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Abstract: While several approaches have been developed to 

enhance the efficiency of hierarchical Artificial Intelligence 

planning (AI-planning), complex problems in AI-planning are 

challenging to overcome. To find a solution plan, the hierarchical 

planner produces a huge search space that may be infinite. A 

planner whose small search space is likely to be more efficient 

than a planner produces a large search space. In this paper, we 

will present a new approach to integrating hierarchical 

AI-planning with the map-reduce paradigm. In the mapping part, 

we will apply the proposed clustering technique to divide the 

hierarchical planning problem into smaller problems, so-called 

sub-problems. A pre-processing technique is conducted for each 

sub-problem to reduce a declarative hierarchical planning 

domain model and then find an individual solution for each 

so-called sub-problem sub-plan. In the reduction part, the 

conflict between sub-plans is resolved to provide a general 

solution plan to the given hierarchical AI-planning problem. Pre- 

processing phase helps the planner cut off the hierarchical 

planning search space for each sub-problem by removing the 

compulsory literal elements that help the hierarchical planner 

seek a solution. The proposed approach has been fully 

implemented successfully, and some experimental results 

findings will be provided as proof of our approach's substantial 

improvement inefficiency.  

Keywords: Artificial Intelligence Planning, Map-Reduce, 

Hadoop, Big Data. 

I. INTRODUCTION 

The paper concerns novel artificial intelligence 

(AI) hierarchical planning technique that combines the 

hierarchical AI-planning with map-reduce paradigm to 

increase the planning performance. Today, the 

Artificial Intelligence (AI) planning field offers a range 

of techniques for constructing a solution for a planning 

problem (P) (Definition-1). The process of generating a 

sequence of actions that achieve the desired goal 

(solution) is defined as the Planning process 

(Definition-2 and 3) [1]. The classical planning 

paradigm is standard AI planning.  

Definition 1. An initial state (S), actions (A), and 

goal state (G) are three parameters constitutes the 

classical planning problem (PCls) PCls= <S, A, G> such 

that the state is defined as a collection of logical facts, 

and A set of literals expresses State S as initial and State 

G as a goal. 
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Definition 2. Each action A consists of two 

components <Pre a , Eff a > . The Pre a  parameter 

reflects the pre-conditions that have to be fulfilled 

before performing the operation. Eff(a) is a collection 

of facts that alter the world state's status after the 

operation's execution. In classical planning, actions are 

depicted by Stanford Research Institute Problem Solver 

(STRIPS) [2]. 

Definition 3. (Transition state  T S,a,S'  ): The 

new state S' is created by performing the action in the 

current S as the following: 

T S,a,S' = S∪Eff a  iff Pre a ⊂S. 

So that, in classical planning, the plan is defined as a 

series of actions a⊂A*  which gradually changes the 

initial state S to goal state G. 

Hierarchical Task Network (HTN) planning [3], 

[20] is a commonly used planning process model. Tasks 

and Methods are the basis of an HTN preparation. 

Complex tasks are complex activities such as the 

transportation of certain goods from a particular place 

to a different place. Primary tasks are classical planning 

behavior. The hierarchical domain model provides a 

variety of decomposition methods to solve the related 

complex task. Each method offers a set of tasks ordered 

partially so-called task network, specifying the 

predefined solution of the complex task. The initial task 

network represents the hierarchical planning problem. 

They are solved by progressively breaking down the 

complex tasks to consistent rudimentary tasks is in the 

network. The breakdown of complex tasks by a suitable 

method substitutes the complex task with the 

decomposition process's scheme. 

Several approaches used Multi-agent planning 

(MAP) to solve big planning problems. The central 

concept of these approaches is separating the issue of 

planning problem into sub-problems. Each of them is 

resolved to create a solution for each sub-problem. 

These solutions are merged to produce a general 

solution plan [4]. Most work in the MAP focuses on 

how to coordinate between the agent's planning. In 

general, there are three approaches used to resolve the 

coordination between agents planning. The first 

category discusses the collaboration between 

completed plans [5]. The authors proposed a less 

expensive merging plan in this category by leveraging 

positive interactions and overcoming inconsistency 

among sub-problems solutions. The second category 

discusses the interleaving between coordination and 

planning processes, which means conflicts between 

sub-plans are overcome during constructing sub-plans 

[6].  
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The third category discusses two different kinds of 

coordination: implicit coordination, which manages 

agent behavior through issuing some rules, and explicit 

coordination, which starts by issuing new constraints to 

the planning problem to guarantee the feasibility of the 

issued solution [7]. 

