
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

24

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

Abstract: While several approaches have been developed to

enhance the efficiency of hierarchical Artificial Intelligence

planning (AI-planning), complex problems in AI-planning are

challenging to overcome. To find a solution plan, the hierarchical

planner produces a huge search space that may be infinite. A

planner whose small search space is likely to be more efficient

than a planner produces a large search space. In this paper, we

will present a new approach to integrating hierarchical

AI-planning with the map-reduce paradigm. In the mapping part,

we will apply the proposed clustering technique to divide the

hierarchical planning problem into smaller problems, so-called

sub-problems. A pre-processing technique is conducted for each

sub-problem to reduce a declarative hierarchical planning

domain model and then find an individual solution for each

so-called sub-problem sub-plan. In the reduction part, the

conflict between sub-plans is resolved to provide a general

solution plan to the given hierarchical AI-planning problem. Pre-

processing phase helps the planner cut off the hierarchical

planning search space for each sub-problem by removing the

compulsory literal elements that help the hierarchical planner

seek a solution. The proposed approach has been fully

implemented successfully, and some experimental results

findings will be provided as proof of our approach's substantial

improvement inefficiency.

Keywords: Artificial Intelligence Planning, Map-Reduce,

Hadoop, Big Data.

I. INTRODUCTION

The paper concerns novel artificial intelligence

(AI) hierarchical planning technique that combines the

hierarchical AI-planning with map-reduce paradigm to

increase the planning performance. Today, the

Artificial Intelligence (AI) planning field offers a range

of techniques for constructing a solution for a planning

problem (P) (Definition-1). The process of generating a

sequence of actions that achieve the desired goal

(solution) is defined as the Planning process

(Definition-2 and 3) [1]. The classical planning

paradigm is standard AI planning.

Definition 1. An initial state (S), actions (A), and

goal state (G) are three parameters constitutes the

classical planning problem (PCls) PCls= <S, A, G> such

that the state is defined as a collection of logical facts,

and A set of literals expresses State S as initial and State

G as a goal.

Manuscript received on May 03, 2021.

Revised Manuscript received on May 06, 2021.

Manuscript published on May 30, 2021.
* Correspondence Author

Mohamed Elkawkagy*, Computer Science Department, Faculty of
Computers and Information, Menofiya University, Shebin El Kom, 32511,

Egypt. Email: m_nabil_shams@yahoo.com

Heba Elbeh, Computer Science Department, Faculty of Computers and
Information, Menofiya University, Shebin El Kom, 32511, Egypt. Email:

heba_elbeh@yahoo.com

Definition 2. Each action A consists of two

components <Pre a , Eff a > . The Pre a parameter

reflects the pre-conditions that have to be fulfilled

before performing the operation. Eff(a) is a collection

of facts that alter the world state's status after the

operation's execution. In classical planning, actions are

depicted by Stanford Research Institute Problem Solver

(STRIPS) [2].

Definition 3. (Transition state T S,a,S'): The

new state S' is created by performing the action in the

current S as the following:

T S,a,S' = S∪Eff a iff Pre a ⊂S.

So that, in classical planning, the plan is defined as a

series of actions a⊂A* which gradually changes the

initial state S to goal state G.

Hierarchical Task Network (HTN) planning [3],

[20] is a commonly used planning process model. Tasks

and Methods are the basis of an HTN preparation.

Complex tasks are complex activities such as the

transportation of certain goods from a particular place

to a different place. Primary tasks are classical planning

behavior. The hierarchical domain model provides a

variety of decomposition methods to solve the related

complex task. Each method offers a set of tasks ordered

partially so-called task network, specifying the

predefined solution of the complex task. The initial task

network represents the hierarchical planning problem.

They are solved by progressively breaking down the

complex tasks to consistent rudimentary tasks is in the

network. The breakdown of complex tasks by a suitable

method substitutes the complex task with the

decomposition process's scheme.

Several approaches used Multi-agent planning

(MAP) to solve big planning problems. The central

concept of these approaches is separating the issue of

planning problem into sub-problems. Each of them is

resolved to create a solution for each sub-problem.

These solutions are merged to produce a general

solution plan [4]. Most work in the MAP focuses on

how to coordinate between the agent's planning. In

general, there are three approaches used to resolve the

coordination between agents planning. The first

category discusses the collaboration between

completed plans [5]. The authors proposed a less

expensive merging plan in this category by leveraging

positive interactions and overcoming inconsistency

among sub-problems solutions. The second category

discusses the interleaving between coordination and

planning processes, which means conflicts between

sub-plans are overcome during constructing sub-plans

[6].

