used three 

machine learning algorithms: Random Forest, XGBoost, and 

Support Vector Machines (SVM)  and Deep Learning 

technique of Neural Networks for classifying apps as benign 

or malicious. 

We have divided the detection phase into two Algorithms: 

Algorithm 1 summarizes the method that gives the best set of 

each manifest component. For instance, with Algorithm 1, we 

get one best set of permissions that gives better detection 

results as compared to all other permissions. Similarly, we 

get one best set of each of the other manifest components that 

give better accuracy.Ranked feature sets obtained from the 

I.G. scores during the Training phase are used by Algorithm 

1. Let us see the working of Algorithm 1 with the case of 

Intents. Firstly, the  

 

Algorithm 1: Returns Best Set of Individual Manifest File 

Components 

1. Input: Testing Dataset (TSet), Ranked Permissions List (PList), 

Ranked Intents List (IList), Ranked Activities List (AList), 

Ranked Services List (SList), Ranked Content Providers List 

(CPList), Ranked Broadcast Receivers List (BRList), and 

Ranked Hardware Components List (HCList)   

2. Output: Best Set of Permissions (BestSetP), Intents (BestSetI), 

Activities (BestSetA), Services (BestSetS), Content Providers 

(BestSetCP), Broadcast Receivers (BestSetBR), and Hardware 

Components (BestSetHC) 

3. Parameters Initialization: AccMaxI = 0,  ISet ← ɸ ,  

BestSetI ← ɸ 

4. for each intent Ij in IList do 

5.        ISet ← ISet ∪ Ij 

6.       Train Machine Learning Classifiers on ISet and     

          identify the detection accuracy(AccDet) 

7.       if AccDet > AccMaxI then 

8.    BestSetI   ←  BestSetI ∪ Ij 

9.    AccMaxI  ←  AccDet 

10.       else 

11.    ISet ← ISet - Ij 

12.       end if 

13. end for 

14. Return BestSetI 

Repeat the entire algorithm again for each of the manifest 

component to obtain BestSetP, BestSetA, BestSetS, BestSetCP, BestSetBR, 

and BestSetHC 

 
Algorithm 2: Returns Best Set of Combined Manifest File 

Components 

1. Input: Testing Dataset (TSet), Best Set of Permissions (BestSetP), 

Intents (BestSetI), Activities (BestSetA), Services (BestSetS), 

Content Providers (BestSetCP), Broadcast Receivers 

(BestSetBR), and Hardware Components (BestSetHC) 

2. Output: Best Combined Set of Manifest Components   

(BestSetCOMB) 

3. Parameters Initialization: AccMax = 0, FSet ← ɸ, BestSetCOMB ← 

ɸ 

    FList  ← BestSetP ∪ BestSetI ∪ BestSetA ∪  BestSetS ∪   

                      BestSetCP ∪ BestSetBR ∪  BestSetHC 

4. Sort the features in FList in decreasing order of I.G. score. 

5. for each intent Fi in FList do 

6.        FSet ← FSet ∪ Fi 

7.       Train Machine Learning Classifiers on FSet and find the 

detection accuracy(AccDet) 

8.       if AccDet > AccMax then 

9.    BestSetCOMB   ←  FSet  

10.    AccMax  ←  AccDet 

11.       else 

12.    Continue 

13.       end if 

14. end for 

Return BestSetCOMB 

 

Algorithm selects the highest-ranked intent, i.e., Intent with 

the highest Information Gain score. We then train 

classification algorithms on the selected intent and find the 

initial classification accuracy. BestSetI denotes the best set of 

Intents. The top-ranked Intent is put into the set BestSetI. 

Thereafter, we select the second top Intent, put it into our 

BestSetI, train the classification algorithms on the 

merged    set, and determine the detection accuracy. If this 

detection  accuracy, obtained after adding the second intent, 

is greater  than the previous one, i.e., with the top ranked 

Intent alone, only then we merge the second top Intent with 

the top ranked intent in the BestSetI.  

