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Abstract: The process of data discovery is an approach to 

extracting knowledge, valid, and usable information from large 

amounts of data, using automatic or semi-automatic methods. 

This article is an inventory of the different information extraction 

processes encountered in the literature for different fields of 

application and for the development of environmental 

informatics. Following an analysis between the different models, 

we can summarize the existing models with a proposal for a 

process that exploits the strengths of the different processes. 

Keywords: Knowledge Discovery in Databases, KDDM, 

Environmental Decision Support Systems, GIS, KBS, EDSS.  

I. INTRODUCTION 

The literature often uses the term KDD "Knowledge 

Discovery in Databases" to refer to the process of data 

discovery. The KDD's objective is to understand the need, 

expressed by the expert, to provide understandable, useful 

results and avoid the indiscriminate application of analytical 

methods 1 2 3. In addition, it also contributes to good 

management and work planning, to ensure and guarantee 

good communication, especially within relatively large work 

teams. The development of KDDs is adapted to the scope of 

application and the nature of the data. In the context of 

environmental problems, the terms "Environmental Decision 

Support Systems" (EDSS) 4 or "Multiple Objective Decision 

Support Systems" (MODSS) 5 are generally used, to refer to 

the process of data discovery. These are intelligent 

information systems that improve the time it takes to make 

decisions, as well as the consistency and quality of decisions, 

expressed in quantities characteristic of the scope. 

This survey is based on a comparative study of the 

different processes of data discovery and their areas of 

application, a study of environmental decision support 

systems, and the proposal of a process that unites the 

strengths of the processes studied, and a conclusion. 
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II. COMPARATIVE STUDY OF THE DIFFERENT 

DATA DISCOVERY PROCESSES 

The KDDM "Knowledge Discovery and Data Mining" 

processes of Fayyad et al. 2 and the CRISP-DM "Cross 

Industry Standard Process for Data Mining" 6, are the most 

encountered in the literature, and are considered the de-facto 

standard or main matrix in the KDD field. As a result, several 

other processes are derivatives of both models. 

The first model of KDDM reported includes nine steps 2: 

1) Understanding the scope: During the first step, the 

objectives are defined from the customer's perspective 

and used to develop and understand the field of 

application; 

2) Creating a target dataset: In the second step, the target 

dataset will be created; 

3) Data cleaning and pre-processing: The main objective is 

to clean up and pre-process the 'target' data to obtain 

complete and consistent data; 

4) Data transformation: This is about transforming data 

from one form to another so that data mining algorithms 

can be easily implemented. Hence, different methods of 

data reduction and transformation are implemented on 

the target data; 

5) Choosing the appropriate task of data mining: The 

objective of the fifth step is to choose the appropriate 

data mining task based on specific objectives defined in 

the first stage. Examples of data mining methods or tasks 

are classification, grouping, regression, synthesis, etc.; 

6) Choosing the appropriate algorithm: One or more 

appropriate data mining algorithms are selected to search 

for different models from the data. The selection of the 

right algorithms is based on the corresponding criteria 

for data mining; 

7) Algorithm use: Consists of implementing selected 

algorithms; 

8) Interpretation of the results: This involves interpreting, 

evaluating, and visualizing the models extracted; 

9) Use of discovered knowledge: This is the stage at which 

the discovered knowledge is used for different purposes. 

 

The KDDM process model has been applied in several 

areas such as, Medicine, Engineering, Industrial production 

and regulation, E-commerce, Software development, etc. 

Several approaches which are directly derived from the 

basic KDDM process have been proposed, such as:  
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▪ Adriaans and Zantinge process model 7, which 

consists of six steps that correspond successively to 

data selection, cleaning, Data enrichment, Coding, 

Data Mining, and reporting; 

▪ Berryet Linoff's process model 8 including four steps:  

problem identification, problem analysis, action taken 

and outcome evaluation; 

▪ SEMMA "Sample, Explore, Modify, Model, Assess" 

model developed by SAS Institute Inc. 9, it includes 

five steps that correspond respectively to: sampling, 

exploration, modification, modeling and evaluation. 