In order to increase planning efficiency, many 

scientists employed a hierarchical structure in the MAP 

approach. Nets Of Action Hierarchies (NOAH) [8] 

framework discussed the idea of interconnect the 

hierarchical planning and merging through sharing 

resources. It was built through the emphasis on efficient 

communication between agents. Furthermore, another 

approach worked in a dynamic environment by 

arranging the agents' set into layers as a patent agent 

and a set of cooperative agents (children) working 

together towards the target [9]. Afterward, the authors 

in [10] introduced a technique to detect agent plans' 

conflicts at the primitive and abstract levels.  

As opposed to these approaches, the hierarchical 

planning approach is incorporated only once time with 

the Map-Reduce paradigm to reduce the planning 

effort. The author in [11] presented a cooperative 

technique to construct solution plans. Landmark 

heuristics guide the coordination process among agents 

while building the solution. 

This paper introduces a new hierarchical planning 

approach that combines hierarchical planning with the 

map-reduce paradigm to improve hierarchical planning 

performance. The given problem is divided into 

sub-problems according to the proposed clustering 

algorithm in the mapper phase. Afterward, identical 

mappers are initiated according to the number of 

sub-problems and then apply the pre-processing 

technique for each sub-problem to reduce the domain 

model by extracting the mandatory tasks to be a 

member solution plan. After that, the mappers start to 

find a solution for the given sub-problem. Each mapper 

uses HTN-style planning to construct its solution. The 

merging process is done in the reduction phase. The 

merging process is handled through two-step detection 

steps that discover the conflicts between individual 

solutions and solving steps that overcome the detected 

conflicts. MapReduce framework [12] is a parallel and 

distributed programming paradigm. It is designed to 

facilitate a parallel program that can perform a 

data-intensive computation efficiently. It also provides 

a great offer to convert parallel programs to cloud 

computing environments and server clusters. 

Section 2 explains the planning structure. After 

that, section 3 introduces the proposed architecture. 

The experimental scenario and the outcomes of the 

assessments are illustrated in Section 4. In section 5, 

the paper ends with a conclusion. 

II. FORMAL FRAMEWORK 

Our proposal uses hybrid planning structure which 

incorporates Partial-Order-Causal-Link (POCL) and HTN 

[13], [14], [21], [22]. The planning of POCL is a tool used for 

solving conventional planning problems. The POCL plan 

includes a sequence and partially organized actions and 

demonstrates the action's dependencies through causal ties. 

t τ = <Pre t τ  , Eff t τ  > represents The structure of the 

task, which identified by pre-conditions and effects of a task, 

where effects consist of two forks: positive and negative 

literals over the parameters τ=τ1, τ2……., τn   The hybrid 

planning framework represents pre-conditions and effects for 

primitive and complex tasks to encode POCL operations. To 

encode multiple instances for the same task in the same 

partial plan, we use identifier plan steps PS(τ), which has the 

form PS τ =<id,t(τ)>, where an id is a natural number. A 

partial hybrid plan comprises four components: plan steps PS 

which specify a task either primitive or complex, notation < 

specifies order restriction between PS, variable constraints 

are represented by notation V, and C represents causal links. 

The variable constraints (V) are composed of (in) equations 

associating variables with constants or other variables. It 

represents the (partial) substitution in Ps of the plan steps. 

Gnd(PS, V) means several ground tasks accomplished in 

a way consistent with V, which equates all parameters in all 

the P with constants' tasks. Causal links are drawn from the 

preparation of the POCL: the causal relation PSi

ϑ

 PSj 

means that the pre-condition ϑ  of the plan Step PSi  is 

inferred, and it is considered a result of the plan step PSj. 