Reduce Artificial Intelligence Planning Effort by

using Map-Reduce Paradigm

Mohamed Elkawkagy, Heba Elbeh

mailto:m_nabil_shams@yahoo.com
mailto:heba_elbeh@yahoo.com

Reduce Artificial Intelligence Planning Effort by using Map-Reduce Paradigm

25

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

The third category discusses two different kinds of

coordination: implicit coordination, which manages

agent behavior through issuing some rules, and explicit

coordination, which starts by issuing new constraints to

the planning problem to guarantee the feasibility of the

issued solution [7].

In order to increase planning efficiency, many

scientists employed a hierarchical structure in the MAP

approach. Nets Of Action Hierarchies (NOAH) [8]

framework discussed the idea of interconnect the

hierarchical planning and merging through sharing

resources. It was built through the emphasis on efficient

communication between agents. Furthermore, another

approach worked in a dynamic environment by

arranging the agents' set into layers as a patent agent

and a set of cooperative agents (children) working

together towards the target [9]. Afterward, the authors

in [10] introduced a technique to detect agent plans'

conflicts at the primitive and abstract levels.

As opposed to these approaches, the hierarchical

planning approach is incorporated only once time with

the Map-Reduce paradigm to reduce the planning

effort. The author in [11] presented a cooperative

technique to construct solution plans. Landmark

heuristics guide the coordination process among agents

while building the solution.

This paper introduces a new hierarchical planning

approach that combines hierarchical planning with the

map-reduce paradigm to improve hierarchical planning

performance. The given problem is divided into

sub-problems according to the proposed clustering

algorithm in the mapper phase. Afterward, identical

mappers are initiated according to the number of

sub-problems and then apply the pre-processing

technique for each sub-problem to reduce the domain

model by extracting the mandatory tasks to be a

member solution plan. After that, the mappers start to

find a solution for the given sub-problem. Each mapper

uses HTN-style planning to construct its solution. The

merging process is done in the reduction phase. The

merging process is handled through two-step detection

steps that discover the conflicts between individual

solutions and solving steps that overcome the detected

conflicts. MapReduce framework [12] is a parallel and

distributed programming paradigm. It is designed to

facilitate a parallel program that can perform a

data-intensive computation efficiently. It also provides

a great offer to convert parallel programs to cloud

computing environments and server clusters.

Section 2 explains the planning structure. After

that, section 3 introduces the proposed architecture.

The experimental scenario and the outcomes of the

assessments are illustrated in Section 4. In section 5,

the paper ends with a conclusion.

II. FORMAL FRAMEWORK

Our proposal uses hybrid planning structure which

incorporates Partial-Order-Causal-Link (POCL) and HTN

[13], [14], [21], [22]. The planning of POCL is a tool used for

solving conventional planning problems. The POCL plan

includes a sequence and partially organized actions and

demonstrates the action's dependencies through causal ties.

t τ = <Pre t τ , Eff t τ > represents The structure of the

task, which identified by pre-conditions and effects of a task,

where effects consist of two forks: positive and negative

literals over the parameters τ=τ1, τ2……., τn The hybrid

planning framework represents pre-conditions and effects for

primitive and complex tasks to encode POCL operations. To

encode multiple instances for the same task in the same

partial plan, we use identifier plan steps PS(τ), which has the

form PS τ =<id,t(τ)>, where an id is a natural number. A

partial hybrid plan comprises four components: plan steps PS

which specify a task either primitive or complex, notation <

specifies order restriction between PS, variable constraints

are represented by notation V, and C represents causal links.

The variable constraints (V) are composed of (in) equations

associating variables with constants or other variables. It

represents the (partial) substitution in Ps of the plan steps.

Gnd(PS, V) means several ground tasks accomplished in

a way consistent with V, which equates all parameters in all

the P with constants' tasks. Causal links are drawn from the

preparation of the POCL: the causal relation PSi

ϑ

 PSj

means that the pre-condition ϑ of the plan Step PSi is

inferred, and it is considered a result of the plan step PSj.

Methods M=<t τ' , P> are the implementation of the

abstract task t. Generally, each complex task is resolved or

implemented using multiple methods. A Hybrid planning

problem is formalized from four issues

HPprob=<D, Sinit ,Pinit , G>. Notation D. represents a domain

model. It consists of a task schema T and implementation

methods M. Sinit , Pinit , 𝒢 represents the initial world state,

initial plan and goal state respectively. Notice that this paper

focuses on pure HTN planning, so that the goal state G is

omitted from the planning problem. A partial plan

P=<PS, ≺, V, C> is a solution of a problem iff: (1) P is a

refinement of Pinit , i.e., a successor to the initial plan in the

search space (Definition. 4), (2) a causal link in C supports

each pre-condition of a plan step in P, and no such

connection is threatened. For example, In causal connections

PSi

ϑ

 PSj the ordering constraints restrict that no plan step

PSk with an effect that implies¬ϑ can be imposed between

plan steps PSi and PSj , (3) The constraints in order and

variable are consistent, i.e., do not result in S cycles and the

(in-) equations in V are consistent, and (4) The Plan Steps in

S are all primitive tasks. There are various refining measures

(or plans modifications) in the form of the HTN plan: (1) the

decomposition of complex task employing methods; (2) use

causal links to close open-plan steps pre-conditions; (3)

adding ordering constraints; and (4) the inclusion of variable

constrain.