The process models mentioned above have been used in 

the industry. However, the literature does not specifically 

mention the type of industry. 

In addition, there are other types of process models, which 

have been used specifically in the marketing and sales sector. 

These include: 

▪ Cabena et al.10 process model, which is run in five 

stages: goal setting, data preparation, data mining, 

domain knowledge exploitation, and knowledge 

assimilation. This model is used more in industrial 

projects 11 12; 

▪ Anand-Buchner 13 process model consisting of eight 

steps: human resource identification, problem 

specification, data mining, domain knowledge 

exploitation, method identification, data processing, 

model discovery and post-processing of knowledge. 

And some process models have been developed and 

applied both in research fields oriented towards industrial 

engineering and medicine.  

These are the process models of: 

▪ CRISP-DM, designed for business project 

management, which consists of six steps including, 

understanding objectives, understanding data, 

preparing data, modeling, evaluation, and 

deployment. It is a model that has been used for data 

extraction for industrial engineering and medical 

research projects 14 15 16 17 18 19. The CRISP-DM 

was also used in industrial projects (marketing and 

sales) 20 21 22 23 24 25 26 27. 

▪ Cios et al. process model was proposed for the first 

time in 2000 28 29, an adaptation of the CRISP-DM 

model aimed this time at meeting the needs of the 

university research community (Medicine, Software) 

30 31 32 33 34 35 36 37 38 39. 

▪ Han-Kamber process model 40, which is summarized 

in seven steps. Successively, it includes mastering the 

problem, creating a target dataset, cleaning and 

pre-processing data, reducing and transforming data, 

selecting and organizing the necessary personnel and 

tools resources, choosing the data mining algorithm or 

algorithms, choosing the right tool for data 

management, evaluating models and presenting 

knowledge, and use of the discovered knowledge; 

▪ Edelstein's process model 41, condensed into five 

steps, namely, problem identification, data 

preparation, model construction, model use and model 

evaluation; 

▪ Klosgen-Zytkow process model 42, eight steps 

compose it: defining and analyzing business 

problems, understanding and preparing data, setting 

up knowledge research, finding knowledge, refining 

knowledge, applying knowledge to meet business 

needs, deploying and evaluating practical solutions; 

▪ Haglinet al. 43 model, runs in seven steps: objective 

identification, targeted data creation, data 

pre-processing, data transformation, Data Mining, 

evaluation and use of extracted knowledge. 

By examining the different models of data mining 

processes, they clearly show that they have strong similarities 

to each other. Several process models have kept the main 

features of the KDDM, and the fact that they have in common 

most of the main steps corroborates this finding. Moreover, 

most have been applied for the needs and problems inherent 

in business and rarely for the purposes of scientific research. 

In the latter case, only the work associated with the 

management of scientific projects used it. However, given 

the wide range of data available from the various sparse 

databases dedicated to monitoring nature and the 

environment, the establishment of a tool such as a KDDM 

adapted to environmental data to extract knowledge for 

optimal use, would give a boost in research oriented towards 

management and conservation of the environment. To this 

end, a new research axis is emerging: environmental 

computing 44 45 46 47 48. 

III. ENVIRONMENTAL DECISION SUPPORT 

SYSTEMS 

The development of environmental computing is made 

possible with the profusion and availability of data that can 

produce relevant and useful information for understanding 

and managing the environment. Discipline combines 

research areas such as artificial intelligence, geographic 

information systems (GIS), mathematical models, modeling 

and simulation, etc. This new discipline develops appropriate 

methods for modeling, design, simulation, forecasting, 

planning and decision support systems for environmental 

management and protection. 

The declination of artificial intelligence research towards 

environmental issues is illustrated by the development of 

knowledge-based systems "Knowledge Based System" 

(KBS) 50. These KBS systems, applied for this purpose, are 

often referred to as Decision Support Systems (DSS) 51 or 

Environmental Decision Support Systems (EDSS) 4. 

