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Recent years have seen an unprecedented spread of Unmanned Aerial Vehicles (UAVs, or "drones"), which are highly useful
for both civilian and military applications. Flight safety is a crucial issue in UAV navigation, having to ensure accurate
compliance with recently legislated rules and regulations. The emerging use of autonomous drones and UAV swarms raises
additional issues, making it necessary to transfuse safety- and regulations-awareness to relevant algorithms and architectures.
Computer vision plays a pivotal role in such autonomous functionalities. Although the main aspects of autonomous UAV
technologies (e.g., path planning, navigation control, landing control, mapping and localization, target detection/tracking)
are already mature and well-covered, ensuring safe flying in the vicinity of crowds, avoidance of passing over persons or
guaranteed emergency landing capabilities in case of malfunctions, are generally treated as an afterthought when designing
autonomous UAV platforms for unstructured environments. This fact is reflected in the fragmentary coverage of the above
issues in current literature. This overview attempts to remedy this situation, from the point of view of computer vision. It
examines the field from multiple aspects, including regulations across the world and relevant current technologies. Finally,
since very few attempts have been made so far towards a complete UAV safety flight and landing pipeline, an example
computer vision-based UAV flight safety pipeline is introduced, taking into account all issues present in current autonomous
drones. The content is relevant to any kind of autonomous drone flight (e.g., for movie/TV production, news-gathering, search
and rescue, surveillance, inspection, mapping, wildlife monitoring, crowd monitoring/management, etc.), making this a topic
of broad interest.
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1 INTRODUCTION

Technological progress has led to an unprecedented spread of Unmanned Aerial Vehicles (UAVs, or "drones")
during the last decade. They have proven useful for many civilian and military applications, such as search and
rescue operations, surveillance, inspection, mapping [96], wildlife monitoring, crowd monitoring/management,
as well as in aerial media production [126], [79], [82], [66], [106]. Flight safety is a crucial issue in UAV navigation,
having to ensure accurate compliance with recently legislated rules and regulations.
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Increasingly autonomous functionalities and massive commercialization render UAV flight safety assurance an
even more pressing issue, particularly given the high rate of progress in automating various UAV operations
for market products. Autonomous UAV flight safety consists of several interacting building blocks, each one
accompanied by a set of related algorithms and technologies. Computer vision methods are at the forefront of this
ecosystem, due to the wide availability of visual sensors and the high progress in image/video analysis during
the past decade.

For instance, emergency landing in the face of critical malfunction should be an irreplaceable component of
proper UAV deployment. The drone must be equipped with appropriate software, maps and operational sensors
that allow it to discover any potential emergency landing sites in real-time and "on-the-fly", or off-line in the
pre-flight checks, in order not to crash and get destroyed or injure people on the ground. Identifying potential
landing areas, which in general should be sufficiently flat, large and unoccupied by human crowds, vegetation or
buildings/cars/water, is important for normal and emergency landing alike. Both should be carried out safely,
without causing damages to third parties, avoiding human crowds and destruction of human property, by having
a relevant mechanism in place. The literature concerning landing site detection is multifaceted, but a common
thread is the utilization of a-priori topological terrain information. Relevant methods based on on-the-fly analysis
of visual input (e.g., from on-board RGB/depth cameras or LiDARs) have also surfaced over the years.

The advent of Deep Neural Networks (DNNs) for visual information analysis has significantly boosted UAV
safety-related research that relies on RGB camera feed. However, this is still an area with a lot of room for further
improvements. For instance, although several works utilize deep Convolutional Neural Networks (CNNs) for
crowd analysis and understanding, research in the topic of crowd detection, especially on aerial images/videos, is
rather limited. In recent years, deep CNNs have been established as one of the most efficient learning architectures
in computer vision, accomplishing outstanding results in a plethora of relevant tasks such as object detection
or tracking, semantic image segmentation, etc. The main reasons behind their success are the availability of
large annotated datasets and computational power, as well as the affordability of GP-GPUs enabling massive
parallelism. Crowd detection with deep learning in drone-captured images bears additional challenges (e.g., small
person size, occlusions etc.) and it is a mostly uncharted territory. A first attempt utilizing state-of-the-art deep
CNN:ss is presented in [138], where a pretrained model is finetuned for the task of crowd detection, as well as in
[104], where a multitask CNN-based approach for visible crowd segmentation is adopted.