Definition 4 (search space). The directed graph

Sspace=<Vspace, Espace> is called the planning problem search

space iff (1) Pinit∈ Vspace (2) if there is a refinement for plan

P∈ Vspace to a plan P', then P'∈ Vspace and (P,P')∈ Espace, and

(3) Sspace is minimal holding such that includes items (1) and

(2). In Sspace , instated writing P∈ Vspace ., we will write

P∈Sspace. Generally, Sspace has no acyclic or finite.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

26

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

Our hierarchical planning algorithm (Alg. 1) guides the

search space heuristically to find solutions. The fringe

 F= <P1,…….., P> is a series of unexplored plans which

directly successors of visited non-solution plans in the

Planning problem HPprob, which initially started with only

one plan, Pinit . The Fringe <P1,…….., Pn> is structured such

that a Pi the plan leads quicker to a solution than a plan Pj for

j≻i. After that, use module PlanSel to delete the selected plan

from the fringe set after selecting it.

The planning algorithm starts by considering the Fringe

as input; if there are plans in the Fringe, they recursively

select one plan from the Fringe through plan selection

strategy PlanSel(F) (lines 1-2). Note that the selected plan is

removed from the fringe F (line 3). The algorithm will

terminate with the solution if the selected plan does not have

any flaw (lines 4-5). Otherwise, the flaw selection module

(FlawSel) will detect all flaws in the specified plan (line 6).

Any components that violate the solution conditions are

considered a flaw, such as a complex task flaw and a Threat

flaw. A plan selection (PlanSel) revised the Fringe from the

plans with unresolvable flaws such as inconsistent ordering

constraints and then ordered the rest plans in the Fringe.

Hence apply the flaw refinement in the selected plan and add

a new plan in the Fringe (line 7). The planner algorithm is

ended by returning the solution or failure (line 8).

III. THE PROPOSED ARCHITECTURE

A lot of planning and Multi-agent planning (MAP)

approaches have been presented to address broad planning

problems. This paper proposes a new approach to integrate

Map Reduce Architecture regarding hierarchical planning to

enhance planning systems. Figure 1 shows modules of the

proposed architecture. The pre-processing module is used to

remove irrelevant information from the domain model when

considering the hybrid planning sub-problem. The clustering

algorithm is used to divide the defined planning problem into

various individual sub-problems and a set of constraints,

so-called shared constraints pool (SCP). Shared Constraint

Pool is a generic memory that contains a set of constraints.

The Mapper module encapsulates several steps, such as

pre-processing for the given sub-problem, finding the

sub-plan for the specified problem. All mappers clone all

literals in the initial state of the hierarchical planning

problem. Reduction module will receive SCP and an

individual solution (sub-plan) of each sub-problem to

overcome the conflicts between these solutions to find a

general solution to the concerned hierarchical problem.

Before introducing the hierarchical planning problem to the

mappers, the proposed clustering technique is used to divide

the hierarchal problem into a series of sub-problems. The

clustering technique is based on the principle of creating a

series of independent clusters.

In the split process, the planning problem is broken down

into clusters according to two clustering algorithms:

Dependent and Independent. Dependent algorithm

establishes several dependent clusters, while the independent

algorithm generates a series of separate clusters. The

behavior of the two techniques is shown in the experimental

section. The independent tasks in the current plan are isolated

within a single cluster. The task constraints in various

clusters are simultaneously inserted into shared constraints

pool SCP, As shown in Alg. 2. The input of the Dependent

algorithm is the planning problem, and the output is the Γ set.

The set Γ includes the shared constraints pool SCP and

different clusters Πγ=⋃i=0
n {Πγi

}. To extract all clusters, the

Dependent algorithm executes recursively to traverse

different tasks in the initial plan Pinit. Each cluster

Πγ=<D, Sinit , Pγinit
> consists of D, Sinit , Pγinit

Which represents

the domain model, initial state, and initial partial plan,

respectively.