Otherwise, we ignore the second top  intent, go to the third 

top Intent, and follow the same procedure again. After 

iterating through all the Intents, the algorithm, as an output, 

gives the BestSetI, i.e., the best set of Intents that returns better 

detection accuracy. We repeat the procedure for each of the 

manifest component to find the best set of other components, 

i.e., best set of Permissions BestSetP, best set of Hardware 

Components BestSetHC, best set of Content Providers 

BestSetCP, best set of Activities BestSetA, best set of Broadcast 

Receivers BestSetBR, and best set of Services BestSetS. 

     Now, in this work, we aim to find the best set of combined 

manifest file features, hence, we further use the sets: BestSetP, 

BestSetI, BestSetA, BestSetS,  BestSetCP, BestSetBR, and BestSetHC. 

Algorithm 2 describes the method that generates, as an 

output,  the best set of combined features that gives better 

detection results. We merge all seven sets into a single set 

denoted by FList. 

Furthermore, we sort the features present in FList in 

descending order of I.G. score. The proposed algorithm 

returns the best set of features combined, i.e., BestSetCOMB. 

We should keep in mind here that to find this best set 

BestSetCOMB , we do not use the whole of  individual feature 

sets. With the help of Algorithm 1, firstly, we find the best set 

of feature sets separately.  

 

Thereafter, in Algorithm 2, we make use of these best sets, 

i.e., BestSetP, BestSetI, BestSetA, BestSetS,  BestSetCP, BestSetBR, 

and BestSetHC to identify the combined best set BestSetCOMB. 

Different machine learning classifiers give different BestSetP, 

BestSetI, BestSetA, BestSetS,  BestSetCP, BestSetBR, and BestSetHC, 

and hence,  different  accuracy. We have applied  three 

machine learning classifiers: Random Forest, XGBoost , and 

SVM and Neural networks in Deep learning for 

classification. Therefore, for each of the classifiers, we have a 

different BestSetCOMB. In the next section, we discuss the 

detection results obtained from the proposed approach. 
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IV. RESULTS AND DISCUSSION 

In this section, we discuss the results obtained with our 

proposed methodology. After extraction of features, 

i.e.,  Intents, Permissions, Hardware Components, Activities, 

Services, Content Providers, and Broadcast receivers from 

the manifest file of all the apps,  we identified the 

unique/distinct features from each feature set. For instance, 

there are 280 unique permissions in the entire permission set 

of our dataset. Table I, on the similar lines, summarizes the 

unique number of entries in each feature set. 

Table II summarizes the top 10 features in each of the 

feature sets ranked in the decreasing order of Information 

Gain score. Note that, this ranking is obtained when we have 

kept the seven feature sets separately from each other. 

However, in Table III, we  show the top 20 features, if we  

 

Table- I: Unique Entries in Different Feature Sets. 
Feature Set Number of Unique Entries 

Permissions 280 

Intents 815 

Hardware Components 72 

Activities 43381 

Services 7462 

Content Providers 1275 

Broadcast Receivers 5568 

combine all the seven feature sets into a single set, ranked 

in the decreasing order of information gain. 

A. Permission Analysis 

First, we discuss the detection results if we use the 

permissions alone for detection. We use Algorithm 1 to find 

the best set of permissions, i.e., BestSetP and further calculate 

the detection accuracy with permissions alone. We used 

SVM, Random Forest, XGBoost, and Neural Networks for 

classification, and we get different results for each of the 

classifiers. Table IV summarizes the results for each of the 

classifiers.  

Let us interpret the results obtained. SVM classifier gave 

the detection accuracy of 95.13% and an F1-score of 0.9523 

with the best set of 24 permissions. Corresponding to the 

SVM classifier, the last column in  Table IV summarizes the 

rank of those 24 permissions which form the best set of 

permissions and hence give  better accuracy as compared to 

any other set of permissions with the SVM classifier. On 

closely analyzing the results, we observe that the top three 

permissions are present in the best set. When the algorithm 

adds fourth ranked permission into the best set, the detection 

accuracy decreases. Therefore, the fourth-ranked permission 

gets discarded by the algorithm and is not added into the best 

set. We find that with the case of SVM, the proposed 

detection algorithm went up to 70th ranked permission.  