Methods  M=<t τ' , P>  are the implementation of the 

abstract task t. Generally, each complex task is resolved or 

implemented using multiple methods. A Hybrid planning 

problem is formalized from four issues 

HPprob=<D, Sinit ,Pinit , G>. Notation D. represents a domain 

model. It consists of a task schema T and implementation 

methods M. Sinit , Pinit , 𝒢  represents the initial world state, 

initial plan and goal state respectively. Notice that this paper 

focuses on pure HTN planning, so that the goal state G is 

omitted from the planning problem. A partial plan 

P=<PS, ≺, V, C> is a solution of a problem iff: (1) P is a 

refinement of Pinit , i.e., a successor to the initial plan in the 

search space (Definition. 4), (2) a causal link in C supports 

each pre-condition of a plan step in P,  and no such 

connection is threatened. For example, In causal connections 

PSi

ϑ

 PSj the ordering constraints restrict that no plan step 

PSk with an effect that implies¬ϑ can be imposed between 

plan steps PSi  and PSj , (3) The constraints in order and 

variable are consistent, i.e., do not result in S cycles and the 

(in-) equations in V are consistent, and (4) The Plan Steps in 

S are all primitive tasks. There are various refining measures 

(or plans modifications) in the form of the HTN plan: (1) the 

decomposition of complex task employing methods; (2) use 

causal links to close open-plan steps pre-conditions; (3) 

adding ordering constraints; and (4) the inclusion of variable 

constrain. 

Definition 4 (search space). The directed graph 

Sspace=<Vspace, Espace>  is called the planning problem search 

space iff (1) Pinit∈ Vspace  (2) if there is a refinement for plan 

P∈ Vspace  to a plan P', then P'∈ Vspace and (P,P')∈ Espace, and 

(3) Sspace is minimal holding such that includes items  (1) and 

(2). In Sspace , instated writing P∈ Vspace ., we will write 

P∈Sspace. Generally, Sspace  has no acyclic or finite. 

 

 

 

 

 

 

 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-10 Issue-7, May 2021 

 

26 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication  
© Copyright: All rights reserved. 

 

Retrieval Number: 100.1/ijitee.G89020510721 

DOI: 10.35940/ijitee.G8902.0510721 
 

Our hierarchical planning algorithm (Alg. 1) guides the 

search space heuristically to find solutions.  The fringe 

  F= <P1,…….., P> is a series of unexplored plans which 

directly successors of visited non-solution plans in the 

Planning problem HPprob, which initially started with only 

one plan, Pinit . The Fringe <P1,…….., Pn> is structured such 

that a Pi the plan leads quicker to a solution than a plan Pj for 

j≻i. After that, use module PlanSel to delete the selected plan 

from the fringe set after selecting it.  

The planning algorithm starts by considering the Fringe 

as input; if there are plans in the Fringe, they recursively 

select one plan from the Fringe through plan selection 

strategy PlanSel(F) (lines 1-2). Note that the selected plan is 

removed from the fringe F  (line 3). The algorithm will 

terminate with the solution if the selected plan does not have 

any flaw (lines 4-5). Otherwise, the flaw selection module 

(FlawSel) will detect all flaws in the specified plan (line 6). 

Any components that violate the solution conditions are 

considered a flaw, such as a complex task flaw and a Threat 

flaw. A plan selection (PlanSel ) revised the Fringe from the 

plans with unresolvable flaws such as inconsistent ordering 

constraints and then ordered the rest plans in the Fringe.  

Hence apply the flaw refinement in the selected plan and add 

a new plan in the Fringe (line 7). The planner algorithm is 

ended by returning the solution or failure (line 8). 

 

 

III. THE PROPOSED ARCHITECTURE 

A lot of planning and Multi-agent planning (MAP) 

approaches have been presented to address broad planning 

problems. This paper proposes a new approach to integrate 

Map Reduce Architecture regarding hierarchical planning to 

enhance planning systems. Figure 1 shows modules of the 

proposed architecture. The pre-processing module is used to 

remove irrelevant information from the domain model when 

considering the hybrid planning sub-problem. The clustering 

algorithm is used to divide the defined planning problem into 

various individual sub-problems and a set of constraints, 

so-called shared constraints pool (SCP). Shared Constraint 

Pool is a generic memory that contains a set of constraints. 