Now, the question is how the Dependent algorithm

constructs the set Γ. As shown in Alg. 2, the algorithm starts

by initializing the set Γ by a null value (line 1). After that,

from the current plan, a new cluster Πγi
 is created by

collecting the free pre-request tasks tei and added to the task

network of the initial plan Pγinit
 in Πγi

 (line 3-5). Hence, the

task network TE of the plan Pinit in the planning problem, Π

is updated by removing the tasks tei (line 6). For the current

tasks PSi at hand, the created cluster Πγ i
 is extend

recursively by adding different constraints and updating

SCP by appending all constraints that indexed in the

relationship between the current task t and other tasks PSi

(lines 7 to 15). In the end, the Γ is modified by adding

clusterΠγi
, and also shared constraints pool SCP is modified

(line 16). The SCP will play a significant role in the

reduction phase. According to the updated plan and the set

Γ, the Dependent algorithm works recursively to construct a

new cluster (line 17).

Reduce Artificial Intelligence Planning Effort by using Map-Reduce Paradigm

27

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

Figure 1. The proposed planning-Map-Reduce

Architecture

On the other side, the Independent algorithm collects

the dependent tasks in one cluster; this means the SCP is

empty. So, to divide the planning problem into several

clusters using the Independent algorithm, line 3 in Alg. 2 is

updated by "Select the dependent tasks PSi. This means the

resulted clusters are explicitly independent, and the SCP is

empty. After that, the Dependent or Independent algorithm

has generated clusters distributed among the mappers to

build a solution plan (sub-plans) for each cluster.

A. Planning Mapper

Once the planning mappers received sub-problems, each

mapper computes the landmark table for the specified

sub-problems. After that, each mapper applied the planning

algorithm (Alg. 1) to construct individual solutions

(Definition-5) for the specified sub-problem.

The inputs of the planner algorithm are the initial plan

Pinit of the allocated cluster and landmark table. Hence,

refines the specified cluster (sub-problem) recursively until

the individual solution plan is found. To this end, each

mapper starts to apply the pre-processing technique to

produce the landmark table for the specified sub-problem.

The pre-processing technique will help the planner reduce the

search space to a smaller one before starting the search

process to minimize the planning effort.

Recent work implemented a landmark technique that

reduces the hierarchical planning domain and problem

definition of the hierarchical planning to a smaller domain

[15-16]. As a result, the pre-processing phase based on

hierarchical landmarks produces– primitive tasks that appear

in the task sequences (plan), which lead the initial plan to its

solution (Definition 6-7).

Definition 5 (Solution plan). Let <VHP, EHP> is the

hierarchical planning search space of problem HP. Then, the

∪ P ={<P
1
…..Pn>| P1= P (PI,Pi+1)∈EHP , ∀ one ≤i<n, and

Pn∈SolHP, n≥1}.

Definition 6 (Mandatory Landmark). The landmark of

the hierarchical planning problem HPprob is a ground task

t τ' , iff ∀ <P1…….Pn>∈solution(Pinit) there is a

1 ≤ i < n, s. t. t(τ')∈Gnd(PS,Vn) for Pi=<PSi, ≺i,

Vi,Ci>and Pn=<PSn,≺n, Vn,Cn>..

Definition 7 (Complex Landmark). For a complex

ground task t τ' , let PHPprob
 t τ' := P ∈PHPprob

P=<PS,≺, V, C>and t(τ')∈Gnd(PS,V) } . A ground task

t' τ'' identifies complex landmark of t τ' , iff

P∈PHPprob
 t τ' and each <P1……Pn> ∈ solution

 PHPprob
 s.t. 1≤ i<n and t' τ'' ∈Gnd PSi, Vn for

Pi=< PSi, ≺i,Vi,Ci>and Pn=<PSn,≺n, Vn, Cn >.

Definition 8 (Landmark Table). Assume <VT,VM, E> is

a TDG of the problem ℍℙprob . The landmark table of HPprob

LT={<t t' , M t t ' O t t' > t t' ∈VT , s.t. M t t '

 and O(t t') , are defined as the following:

M t τ' ={t' t'' ∈VT |t' τ'' ∈ Gnd(PS, V)} ∀ <t τ' ,≺,V,C >

∈ VMO t t'

={Gnd PS, V \ M t t' |<t t' , ≺, V, C >

∈VM}

The landmark literals will be extracted from the domain

model planning problem at hand through the pre-processing

phase. The result of the pre-processing procedure is

organized in a table so-called a landmark table. Extracting

landmark depends on building graph so-called a Task

Decomposition Graph (TDG), representing different ways

of exploring planning problems by AND/OR graph [17-18].

A TDG is finite consists of several ground tasks, either

primitive or complex, and several methods. The landmark

algorithm's output is a data structure used to introduce the

mandatory landmark tasks and details complex landmark

tasks.

The landmark table (Definition 8) includes two distinct

types of tasks. Mandatory landmarks M t τ' are the

necessary ground tasks that exist in all solution plans

presented by the abstract implementation method that is

related to task t τ' .