Similarly, the results with other classifiers can be 

understood. When we compare the results of SVM with those 

obtained from XGBoost, Random Forest, and Neural 

Network, we find that Random Forest gave its best accuracy 

of 95.13% and F1-Score of 0.9510 on the best set of 25 

permissions. Neural Networks gave its best accuracy of 

94.62% and an F1-score of 0.9459 on the best set of 21 

permissions.  

B. Intents Analysis 

Similar to the analysis done with permissions in the 

previous subsection, we review the results, in this subsection, 

if we use the intents  

 

 

Table- II: Top 10 Ranked Manifest File Components (Seven Feature Sets Kept Separately). 

Top Permissions Top Intents Top Activities 
Top Hardware 

Components 
Top Services 

Top Broadcast 

Receivers 

Top Content 

Providers 

Read SMS Browsable GoogleApi TouchScreen Firebase Instance Id Firebase Instance Id FirebaseInit 

Read Phone State View Ad Activity 
Touchscreen 

Multitouch 
App Measurement App Measurement FacebookInit 

Send SMS Boot Completed Facebook Activity Touchscreen Distinct 
App Measurement 

Job 
App Install Referrer Crashlytics Init 

Write SMS Sig Str Custom Tab Main Camera 
Component 

Discovery 

Access Token 

Expiration 

Content.File 

Provider 

Receive SMS Default Sign In Hub Location GPS Firebase Messaging Analytics Mobileads Init 

Wake Lock User Present Audience Network Location Revocation Bound Update Receiver Facebook Content 

Write APN 

Settings 

Battery 

Changed 
CustomTab Camera Autofocus Analytics Basea Marketing Init 

Restart Packages Input Method RemoteAN Wi-Fi Analytics Job Multiple Install 
Arch.Process 

Lifecycle Owner 

Read External 

Storage 

My Package 

Replaced 

AppLovin 

Confirmation 
Location Network Ads Messenger Network State Firebase Perf 

Read Logs 
UMS 

Connected 

AppLovin 

Interstitial 

Sensor 

Accelerometer 
AdsProcess Priority Campaign Tracking 

Process Lifecycle 

Owner Initializer 

 

Table- III: Top 20 Ranked Manifest File Components 

(Seven Feature Sets Combined). 
Rank Feature Name Feature type 

1 GoogleApi Activity 

2 Firebase Instance Id Broadcast Receiver 

3 Firebase Init Content Provider 

4 Firebase Instance Id Services 

5 App Measurement Broadcast Receiver 

6 App Measurement Services 

7 App Measurement Install Referrer Broadcast Receiver 

8 App Measurement Job Services 

9 Component Discovery Services 

10 Ad Activity Activity 

11 Read SMS Permission 

12 Firebase Messaging Services 

13 Read Phone State Permission 

14 Send SMS Permission 

15 Facebook Activity Activity 

16 Write SMS Permission 

17 Browsable Intent 

18 Receive SMS Permission 

19 Custom Tab Main Activity 

20 Facebook Init Content Provider 
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Feature alone for detection. Again, we apply Algorithm 1 

to find the best set of intents and the corresponding accuracy. 

Table V summarizes the results obtained with intents. Similar 

to the results obtained with the permissions, we observe that 

Neural Networks gave the highest accuracy of 85.66% 

amongst all the classifiers. And the best set consisted of only 

17 intents. The best set generated with other classifiers was 

higher than that obtained with Neural Networks. Hence, we 

can argue that the Neural Networks was better than all other 

classifiers as far as Intents feature is concerned.   

C. Activities Analysis 

On similar lines, we review the results if we use the 

activities alone for malware detection. Again, we apply 

Algorithm 1 to find the best set of activities and the detection 

accuracy with that best set of activities. Table VI summarizes 

the results obtained with activities. We observe that SVM 

gave the highest accuracy of 95.52% amongst all the 

classifiers. However, the detection algorithm went up to 

601st ranked activity and the best set consisted of 24 

activities, higher than all other classifiers.    