The Mapper module encapsulates several steps, such as 

pre-processing for the given sub-problem, finding the 

sub-plan for the specified problem. All mappers clone all 

literals in the initial state of the hierarchical planning 

problem. Reduction module will receive SCP and an 

individual solution (sub-plan) of each sub-problem to 

overcome the conflicts between these solutions to find a 

general solution to the concerned hierarchical problem. 

Before introducing the hierarchical planning problem to the 

mappers, the proposed clustering technique is used to divide 

the hierarchal problem into a series of sub-problems. The 

clustering technique is based on the principle of creating a 

series of independent clusters. 

In the split process, the planning problem is broken down 

into clusters according to two clustering algorithms: 

Dependent and Independent. Dependent algorithm 

establishes several dependent clusters, while the independent 

algorithm generates a series of separate clusters. The 

behavior of the two techniques is shown in the experimental 

section. The independent tasks in the current plan are isolated 

within a single cluster. The task constraints in various 

clusters are simultaneously inserted into shared constraints 

pool SCP, As shown in Alg. 2.  The input of the Dependent 

algorithm is the planning problem, and the output is the Γ set. 

The set Γ includes the shared constraints pool SCP and 

different clusters Πγ=⋃i=0
n {Πγi

}. To extract all clusters, the 

Dependent algorithm executes recursively to traverse 

different tasks in the initial plan Pinit. Each cluster 

Πγ=<D, Sinit , Pγinit
> consists of D, Sinit , Pγinit

Which represents 

the domain model, initial state, and initial partial plan, 

respectively.  

Now, the question is how the Dependent algorithm 

constructs the set Γ. As shown in Alg. 2, the algorithm starts 

by initializing the set Γ by a null value (line 1). After that, 

from the current plan, a new cluster Πγi
 is created by 

collecting the free pre-request tasks tei and added to the task 

network of the initial plan Pγinit
 in Πγi

 (line 3-5). Hence, the 

task network TE of the plan Pinit  in the planning problem, Π 

is updated by removing the tasks tei  (line 6). For the current 

tasks PSi  at hand, the created cluster Πγ i
 is extend 

recursively by adding different constraints and updating 

SCP by appending all constraints that indexed in the 

relationship between the current task t and other tasks PSi 

(lines 7 to 15). In the end, the Γ is modified by adding 

clusterΠγi
, and also shared constraints pool SCP is modified 

(line 16). The SCP will play a significant role in the 

reduction phase. According to the updated plan and the set 

Γ, the Dependent algorithm works recursively to construct a 

new cluster (line 17).   
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Figure 1. The proposed planning-Map-Reduce 

Architecture 

 

On the other side, the Independent algorithm collects 

the dependent tasks in one cluster; this means the SCP is 

empty. So, to divide the planning problem into several 

clusters using the Independent algorithm, line 3 in Alg. 2 is 

updated by "Select the dependent tasks PSi. This means the 

resulted clusters are explicitly independent, and the SCP is 

empty. After that, the Dependent or Independent algorithm 

has generated clusters distributed among the mappers to 

build a solution plan (sub-plans) for each cluster. 

A. Planning Mapper  

Once the planning mappers received sub-problems, each 

mapper computes the landmark table for the specified 

sub-problems. After that, each mapper applied the planning 

algorithm (Alg. 1) to construct individual solutions 

(Definition-5) for the specified sub-problem. 

The inputs of the planner algorithm are the initial plan 

Pinit  of the allocated cluster and landmark table. Hence, 

refines the specified cluster (sub-problem) recursively until 

the individual solution plan is found. To this end, each 

mapper starts to apply the pre-processing technique to 

produce the landmark table for the specified sub-problem. 

The pre-processing technique will help the planner reduce the 

search space to a smaller one before starting the search 

process to minimize the planning effort.  

Recent work implemented a landmark technique that 

reduces the hierarchical planning domain and problem 

definition of the hierarchical planning to a smaller domain 

[15-16]. As a result, the pre-processing phase based on 

hierarchical landmarks produces– primitive tasks that appear 

in the task sequences (plan), which lead the initial plan to its 

solution (Definition 6-7). 

 

Definition 5 (Solution plan). Let <VHP, EHP>  is the 

hierarchical planning search space of problem HP. Then, the 

∪  P ={<P
1
…..Pn>| P1= P (PI,Pi+1)∈EHP , ∀  one ≤i<n, and  

Pn∈SolHP, n≥1}. 