On the other hand, the tasks are categorized as complex

landmarks of t τ' which defined as an optional task

O t τ' . This means these tasks are not necessary for the

final solution. The pre-processing phase is terminated after

building the landmark table and submitting this table to the

planner. The planner cans benefit from the landmarks

information in two ways. (1) By reducing the domain model

through ignoring infeasible methods [15]. (2) By using the

landmark literals in the planning strategy [18]. Each mapper

will use landmark information to construct its solution. The

proposed approach relies on a hierarchical planning model;

extracting landmarks about the hierarchical declarative

domain can be extracted while generating the task expansion

modifications.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

28

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

First, the module FModGenComTask of modification

generation is deployed regarding the landmark table LTi of

the specified problem ⨅γ In the traditional hierarchical

planner, in each iteration, the module FModGenComTask

considers all methods of the specified complex task flaw step

t τ' . Instead of that, in the proposed work, the optional set

O(t τ') in the LT is used, Which means that the algorithm

will rely on the produced reduced pre-processing phase. It is

essential to show that the planning process generally works

with the domain model reduction with flaw and modification

modules or search control strategies. If the planning

algorithm is carried out failure, the current mapper can divide

the current sub-problem into more pieces and perform all the

above functions. Finally, each mapper generates an

individual solution plan p and sends it to the reducer.

B. Reducer

After all planning mappers have been generated

individual solution plans for all sub-problems, the reducer

will start running the detection and merging process to

generate a general solution plan. Employing the detection and

merging process, the reducer identifies conflicts between

different solutions to resolve these conflicts through a

merging process.

The proposed merging technique relies on Fragment

terminology. The merging technique consists of two stages;

(1) The output of the mappers, which are individual plans

PΓ={Pγ1,Pγ2, …Pγn} is split into groups of so-called

Fragments. The constraints especially ordering constraints in

the SCP, are used in building the group of Fragments.

Each fragment F= <Pγ, Oγ> consists of a set of individual

plans Pγ (P
γ
⊂ PΓ)and ordering constraints O, which add

partial order on individual plans 𝒫. For example, assume that

the set of ordering in SCP is

{PS1 ≺PS2, PS2≺PS3, PS4≺PS5}

Let a set of individual plans PΓ={Pγ1,Pγ2, …Pγ7} is

respectively, a solution for complex plan steps

PS1,PS2, …PS7. Then these complex plans in PΓ construct

three different fragments

F1=< Pγ1,Pγ2,Pγ3 , Pγ1≺Pγ2 , Pγ2≺Pγ3 >

, F2=< Pγ4,Pγ5 , Pγ4≺Pγ5 > and F0=< Pγ6,Pγ7 , {φ}> .

Please consider that in the merging technique, we have two

different kinds of fragments. dependent-Fragment which

have individual dependent plans like F1 and F2 And

independent-Fragment, which have individual plans which

do not have an explicit dependency like F0 . (2) Each

fragment's plans are combined to construct MFP, which is a

Merged-Fragment plan. Hence all MFPs are put together to

construct a solution plan. So, the implicit dependency among

plans is determined, especially in independent-Fragment.

This was done through matching the pre-conditions and

effects of tasks in different plans within the same fragment,

which means the specific effect of plan pγi tasks is found as

pre-conditions for plan Pγi tasks.

Definitely, determining plan dependency is necessary to

remove the negative interactions, which means the task can

remove another task's effect or pre-condition. It also helps the

merging technique benefit from the positive interactions that

mean specific pre-condition is needed by two different tasks

and ensure that one of them does not remove it or constructs

the needed pre-condition of the other task. On the other side,

the independent plans will be performed simultaneously

through their integration into a single plan. If it detects

dependency between plans in an independent-Fragment, the

reducer updates it by adding ordering constraints. Regarding

the dependency between plan steps, some tasks in these plans

will be executed at the same time. Note that tasks cannot

operate at the same time if there is an inconsistency between

the pre-conditions or effect of successor scheme tasks and

effects of predecessor schemes effects. The comparison

between pre-conditions and effects in one side plan

(successor) and the effects of tasks in the second side plan

(predecessor) determines the concurrent tasks. The

comparison process is started by checking pre-conditions and

effects of the first task in the successor plan Pγi with

post-conditions of different tasks in the predecessor plan Pγi.

Case-1 (Sequential Case) is executed if the

pre-conditions or effects of the first task in Pγi are violated so

that this task will execute sequentially with plan Pγi.

Otherwise, Case-2 (Concurrent Case) is executed;

which means the first task will be executed concurrently with

the plan 𝒫γi . The comparison process in case-2 is run

recursively on the successor plan Pγj with the next task. At

this point, we neither need case-2 nor steps numbers 4 and 5

in case-1.