D. Broadcast Receivers Analysis 

In this subsection, we review the results if we use the 

broadcast receivers alone for Android malware detection. 

Again, we apply Algorithm 1 to find the best set of broadcast  

receivers and the detection accuracy with the best set of 

receivers. Table VII summarizes the results obtained with 

receivers. Again, we observe that SVM gave the highest 

accuracy of 91.04% amongst all the classifiers. However, the 

detection algorithm went up to 675th ranked broadcast 

receiver and the best set consisted of 35 receivers, higher than 

all other classifiers.    

 

 

 

TABLE- IV: Detection Results with Permissions 

Classifier 
Detection 

Accuracy (in %) 
F1 Score 

Best 

Set 
Rank of Permissions Involved 

SVM 95.13 0.9523 24 1, 2, 3, 6, 7, 8, 11, 13, 15, 16, 18, 21, 22, 24, 30, 32, 35, 36, 38, 47, 63, 68,69, 70 

Random Forest 95.13 0.9510 25 
1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 28, 32, 35, 37, 41, 47,62, 74, 

101 
XG Boost 95.26 0.9534 23 1, 2, 3, 6, 7, 8, 11, 13, 14, 15,18, 21, 26, 32, 33, 35, 36, 37, 38, 47,  60, 63,65 

Neural Networks 94.62 0.9459 21 1, 2, 3, 6, 7, 8, 9, 13, 15, 24, 25,  29, 30, 32, 33, 35, 62, 63, 66, 101, 214 

  
TABLE- V: Detection Results with Intents 

Classifier 
Detection 

Accuracy (in %) 
F1 Score 

Best 

Set 
Rank of Intents Involved 

SVM 86.43 0.8567 19 1, 3, 4, 6, 9, 10, 12, 13, 19, 21, 23, 29, 33, 43, 45, 50, 65, 102, 778 

Random Forest 86.55 0.8605 18 1, 3, 4, 6, 9, 10, 12, 13, 16, 18, 19, 21, 29, 35, 38, 44, 47, 70 
XG Boost 86.56 0.8591 17 1, 3, 4, 6, 9, 10, 12, 13, 19, 21, 23, 29, 44, 50, 56, 74, 797 

Neural Networks 85.66 0.8486 17 1, 3, 4, 6, 7, 9, 10, 12, 15, 18, 19, 29, 33, 44, 50, 79, 83 

 
TABLE- VI: Detection Results with Activities 

Classifier 
Detection 

Accuracy (in %) 
F1 Score 

Best 

Set 
Rank of Activities Involved 

SVM 95.52 0.9567 24 
1, 2, 3, 9, 10, 22, 24, 27, 31, 36, 44, 45, 79, 82, 96, 103, 128, 135, 157, 166, 

167, 182, 337, 601 
Random Forest 94.11 0.9436 14 1, 2, 3, 22, 36, 71, 72, 79, 128, 129, 135, 167, 168, 975 

XG Boost 93.73 0.9402 9 1, 2, 3, 44, 67, 71, 128, 337, 975 

Neural Networks 94.37 0.9466 20 1, 2, 5, 6, 9, 24, 25, 36, 52, 55, 66, 78, 88, 125, 150, 296, 298, 346, 540, 975 

 
TABLE- VII: Detection Results with Broadcast Receivers 

Classifier 
Detection 

Accuracy (in %) 
F1 Score 

Best 

Set 
Rank of Broadcast Receivers Involved 

SVM 91.04 0.9188 35 
1, 2, 4, 5, 9, 12, 16, 17, 25, 26, 28, 30, 35, 51, 57, 67, 82, 93, 106, 121, 156, 

179, 237, 264, 285, 344, 345, 407, 539, 542, 557, 590, 611, 651, 675 

Random Forest 89.50 0.9064 24 
1, 2, 4, 5, 9, 12, 16, 17, 25, 26, 30, 35, 51, 57, 82, 93, 106, 156, 179, 264, 344, 

345, 611, 651 
XG Boost 87.84 0.8929 14 1, 2, 4, 5, 9, 12, 16, 17, 30, 51, 57, 106, 179, 285 

Neural Networks 89.50 0.9062 26 1, 2, 4, 5, 9, 12, 16, 17, 25, 26, 28, 30, 32, 35, 51, 57, 59, 82, 83, 93, 156, 179, 

264, 285, 345, 611 

 

E. Content Providers Analysis 

In this subsection, we review the results if we use the 

content providers alone for Android malware detection. 