 

Definition 6 (Mandatory Landmark). The landmark of 

the hierarchical planning problem HPprob  is a ground task 

t τ' , iff ∀ <P1…….Pn>∈solution(Pinit)  there is a 

1 ≤ i < n, s. t. t(τ')∈Gnd(PS,Vn)  for Pi=<PSi, ≺i,   

Vi,Ci>and Pn=<PSn,≺n, Vn,Cn>..  

Definition 7 (Complex Landmark). For a complex 

ground task t τ' , let PHPprob
 t τ'  :=   P ∈PHPprob

   

P=<PS,≺, V, C>and    t(τ')∈Gnd(PS,V) } . A ground task 

t' τ''  identifies complex landmark of t τ' , iff 

P∈PHPprob
 t τ'   and each <P1……Pn> ∈ solution  

 PHPprob
  s.t. 1≤  i<n and t' τ'' ∈Gnd PSi, Vn  for  

Pi=< PSi, ≺i,Vi,Ci>and Pn=<PSn,≺n, Vn,  Cn >.   

 

Definition 8 (Landmark Table). Assume <VT,VM, E> is 

a TDG of the problem ℍℙprob . The landmark table of HPprob 

LT={<t t' , M  t t '  O t t'  >  t t' ∈VT , s.t. M  t t '   

 and  O(t t' ) ,  are defined as the following: 

M t τ'  ={t' t'' ∈VT |t' τ'' ∈ Gnd(PS, V)}   ∀ <t τ' ,≺,V,C > 

∈ VMO  t t'   

={Gnd PS, V \ M  t t'  |<t t' ,  ≺, V, C >  

∈VM} 

The landmark literals will be extracted from the domain 

model planning problem at hand through the pre-processing 

phase. The result of the pre-processing procedure is 

organized in a table so-called a landmark table. Extracting 

landmark depends on building graph so-called a Task 

Decomposition Graph (TDG), representing different ways 

of exploring planning problems by AND/OR graph [17-18]. 

A TDG is finite consists of several ground tasks, either 

primitive or complex, and several methods. The landmark 

algorithm's output is a data structure used to introduce the 

mandatory landmark tasks and details complex landmark 

tasks. 

The landmark table (Definition 8) includes two distinct 

types of tasks. Mandatory landmarks M t τ'   are the 

necessary ground tasks that exist in all solution plans 

presented by the abstract implementation method that is 

related to task t τ' .  

On the other hand, the tasks are categorized as complex 

landmarks of t τ'  which defined as an optional task 

O t τ'  . This means these tasks are not necessary for the 

final solution. The pre-processing phase is terminated after 

building the landmark table and submitting this table to the 

planner. The planner cans benefit from the landmarks 

information in two ways. (1) By reducing the domain model 

through ignoring infeasible methods [15]. (2) By using the 

landmark literals in the planning strategy [18]. Each mapper 

will use landmark information to construct its solution. The 

proposed approach relies on a hierarchical planning model; 

extracting landmarks about the hierarchical declarative 

domain can be extracted while generating the task expansion 

modifications. 
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First, the module FModGenComTask  of modification 

generation is deployed regarding the landmark table LTi of 

the specified problem ⨅γ In the traditional hierarchical 

planner, in each iteration, the module FModGenComTask  

considers all methods of the specified complex task flaw step 

t τ' . Instead of that, in the proposed work, the optional set 

O(t τ' ) in the LT is used, Which means that the algorithm 

will rely on the produced reduced pre-processing phase. It is 

essential to show that the planning process generally works 

with the domain model reduction with flaw and modification 

modules or search control strategies. If the planning 

algorithm is carried out failure, the current mapper can divide 

the current sub-problem into more pieces and perform all the 

above functions. Finally, each mapper generates an 

individual solution plan p and sends it to the reducer. 

 

 

B. Reducer 

After all planning mappers have been generated 

individual solution plans for all sub-problems, the reducer 

will start running the detection and merging process to 

generate a general solution plan. Employing the detection and 

merging process, the reducer identifies conflicts between 

different solutions to resolve these conflicts through a 

merging process. 