Case-1(Sequential Case): consists of six steps; (1)

construct ordering constraint

<last task ∈PγiThe current task in Pγj> , (2) Delete the

ordering constraint <last task ∈Pγi, goal task() ∈ Pγi>, (3)

Delete goal task () ∈Pγi , (4) Delete ordering constraint

<initial task() ∈Pγj, current task in Pγj> , (5) Delete

initial task() ∈Pγj, (6) Terminate the comparison process.

Case-2 (Concurrent case): (1) Delete ordering constraint

<initial task () ∈Pγj, current task ∈ Pγj> , (2) Delete the

initial task () ∈Pγj, (3) construct the ordering constraint

<initial task ()∈Pγi, current task ∈ Pγj>, (4) go further in

comparison with the new task in the successor plan Pγj .

Reduce Artificial Intelligence Planning Effort by using Map-Reduce Paradigm

29

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

Note that two tasks in diverse plans are merged if their

effects are the same, and at the same time, no task can violate

these effects (Definition 9).

Definition 9 (Merging tasks merge 𝑷𝑺𝒊, 𝑷𝑺𝒋).

∀ plan steps PSI and PSj ∈ Pγi, merge (PS
I
,PSj) iff (

 Eff PSi =Eff PSj ⋏(∄ PSn∈ Pγi violate

eff PSj s.t.(PS
j
≺PSn)))

After merging tasks, the related constraints should be

combined and assigned as new constraints for the merged

task.

For all merged tasks PSI, PSj∈ Pγi : (1) The plan step PSj

is replaced by plan step PSI , (2)

∀ PSn, PSm ∈ Pγi and ∃<PSn, PSj> , <PSj, PSm> ∈

 ≺of plan Pγi add new order constraint <PSn, PSm> to plan

Pγi , (3) Delete <PSn, PSj>, <PSj, PSm> from plan Pγi. These

rules guarantee that the ordering constraints of the merged

tasks are conserved.

On the causality constraints that include the merged task

in its components should be modified. For all merged plan

steps PSi, PSj∈ Pγi: ∀ PSn, PSm ∈ Pγj :(1) ∀ causal link

∀ PSj

Φ

 PSm ∈CL of plan Pγj add a new causal link

PSi→PSm to CL of plan Pγj , (2) Delete causal link PSj

Φ

 PSm from CL of plan Pγj , (3) Delete causal link PSn

Φ

 PSj from the CL of plan Pγj.

IV. EXPERIMENTAL RESULTS

We have performed a variety of experiments to measure

the realistic efficiency obtained by the proposed approach.

The experiments were performed on a machine with 3 GHz

CPU and 4GB RAM. The Hadoop-2.6.0.tar on

ubuntu-14.04.1 for both Hadoop platforms Single node and

multi-node cluster with a master and two slaves is installed.

Besides, we installed the Hadoop requirement Java OpenJDK

by using the apt-get command. We have checked Hadoop

running components using the jps command. The output of

the command in both the single platform and the multi-node

cluster is shown in Figure4. Note, we can access a single

node's interface from http://localhost:50070/ and in a

multi-node cluster from http://hadoopmaster:50075/.

The experiment includes two different hierarchical

domains. The first one is a shallow hierarchical domain,

which is the satellite domain. It represents the stellar

scientific observations on Earth-orbiting instrument platform

problems. The domain satellite consists of 3 complex and

five primitive tasks, where eight methods connect complex

tasks. The problems derived from the satellite domain are

typically simple, but it will be complicated when modelling

observations more on time. This means that domain methods

are repeated several times in various situations in the solution

plan.

Figure 2. Independent UM-Translog problems

(Map-Reduce single node with dependent and

independent clustering techniques)

Figure 3. Dependent UM-Translog problems

(Map-Reduce single node with dependent and

independent clustering techniques)

The second one is the UMTranslog, which is deep in a

hierarchical domain. It is motivated by the problem of

transporting and logistics goods. UmTranslog domain

includes 21 complex tasks connected with 51 methods and

48 primitive tasks. These two domain models discuss the

problem features they trigger.

http://localhost:50070/
http://hadoopmaster:50075/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

30

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

Figure 4. Independent UM-Translog problems

(Map-Reduce multi-node with dependent and

independent clustering techniques)

Figure 5. Dependent UM-Translog problems

(Map-Reduce Multi-node with dependent and

independent clustering techniques)

UM-Translog domain issues problems usually vary in

terms of the decomposition structure since various ways

handle particular transport products, e.g., hazardous liquids

need various methods than standard transport packages in the

vehicle. Consequently, we specified our experiments on

qualitatively various problems via identifying different

means of transport and products. In the initial plan, the

number of task issues varies between one to six tasks. The

proposed technique is performed over two different sets of

problems: dependent and independent problems over two

different domains.

