Time Domain Alerts from LSST & ZTF ### Eric Bellm University of Washington LSST DM Alert Production Science Lead ZTF Project Scientist -> ZTF Survey Scientist for the LSST Data Management Team and the ZTF Collaboration BUILDING THE INFRASTRUCTURE FOR TIME-DOMAIN ALERT SCIENCE IN THE LSST ERA May 22, 2017 # Today I'll provide an overview of ZTF & LSST's planned alert streams. Brief overview & comparison of the key survey parameters Discussion of alert packet contents from a science & broker point of view Planned architecture for alert distribution and pre-filtering Pointers to documentation—though much is under active development Expected timelines [Next talk: M. Patterson will describe potential formats & implementation.] ## **ZTF & LSST** are quite different... # **ZTF & LSST** are quite different... | | ZTF | LSST | | |---------------------------------------|--|---------------------------------------|--| | Effective Aperture | 1.2 m | 6.7 m | | | Field of View | 47 deg ² | 9.6 deg ² | | | Median Image Quality | 2.0" | 0.7" | | | Filters | g, r (i) | u, g, r, i, z, y | | | Single exposure magnitude range (r) | 13.5-20.5 | 16-24.7 | | | Areal survey speed | 3760 deg ² hr ⁻¹ | 840 deg ² hr ⁻¹ | | | Average yearly observations per field | 290 | 82 | | | Survey dates | 2018-2020 | 2022-2032 | | # ...but ZTF's alert stream is a useful prototype for LSST's. | | ZTF | LSST | | |----------------------|--------------|------------|--| | Number of detections | 1 trillion | 7 trillion | | | Number of objects | 1 billion | 37 billion | | | Nightly alert rate | 1 million | 10 million | | | Nightly data rate | 1.4 TB | 15 TB | | | Alert latency | < 20 minutes | 60 seconds | | ### "Brokering" is an overloaded term. May help this week to be specific about what functionality we mean: - distribution of alert packets - filtering of alerts - cross-correlation with other catalogs or alert streams - classification - provision of user interfaces - community coordination - triggering & followup - storage and archiving - annotation & citation - manage "discovery" - ...probably more? ### LSST is planning a ten-year survey. Survey in ugrizy bands, with ~825 visits per pointing Wide-Fast-Deep: 2x/night every three nights over 18,000 square degrees ### Special programs: - Deep Drilling - Galactic Plane - North Ecliptic Spur - South Celestial Pole Ongoing cadence development & evaluation: https://github.com/ LSSTScienceCollaborations/ ObservingStrategy ## ZTF will perform two public surveys over three years. Will use 50% of the collaboration time to survey the visible Northern Sky at all Galactic latitudes Two visits/night (g+r) for asteroid rejection \Rightarrow 3-day average cadence Similar to LSST Wide-Fast-Deep systematic samples of supernovae, SLSNe, TDE, AGN, variable stars... Nightly sweep of the Galactic Plane (|b|<7°; nightly g+r) rare and exotic variables and binaries, CVs and novae, M-dwarf flares, large-scale gyrochronology, young star outbursts, and more Initial MSIP surveys will be revised after ~18 months. # ZTF promised an "LSST-like" alert stream for its public surveys. World-public in near real time Provide all alerts from image differencing regardless of likely event type (explosive transient vs. variable star vs. asteroid) Rich alert packets Full streams to a finite number of community brokers Use LSST-relevant formats and infrastructure where possible #### Goal: seed community development of time-domain resources ahead of LSST MSIP proposal called for (photometric) alerts starting in the second year; we have accelerated alert release into the first year. # A series of software pipelines produces the LSST alert stream. Single Frame Processing **Alert Generation** **Alert Distribution** **Forced Processing** LSST LDM-151: Data Management Applications Design ls.st/LDM-151 ### Single-Frame Processing provides calibrated exposures. Is.st/LDM-151 ### Alert Generation detects and associates transients. Is.st/LDM-151 ### Alert Distribution packages and sends alerts. ### **Alert Distribution** LSST LDM-151: Data Management Applications Design Is.st/LDM-151 ### Forced Processing updates DIAObjects. # **Recovery and Forced Photometry** LSST LDM-151: Data Management Applications Design ls.st/LDM-151 # ZTF processing is conceptually similar to LSST's, but has no forced processing. # LSST uses rich alert packets to minimize followup queries. Each alert (a VOEvent packet) will at least include the following: - alertID: An ID uniquely identifying this alert. It can also be used to execute a query against the Level 1 database as it existed when this alert was issued - Level 1 database ID - Science Data: - The DIASource record that triggered the alert - The entire DIAObject (or SSObject) record - All previous DIASource records -> last 12 months - A matching DIAObject from the latest Data Release, if it exists, and its DIASource records - Cut-out of the difference image centered on the DIASource (10 bytes/pixel, FITS MEF) - Cut-out of the template image centered on the DIASource (10 bytes/pixel, FITS MEF) LSST LSE-163: Data Products Definition Document Is.st/DPDD # DIASource and DIAObject records contain a wide range of measurements. #### **DIASources:** - Position - aperture/PSF/dipole/trailed fluxes - moments - likelihoods, extendedness, spuriousness ### **DIAObjects:** - linkages to DIASources [-> light curve], L2 Objects - time series statistics ### SSObjects: - linkages to DIASources - variety of solar system parameters LSST LSE-163: Data Products Definition Document Is.st/DPDD ### ZTF packets contain a different set of features. ### Candidate records: - shape measurements - association with known asteroids - Real/Bogus score - crossmatches to a small set of catalogs (TBD; likely PanSTARRS, local universe, star/galaxy catalog) #### cutouts 30 days of cone-search history (including upper limits) no precomputed timeseries features documentation in progress At \sim 20 full sized events per visit per user (or summarizing the lightcurve for all events in \sim 40 numbers) we can serve \sim 500 simultaneous users for the cost of a single full data stream ### LSST will provide a "mini-broker" service User-defined filters that act only on alert packet contents Access to the filtered stream through LSST's Science User Interface & Tools Cap of ~20 alerts per user per visit; some limits on computing capacity LSST LSE-163: Data Products Definition Document Is.st/DPDD ### ZTF will replicate the LSST alert distribution architecture. ## ZTF will replicate the LSST alert distribution architecture. ## Different brokers will have different capabilities. | Action | ZADS
filtering | LSST mini-
broker | Community
Brokers | |---|-------------------|----------------------|----------------------| | Filter single alert packets on their contents | | | | | Accept user-defined filters | × | | ? | | Crossmatch to external catalogs | | × | | | Crossmatch to external alert streams | ; | × | | | Classify events | ? | × | | # ZTF provides a near-term opportunity to prototype time-domain brokers on an LSST-like alert stream. First light expected this August Survey begins ~Jan. 2018 Aiming for public alerts by Q2 2018 (Limited by ZADS construction, template building, false-positive control.) ### **Conclusions** Exploiting LSST's time-domain capabilities requires development of a community system of software brokers ZTF will use prototype versions of LSST tools to provide an LSST-like alert stream and filtering service beginning next year Many technical decisions and scientific questions remain—your feedback and ideas are welcome!