The proposed merging technique relies on Fragment 

terminology. The merging technique consists of two stages; 

(1) The output of the mappers, which are individual plans 

PΓ={Pγ1,Pγ2, …Pγn}  is split into groups of so-called 

Fragments. The constraints especially ordering constraints in 

the SCP, are used in building the group of Fragments. 

Each fragment F= <Pγ, Oγ> consists of a set of individual 

plans Pγ (P
γ
⊂ PΓ)and ordering constraints O, which add 

partial order on individual plans 𝒫. For example, assume that 

the set of ordering in SCP is 

{PS1 ≺PS2, PS2≺PS3, PS4≺PS5} 

Let a set of individual plans PΓ={Pγ1,Pγ2, …Pγ7}  is 

respectively, a solution for complex plan steps 

PS1,PS2, …PS7. Then these complex plans in PΓ construct 

three different fragments  

F1=< Pγ1,Pγ2,Pγ3 ,  Pγ1≺Pγ2 , Pγ2≺Pγ3 >  

,  F2=< Pγ4,Pγ5 ,  Pγ4≺Pγ5 >  and  F0=< Pγ6,Pγ7 ,  {φ}> . 

Please consider that in the merging technique, we have two 

different kinds of fragments. dependent-Fragment which 

have individual dependent plans like F1  and F2 And 

independent-Fragment, which have individual plans which 

do not have an explicit dependency like F0 . (2) Each 

fragment's plans are combined to construct MFP, which is a 

Merged-Fragment plan. Hence all MFPs are put together to 

construct a solution plan. So, the implicit dependency among 

plans is determined, especially in independent-Fragment. 

This was done through matching the pre-conditions and 

effects of tasks in different plans within the same fragment, 

which means the specific effect of plan pγi tasks is found as 

pre-conditions for plan Pγi tasks.  

Definitely, determining plan dependency is necessary to 

remove the negative interactions, which means the task can 

remove another task's effect or pre-condition. It also helps the 

merging technique benefit from the positive interactions that 

mean specific pre-condition is needed by two different tasks 

and ensure that one of them does not remove it or constructs 

the needed pre-condition of the other task.  On the other side, 

the independent plans will be performed simultaneously 

through their integration into a single plan. If it detects 

dependency between plans in an independent-Fragment, the 

reducer updates it by adding ordering constraints. Regarding 

the dependency between plan steps, some tasks in these plans 

will be executed at the same time. Note that tasks cannot 

operate at the same time if there is an inconsistency between 

the pre-conditions or effect of successor scheme tasks and 

effects of predecessor schemes effects. The comparison 

between pre-conditions and effects in one side plan 

(successor) and the effects of tasks in the second side plan 

(predecessor) determines the concurrent tasks. The 

comparison process is started by checking pre-conditions and 

effects of the first task in the successor plan Pγi  with 

post-conditions of different tasks in the predecessor plan Pγi.  

Case-1 (Sequential Case) is executed if the 

pre-conditions or effects of the first task in Pγi are violated so 

that this task will execute sequentially with plan Pγi.  

Otherwise, Case-2 (Concurrent Case) is executed; 

which means the first task will be executed concurrently with 

the plan 𝒫γi . The comparison process in case-2 is run 

recursively on the successor plan Pγj with the next task. At 

this point, we neither need case-2 nor steps numbers 4 and 5 

in case-1. 

Case-1(Sequential Case): consists of six steps; (1) 

construct ordering constraint 

<last task ∈PγiThe current task in Pγj> , (2) Delete the 

ordering constraint  <last task ∈Pγi,  goal task() ∈ Pγi>, (3) 

Delete goal task () ∈Pγi , (4)  Delete ordering constraint 

<initial task() ∈Pγj,  current task in Pγj> , (5) Delete 

initial task() ∈Pγj, (6) Terminate the comparison process. 

Case-2 (Concurrent case): (1) Delete ordering constraint 

<initial task () ∈Pγj,  current task ∈ Pγj> , (2) Delete the 

initial task () ∈Pγj,  (3) construct the ordering constraint 

<initial task ()∈Pγi,    current task ∈ Pγj>, (4) go further in 

comparison with the new task in the successor plan Pγj . 
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Note that two tasks in diverse plans are merged if their 

effects are the same, and at the same time, no task can violate 

these effects (Definition 9). 