Fig. 2, 3, 4, 5, 6, 7, 8, and 9 show our approach's runtime

behaviour compared to the traditional planning system. In our

approach, the planning time means the time of splitting the

hierarchical planning problem, mapper execution time, which

includes the time of solving sub-problems and the time of

pre-processing, and finally, the detection and merging time in

the reduce phase. The system would return no solution if the

planner did not find a solution within the bounded 10000

plans and 18000 seconds. The system PANDA refers to the

behavior of the traditional hierarchical planning system [19].

The other two columns refer to our system's behavior by

considering clustering the hierarchical planning problem

through two variant clustering techniques; Dependent and

Independent technique.

Figure 6. Independent Satellite problems (Map-Reduce

single node with dependent and independent clustering

techniques)

Our experiments proved that PANDA's traditional

planning system achieves low efficiency either in the satellite

or UM-Translog domains. In addition, it faces some

difficulty in solving large hierarchical planning problems. As

well as the experiments demonstrate that splitting

hierarchical planning problem into various clusters using the

Dependent or Independent clustering algorithm is more

straightforward to solve than the original problem.

As shown in Fig. 2 and 3, in a single node, for the

UM-Translog problems containing a set of independent

complex tasks in the initial plan, approximately the average

performance improvement of the proposed system with an

independent clustering algorithm is 56% in comparison with

PANDA planner. In contrast, the percentage of improvement

with the dependent algorithms reaches 25%. On the other

hand, when the initial plan contains abstract tasks, the

proposed approach achieves improvement by about 36% and

41% with considering independent and dependent clustering

algorithms, respectively, compared with the PANDA system.

As shown in Fig. 4 and 5, in multi-node implementation,

the independent clustering techniques achieved better

performance than dependent clustering by 8% w.r.t.

independent abstract tasks in the initial plan. Not

surprisingly, the proposed system's performance increases

dramatically with increasing the number of tasks in the

hierarchical planning problem.

Figure 7. Dependent Satellite problems (Map-Reduce

single node with dependent and independent clustering

techniques)

Reduce Artificial Intelligence Planning Effort by using Map-Reduce Paradigm

31

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

Figure 8. Independent Satellite problems (Map-Reduce

Multi-node with dependent and independent clustering

techniques)

As documented in fig. 7, the Independent algorithm

attains an average improvement of 9% w. r. t. the Dependent

algorithm in a single node, which means when the plan

includes causal interaction between abstract tasks, the

Independent clustering technique works efficiently than the

Dependent clustering technique. While in multi-node

implementation, archives 6% with the same problems.

Although the satellite domain does not achieve high

performance with the most hierarchical planning approaches

according to the shallowest decomposition hierarchy, it

accomplishes good performance with the proposed

map-reduction approach, either considering the Dependent or

Independent clustering technique depicted in Fig. 6, 7, 8, and

9.

In addition, either in the satellite or Um-translog

domains, the proposed approach succeeded in solving many

problems, while the hierarchical planning system PANDA

cannot solve it. Not surprisingly, applying the proposed

approach in the multi-nodes Hadoop platform consumes

execution time less than a single-node Hadoop platform by

13%.

Figure 9. Dependent Satellite problems (Map-Reduce

Multi-node with dependent and independent clustering

techniques)

V. CONCLUSION

This paper introduced a new AI-planning technique that

handling the hierarchical AI-planning by map-reduce

paradigm. Our approach enables us to split the planning

problem into clusters using two different techniques;

Dependent and Independent. In addition, each sub-problem

runs a pre-processing technique to rule out the irrelevant

information from the domain model, which accelerates the

planning process to find the solution plan. It guarantees that

the conflicts between individually constructed sub-plans are

detected and solved successfully. Hence, the global plan is

generated without additional refinement in any individual

plan. Our experiments' scenario relies on the run of the

proposed approach over two different hierarchical domains in

which the proposed approach, either using dependent or

independent clustering techniques, competed with a

hierarchical planner. The experiments run over 120 problems

from the two mentioned domains. The experimental results

proved a great improvement for the practical use of the

proposed approach.

REFERENCES

1. D, Nau, M. Ghallab, and P. Traverso, "automated planning: Theory

and practice," Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

2. R. Fikes, and N. Nilsson, "STRIPS: a new approach to the application

of theorem proving to problem-solving," Artificial Intelligence, 2,
1971, PP 189–208.

3. D. Holler, P. Bercher, G. Behnke, and S. Biundo, ¨HTN planning as

heuristic progression search," Journal of artificial intelligence
research (JAIR) 2020, vol. (67): PP 835– 880.

4. D. Wilkins, K. Mayers, "A multi-agent planning architecture," In

Proceedings of AIPS, 1998. pp. 162.
5. J. Tonino, A. Bos, M. deWeerdt, C. Witteveen, "Plan coordination by

revision in collective agent-based systems," Journal of Artificial

Intelligence 142, 2. 2002, pp. 121–145.