Again, we apply Algorithm 1 to find the best set of content 

providers and the  detection accuracy with the best set of 

providers. Table VIII summarizes the results obtained with 

content providers. Again, we observe that SVM gave the 

highest accuracy of 90.91% amongst all the classifiers. 

However, the detection algorithm went up to 956th ranked 

content provider and the best set consisted of 23 providers, 

higher than all other classifiers.    
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F. Hardware Components Analysis 

In this subsection, we review the results if we use the 

hardware components alone for Android malware detection. 

Again, we apply Algorithm 1 to find the best set of hardware 

components and the detection accuracy with the best set of 

components. Table IX summarizes the results obtained with 

hardware components. Again, we observe that SVM gave the 

highest accuracy of 76.31% amongst all the classifiers. 

However, the best set with SVM consisted of 17 components, 

higher than all other classifiers.    

G. Services Analysis 

In this subsection, we review the results if we use the 

services alone for Android malware detection. Again, we 

apply Algorithm 1 to find the best set of services and the 

detection accuracy with the best set of services. Table X 

summarizes the results obtained with services. Again, we 

observe that SVM gave the highest accuracy of 90.65% 

amongst all the classifiers. However, the best set with SVM 

consisted of 29 services, higher than all other classifiers.   

 
TABLE- VIII: Detection Results with Content Providers 

Classifier 
Detection 

Accuracy (in %) 
F1 Score 

Best 

Set 
Rank of Content Providers Involved 

SVM 90.91 0.9179 23 
1, 2, 3, 4, 5, 6, 8, 17, 19, 23, 51, 52, 64, 67, 303, 331, 406, 607, 730, 753, 764, 

904, 956 
Random Forest 89.50 0.9064 12 1, 2, 3, 4, 5, 6, 8, 17, 19, 23, 52, 67 

XG Boost 89.12 0.9033 9 1, 2, 3, 4, 5, 6, 8, 17, 52  

Neural Networks 89.50 0.9064 12 1, 2, 3, 4, 5, 6, 8, 17, 19, 23, 52, 67 

 

Table- IX: Detection Results with Hardware Components 

Classifier 
Detection 

Accuracy (in %) 
F1 Score 

Best 

Set 
Rank of Hardware Components Involved 

SVM 76.31 0.7996 17 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 20, 21, 25, 29, 36 

Random Forest 75.03 0.7923 11 1, 3, 4, 5, 6, 7, 8, 10, 13, 20, 22 
XG Boost 75.03 0.7923 13 1, 3, 4, 5, 6, 7, 8, 10, 11, 15, 16, 18, 31 

Neural Networks 74.52 0.7885 9 1, 3, 4, 5, 9, 14, 25, 27, 36 

 
TABLE- X: Detection Results with Services 

Classifier 
Detection 

Accuracy (in %) 
F1 Score 

Best 

Set 
Rank of Services Involved 

SVM 90.65 0.9158 29 
1, 2, 4, 6, 7, 9, 18, 27, 29, 36, 40, 41, 56, 61, 71, 72, 136, 149, 152, 196, 247, 

249, 288, 443, 523, 663, 734, 755, 815 
Random Forest 89.24 0.9043 21 1, 2, 4, 6, 7, 9, 18, 27, 29, 40, 41, 56, 61, 71, 72, 136, 137, 249, 250, 443, 451 

XG Boost 87.45 0.8901 12 1, 2, 4, 6, 7, 9, 18, 27, 40, 56, 71, 149 

Neural Networks 89.88 0.9095 24 1, 2, 4, 6, 7, 9, 18, 27, 29, 36, 40, 41, 56, 61, 71, 72, 136, 149, 152, 216, 247, 