Definition  9 (Merging tasks merge  𝑷𝑺𝒊, 𝑷𝑺𝒋 ).  

∀ plan steps PSI and PSj ∈ Pγi,  merge (PS
I
,PSj) iff  ( 

 Eff PSi =Eff  PSj  ⋏(∄ PSn∈ Pγi violate  

eff PSj s.t.(PS
j
≺PSn )))   

 

After merging tasks, the related constraints should be 

combined and assigned as new constraints for the merged 

task. 

For all merged tasks PSI, PSj∈ Pγi : (1) The plan step PSj 

is replaced by plan step  PSI , (2) 

∀ PSn, PSm ∈ Pγi and ∃<PSn, PSj> , <PSj, PSm> ∈ 

 ≺of plan Pγi  add new order constraint <PSn, PSm> to plan 

Pγi , (3) Delete <PSn, PSj>, <PSj, PSm> from plan  Pγi. These 

rules guarantee that the ordering constraints of the merged 

tasks are conserved. 

On the causality constraints that include the merged task 

in its components should be modified. For all merged plan 

steps PSi, PSj∈ Pγi:  ∀ PSn, PSm ∈ Pγj  :(1) ∀  causal link 

∀ PSj

Φ

  PSm ∈CL  of plan Pγj  add a new causal link 

PSi→PSm  to CL of plan Pγj , (2) Delete causal link PSj

Φ

  PSm  from CL of plan Pγj , (3) Delete causal link PSn

Φ

  PSj from the CL of plan Pγj. 

IV. EXPERIMENTAL RESULTS 

We have performed a variety of experiments to measure 

the realistic efficiency obtained by the proposed approach. 

The experiments were performed on a machine with 3 GHz 

CPU and 4GB RAM. The Hadoop-2.6.0.tar on 

ubuntu-14.04.1 for both Hadoop platforms Single node and 

multi-node cluster with a master and two slaves is installed. 

Besides, we installed the Hadoop requirement Java OpenJDK 

by using the apt-get command. We have checked Hadoop 

running components using the jps command. The output of 

the command in both the single platform and the multi-node 

cluster is shown in Figure4. Note, we can access a single 

node's interface from http://localhost:50070/ and in a 

multi-node cluster from http://hadoopmaster:50075/. 

The experiment includes two different hierarchical 

domains. The first one is a shallow hierarchical domain, 

which is the satellite domain. It represents the stellar 

scientific observations on Earth-orbiting instrument platform 

problems. The domain satellite consists of 3 complex and 

five primitive tasks, where eight methods connect complex 

tasks. The problems derived from the satellite domain are 

typically simple, but it will be complicated when modelling 

observations more on time. This means that domain methods 

are repeated several times in various situations in the solution 

plan. 

 

 
Figure 2.  Independent UM-Translog problems 

(Map-Reduce single node with dependent and 

independent clustering techniques) 

 

 
Figure 3.  Dependent UM-Translog problems 

(Map-Reduce single node with dependent and 

independent clustering techniques) 

 

The second one is the UMTranslog, which is deep in a 

hierarchical domain. It is motivated by the problem of 

transporting and logistics goods. UmTranslog domain 

includes 21 complex tasks connected with 51 methods and 

48 primitive tasks. These two domain models discuss the 

problem features they trigger. 

 

 

 

 

 

 

http://localhost:50070/
http://hadoopmaster:50075/
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Figure 4.  Independent UM-Translog problems 

(Map-Reduce multi-node with dependent and 

independent clustering techniques) 

 

 
Figure 5. Dependent UM-Translog problems 

(Map-Reduce Multi-node with dependent and 

independent clustering techniques) 

 

UM-Translog domain issues problems usually vary in 

terms of the decomposition structure since various ways 

handle particular transport products, e.g., hazardous liquids 

need various methods than standard transport packages in the 

vehicle. Consequently, we specified our experiments on 

qualitatively various problems via identifying different 

means of transport and products. In the initial plan, the 

number of task issues varies between one to six tasks. The 

proposed technique is performed over two different sets of 

problems: dependent and independent problems over two 

different domains. 