6. M. Weerdt, C. Witteveen, "A resource logic for multi-agent plan

merging," In Proceedings of the 20th Workshop of the UK Planning

and Scheduling, 2003, PP. 244–256.
7. A. Mors, J. Valk, C. Witteveen, "Task coordination, and

decomposition in multi-actor planning systems," In Proceedings of

the Workshop on Software-Agents in Information Systems and
Industrial Applications (SAISIA), 2006. pp. 83–94.

8. M. desJardins, M. Wolverton, "Coordinating a distributed planning

system," Journal of AI Magazine, 20(4).1999, PP. 4553.
9. H. Hisashi, "Stratified multi-agent HTN planning in dynamic

environments," In Proceedings KES-AMSTA, Pp. 189–198 (2007).

10. M. Elkawkagy, S. Buindo, "Hybrid Multi-agent Planning," In
Proceedings of the German Conference on Multiagent System

Technologies, 2011, pp. 16-28.

11. M. Elkawkagy, H. Elbeh, "Improving AI Planning using Map
Reduce," International Journal of Innovative Technology and

Exploring Engineering, 9(4). 2020. PP 615-618.

12. N. Maleki, A. Rahmani, M. Conti, " MapReduce: an infrastructure
review and research insights," The Journal of Supercomputing,

Springer Nature, 75(10),2019, PP. 1-69.

13. M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo,
"Improving hierarchical planning performance by the use of

landmarks," In Proceedings of the 26th National Conference on

Artificial Intelligence (AAAI), 2012, pp. 1763–1769.
14. P. Bercher, D. Hller, G. Behnke, and S. Biundo, "User-centered

planning - a discussion on planning in the presence of human users,"

In Proceedings of the International Symposium on Companion
Technology, 2015.

15. M. Elkawkagy, B. Schattenberg, S. Biund, "Landmarks in hierarchical

planning," In Proceedings of ECAI, 2010, pp. 229–234.

javascript:void(0)
javascript:void(0)
javascript:void(0)

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-10 Issue-7, May 2021

32

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijitee.G89020510721

DOI: 10.35940/ijitee.G8902.0510721

16. M. Elkawkagy, P. Bercher, B. Schattenberg, S. Biundo, "Exploiting

landmarks for hybrid planning," In proceedings of 25th PuK
Workshop Planen, Scheduling und Konfigurieren, Entwerfen, 2010.

17. M. Elkawkagy, P. Bercher, B. Schattenberg, S. Biundo, S.,

"Landmark-aware strategies for hierarchical planning," In
Proceedings of the 3rd Workshop on Heuristics for

Domain-independent Planning, 2011, PP 73-79.

18. M. Elkawkagy, "Improving the performance of hybrid planning,"
International Journal of Artificial Intelligence, 14 (2), 2016, 98-116.

19. P. Bercher, D. H ̈oller, G. Behnke, and S. Biundo, "On implications of

preconditions and effects of compound HTN planning tasks" In
Proceedings of the 22nd European Conference on Artificial

Intelligence (ECAI), (2016) pp. 225–233, IOS Press

20. G. Behnke, D. Holler, and S. Biundo, "Finding opti- ¨ mal solutions in
HTN planning – A SAT-based approach," In Proc. of the 28th Int.

Joint Conf. on AI (IJCAI), 2019, 5500–5508, IJCAI Organization.

21. R. Goldman, and U. Kuter, "Hierarchical task network planning in
common Lisp: the case of SHOP3", In Proc. of the 12th European

Lisp Symposium (ELS), 2019, 73–80. ACM.

22. D. Holler, P. Bercher, G. Behnke, and S. Biundo, "On guiding search
in HTN planning with classical planning heuristics," In Proc. of the

28th Int. Joint Conf. on AI (IJCAI), (2019), 6171–6175, IJCAI
Organization.

AUTHORS PROFILE

Mohamed Elkawkagy, is Associate Professor in
Artificial intelligence. He is a staff member at the

Computer Sciences department, Community College,

Imam Abdulrahman Bin Faisal University, KSA from
November 2016 till now. He got his PhD in 2011 from the

Faculty of Engineering, Ulm University, Germany. He

was a Post-Doc at the Artificial Intelligence Research
Group, Ulm University, Germany between 2011 and 2013. His research

focuses on Artificial In intelligence, cloud computing, and Big data.

Heba Elbeh, is Lecturer in Artificial intelligence. She is

a staff member at the Computer Sciences department,

Community College, Imam Abdulrahman Bin Faisal
University, KSA from November 2016 till now. He got

his PhD in 2012 from the Faculty of Engineering, Ulm

University, Germany. Her research focuses on Artificial
In intelligence, Block chain, and Big data.

javascript:void(0)
javascript:void(0)