The main characteristics of EDSS is the ability to extract 

and use knowledge from specialized and multi-source data 

associated with natural and environmental sciences.  

Thanks to its features, an EDSS can address the following 

specific concerns: 

1) Acquiring, representing and structuring knowledge 

(information) in the field of environmental study. 

2) Possibility of producing portable sub-database models 

that can be used in environmental projects optionally 

dealing with different issues, which saves considerable 

time in the pursuit of current or future environmental 

projects. 

3) Ability to integrate and process spatial data (the GIS 

component). 
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4) The ability to use multiple data sources to effectively 

diagnose, plan and manage the environmental 

components based on information quality optimization. 

In essence, as a KDD, an EDSS can be described as a 

multi-layered system. Furthermore, the first layer of an EDSS 

is usually a knowledge acquisition and learning module from 

a spatial (GIS) and temporal (chronological and periodic) 

database. The next layer consists of several models of 

Artificial Intelligence, Statistics and Data Mining. The other 

levels are the subject of the reasoning and integration 

modules. These modules use several types of models and 

knowledge to provide prediction, description, planning or 

supervision information from the EDSS. Finally, the higher 

level illustrates the planning or supervision interaction from 

the EDSS. 

However, according to the objective of the EDSS, two 

categories emerge 4. It distinguishes problem-specific EDSS 

and problem and location-specific EDSS. The former is 

adapted to relatively narrow environmental problems (or 

areas), but they apply to a wide range of locations (or 

situations), but the latter are adapted to both a specific 

environmental problem and a specific location. 

IV. HYBRID PROCESS OF DATA DISCOVERY 

A key feature of the KDD approach is the importance it 

gives to pre-processing phases (data selection, attribution of 

missing values, suppression of noise or outliers, mapping 

characteristic values on appropriate domains, etc.) to improve 

the quality of data contained in the dataset for the process to 

produce reliable knowledge. They are often specific to an 

area or a problem. 

To this end, a comprehensive process can combine the 

benefits of existing KDD and EDSS, to strengthen the steps 

of information extraction and knowledge, from raw data, for 

decision-making assistance. The following steps summarize 

the KDD and EDSS unite: 

1) Understanding the scope and its needs and the associated 

constraints. 

2) Researching the different solutions adapted to the 

problem and the nature of the objects to be studied or of 

interest. This second step consists of a classification 

within the typologies and in-depth analysis of the 

different methods and algorithms that could constitute an 

adequate solution to the work context. 

3) Choosing the appropriate solution: This step is the 

choice of the appropriate task, the latter depends on the 

compromise between the nature of the problem, the 

objectives assigned, and the features offered by different 

solutions that respond in part or in full to the needs of the 

study. 

4) Data modeling and design: This step is dedicated to 

structuring data within the database. 

5) Selecting and creating a target data set from the main 

database de-complexed in the previous step. 

6) Acquisition of complementary data: In recent years 

several databases have been accessible (Open data), they 

make available to the general public, important data in 

research, including spatial data, precipitation data, 

temperature data, satellite images etc. This data is 

necessary to sharpen the accuracy and quality of the 

information to be produced. 

7) Data pre-processing: The main objective of this step is to 

clean up and pre-process target data to obtain complete 

and consistent data. 

8) Proposal, modeling exploration algorithms to meet study 

needs. 

9) Implementation of algorithms: This is the stage of the 

process in which the proposed algorithms are exploited 

for the various predefined objectives; 

10) Interpretation of results: This is the step in the process 

that focuses on interpreting and evaluating models of the 

knowledge exploited. This step may involve a 

visualization of the extracted patterns. 

V. CONCLUSION 

The aim of this paper is to offer an overview of the process 

of data discovery used for the different fields of application 

and for the development of environmental computing. 

The survey also proposes to enhance existing models by 

unite the advantages of each process and especially the 

addition of EDSS processes which offers a layer dedicated to 

the exploitation of external data to strengthen the processing. 

This proposal is more suited to problems where the spatial 

aspect carries relevant information. 
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