Fig. 2, 3, 4, 5, 6, 7, 8, and 9 show our approach's runtime 

behaviour compared to the traditional planning system. In our 

approach, the planning time means the  time of splitting the 

hierarchical planning problem, mapper execution time, which 

includes the time of solving sub-problems and the time of 

pre-processing, and finally, the detection and merging time in 

the reduce phase. The system would return no solution if the 

planner did not find a solution within the bounded 10000 

plans and 18000 seconds. The system PANDA refers to the 

behavior of the traditional hierarchical planning system [19]. 

The other two columns refer to our system's behavior by 

considering clustering the hierarchical planning problem 

through two variant clustering techniques; Dependent and 

Independent technique. 

 
Figure 6. Independent Satellite problems (Map-Reduce 

single node with dependent and independent clustering 

techniques) 

 

Our experiments proved that PANDA's traditional 

planning system achieves low efficiency either in the satellite 

or UM-Translog domains. In addition, it faces some 

difficulty in solving large hierarchical planning problems. As 

well as the experiments demonstrate that splitting 

hierarchical planning problem into various clusters using the 

Dependent or Independent clustering algorithm is more 

straightforward to solve than the original problem. 

As shown in Fig. 2 and 3, in a single node, for the 

UM-Translog problems containing a set of independent 

complex tasks in the initial plan, approximately the average 

performance improvement of the proposed system with an 

independent clustering algorithm is 56% in comparison with 

PANDA planner. In contrast, the percentage of improvement 

with the dependent algorithms reaches 25%. On the other 

hand, when the initial plan contains abstract tasks, the 

proposed approach achieves improvement by about 36% and 

41% with considering independent and dependent clustering 

algorithms, respectively, compared with the PANDA system. 

As shown in Fig. 4 and 5, in multi-node implementation, 

the independent clustering techniques achieved better 

performance than dependent clustering by 8% w.r.t. 

independent abstract tasks in the initial plan. Not 

surprisingly, the proposed system's performance increases 

dramatically with increasing the number of tasks in the 

hierarchical planning problem. 

 
Figure 7.  Dependent Satellite problems (Map-Reduce 

single node with dependent and independent clustering 

techniques) 
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Figure 8.  Independent Satellite problems (Map-Reduce 

Multi-node with dependent and independent clustering 

techniques) 

As documented in fig. 7, the Independent algorithm 

attains an average improvement of 9% w. r. t. the Dependent 

algorithm in a single node, which means when the plan 

includes causal interaction between abstract tasks, the 

Independent clustering technique works efficiently than the 

Dependent clustering technique. While in multi-node 

implementation, archives 6% with the same problems. 

Although the satellite domain does not achieve high 

performance with the most hierarchical planning approaches 

according to the shallowest decomposition hierarchy, it 

accomplishes good performance with the proposed 

map-reduction approach, either considering the Dependent or 

Independent clustering technique depicted in Fig. 6, 7, 8, and 

9. 

In addition, either in the satellite or Um-translog 

domains, the proposed approach succeeded in solving many 

problems, while the hierarchical planning system PANDA 

cannot solve it. Not surprisingly, applying the proposed 

approach in the multi-nodes Hadoop platform consumes 

execution time less than a single-node Hadoop platform by 

13%. 

 

 
Figure 9.  Dependent Satellite problems (Map-Reduce 

Multi-node with dependent and independent clustering 

techniques) 

 

 

 

V. CONCLUSION  

This paper introduced a new AI-planning technique that 

handling the hierarchical AI-planning by map-reduce 

paradigm. Our approach enables us to split the planning 

problem into clusters using two different techniques; 

Dependent and Independent. In addition, each sub-problem 

runs a pre-processing technique to rule out the irrelevant 

information from the domain model, which accelerates the 

planning process to find the solution plan.  It guarantees that 

the conflicts between individually constructed sub-plans are 

detected and solved successfully. Hence, the global plan is 

generated without additional refinement in any individual 

plan. Our experiments' scenario relies on the run of the 

proposed approach over two different hierarchical domains in 

which the proposed approach, either using dependent or 

independent clustering techniques, competed with a 

hierarchical planner. The experiments run over 120 problems 

from the two mentioned domains. The experimental results 

proved a great improvement for the practical use of the 

proposed approach. 
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