249, 288, 755 

 
TABLE- XI: Detection Results with Merged Best Set of Manifest File Components 

Classifier 

Best Set Count 
Accuracy 

(in %) 

F1-Score 

Permissions 
Intent

s 
Activity 

Broadcast 

Receivers 

Content 

provider 

Hardware 

Components 
Services Merged 

SVM 24 19 24 35 23 17 29 171 96.80 0.9690 

Random 

Forest 
25 18 14 24 12 11 21 125 96.41 0.9650 

XG Boost 23 17 9 14 9 13 12 97 95.52 0.9569 

Neural 

Networks 
21 17 20 26 12 9 24 129 96.54 0.9664 

 

H. Combined Manifest Components Analysis 

In this subsection, we discuss the results when we merge 

all the manifest components together for malware detection. 

Algorithm 2 aims to find the best set of manifest components 

that give better accuracy than any other set of components. 

However, before reviewing the results from Algorithm 2, we 

discuss the detection results if we merge the best set of each 

manifest component obtained from Algorithm 1. Table XI 

summarizes the results if we merge the best set of each 

manifest component and then find the accuracy. 

We observe that the SVM classifier gave the best 

accuracy of 96.80% amongst other classifiers when we merge 

the best set of each manifest component. However, the 

number of components in the best set was relatively higher 

with SVM, i.e., 171 as compared to other classifiers. Other 

classifiers like Random Forest and Neural Networks also 

gave nearly the same accuracy (around 96%) with a lower 

merged best set count. Next, we review the results obtained 

with the proposed Algorithm 2, i.e., rather than combining 

the best set of each component, the proposed approach itself 

finds the best set of all manifest components by iterating 

through the ranked list of components.  Table XII 

summarizes the detection results with the proposed approach. 

Again, the SVM classifier gave better accuracy (96.93%) as 

compared to other classifiers. We also observe that other 

classifiers also gave nearly the same accuracy (around 96%). 

From these results we make two important observations:  
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• On comparing the detection accuracy obtained from 

the best set of permissions (Table IV), best set of intents 

(Table V), best set of activities (Table VI), best set of 

Broadcast receivers (Table VII), best set of Content 

Providers (Table VIII), best set of Hardware 

Components (Table IX), best set of Services (Table X), 

and merged best set of all components (Table XI) with 

the accuracy obtained from the proposed Algorithm 2 

(Table XII), we observe that the proposed approach 

gives better detection accuracy as compared to all other 

cases for all the classifiers. 

• When we compare Tables XI and XII, we note that 

the number of manifest file components in the best set is 

also less with Algorithm 2 as compared to merging the 

best set of each component.  

 

 

 

TABLE- XII: Detection Results with Combined Manifest File Components (Algorithm 2). 

Classifier 

Best Set Count 
Accuracy 

(in %) 
F1-Score 

Permissions Intents Activity 
Broadcast 

Receivers 

Content 

provider 

Hardware 

Components 
Services Merged 

SVM 5 2 9 1 3 4 1 25 96.93 0.9702 

Random 

Forest 
6 4 3 1 3 2 0 19 96.41 0.9655 

XG Boost 4 2 3 2 3 3 0 17 96.16 0.9631 

Neural 
Networks 

3 2 3 3 1 1 2 15 96.80 0.9689 

 

Therefore, we conclude that combining all components 

using the proposed approach for malware detection is better 

than using the individual components 

V. CONCLUSION AND FUTURE WORK 

In this work, we proposed a static model named 

R-MFDroid for Android malware detection by analyzing the 

manifest file components. To begin with, we ranked all the 

manifest file components using Information Gain. Further, 

we proposed a novel method that applied various machine 

learning and deep learning algorithms on the ranked 

components. The algorithm produced the best set of 

components that gave better accuracy as compared to any 

other set of components. The results highlighted that 

combining all the manifest file components for malware 

detection gave better results than the individual 

components.  In our future work, we will put forward a novel 

technique that combines, with manifest file 

components,  other features such as API calls, system calls, 

network traffic, etc., to detect the stealthier malware samples. 
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