Coming from a different research direction, several approaches aiming to augment topological maps [114] with
semantic information [158] [40] and high-level attributes have been proposed, allowing aerial robots to handle
more expressive concepts or be deployed for more sophisticated tasks. The goal is to segment the environment
into regions that have a coherent semantic meaning. Recently, the robotics community has focused on the
presence of semantics in maps [108] [13] [102], to develop autonomous robots capable of understanding the
semantic representation [110], [25], [93] and relationships between the objects in the environment, besides
exploiting occupancy grid maps for navigation. Indeed, a 3D map representing the UAV flight environment could
be enriched with semantic region annotations relating to safety, such as crowd gathering locations [63] or no-fly
zones in general. This is crucial for drone path planning and navigation. Temporal coherence, which permits
online use of the semantic map in various robotic tasks, graph-based map representation and metric distances
within 2D or 3D maps, on either indoors or outdoors environments, constitute additional important features of
modern semantic maps.

Another aspect of drone flight safety, related to crowd detection and emergency landing, is person detection
and avoidance. Indeed, safe UAV landing requires that the UAV detects any individuals present around the landing
area so as to avoid harming them in case of a malfunction; airspace above humans should constitute no-fly zone.
However, person detection from aerial imagery is a challenging problem, mainly due to the small size of a human
body observed from an aerial platform. The problem can get even more challenging when person detection is
applied to top-down views, due to variations in the orientation of human silhouettes. Literature on general person
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detection, particularly pedestrian detection from ground platforms, is extensive, while state-of-the-art object
detectors may enable specialized, high-accuracy person detection running on-board UAVs.

As far as person/obstacle avoidance is concerned, reactive methods are common; they adjust the UAV flight
trajectory so that it is unobstructed by obstacles or individuals, using well-known computer vision algorithms.
Similar methods based on input data from cameras (or other sensors, such as LiDAR, radar, ultrasonic, IR, etc.) are
utilized commonly in GPS-denied environments, in order to offer efficient UAV navigation by exploiting either
video optical flow, or Simultaneous Localization and Mapping (SLAM) output. Additionally, protection of human
lives in the case of a possible drone malfunction also requires a systematic and intelligent approach for guiding a
path planner in the most efficient and safe possible way while landing. This can be done either by exploiting the
3D map and UAV/camera 3D pose, or in a reactive, vision-based manner for GPS-denied environments.

This paper overviews all of the above subfields under the unifying premise of computer vision for autonomous
UAV flight safety. Thus, the relevant gap in existing literature is covered and the fragmentary handling of
these issues is remedied. Regulations across the world and the state-of-the-art in semantic mapping, vision-
based obstacle avoidance, landing site detection, and crowd/person detection are all systematically overviewed.
Additionally, path planning is briefly presented due to its great importance for ensuring UAV flight safety,
particularly safe landing. Finally, due to the sparsity of attempts to treat the UAV safety issue through a complete
chain of inter-operating algorithms, this paper presents a unified, computer vision-based algorithmic pipeline for
UAV safe landing, relying on suitably finetuned, commercial off-the-shelf or open-source building blocks, as an
operational example of the relevant technologies.

The remainder of this paper is organized as follows. In Section 2, we briefly describe the details of the imposed
legislation across the world regarding the UAV deployment for a safe flight. In Section 3, we present vision-based
technologies contributing to UAV flight safety, such as landing site detection, semantic annotation of 3D maps,
person detection and obstacle avoidance. Path planners are also covered, since they contribute to safe autonomous
landing. Subsequently, Section 4 presents the example computer vision-based UAV safe landing pipeline. Finally,
conclusions are drawn from the preceding discussion and future research directions are briefly presented in
Section 5.

2 CURRENT UAV FLIGHT REGULATIONS

Different flight regulations apply depending on employed UAV types and their application. The regulations in
many countries impose restrictions to the UAV weight and permitted flight radius, while also defining special
prerequisite conditions (e.g., licensed pilot requirements and insurance policies). An important issue is that flight
restrictions vary over different countries, while professional pilot licenses and insurance policies may not be
internationally valid.

UAVs are typically classified into different categories, depending on their weight. Adjusting/replacing compo-
nents may impact the category classification. For instance, UAVs exceeding 2kg of weight may be required to
carry emergency parachutes in some countries [6].

Flying UAVs exceeding 15kg of weight might require special license or even be prohibited [5]. Maximum drone
flight altitude is typically restricted to 400ft or 500ft (120m or 150m) within several European countries [6], [5],
[2], [4], [1]. Visual Line-of-Sight (LOS) should be maintained by the licensed pilot of the UAV, either physically, or
using visual aids (e.g., VR goggles), while the horizontal distance between the drone and the pilot may be limited
to specific meters (e.g., 500m).

In addition, due to safety considerations, outdoor UAV flight in most countries is forbidden above congested
areas, crowds of people and airports, leading to permissible flight zones delineated by law (geofencing). Inherently
complying with such a complex and varying web of regulations is a challenge for all autonomous UAV applications.
Thankfully, current aerial path planning algorithms are able to deal with complex dynamic and kinematic
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constraints in real-time, resulting in nearly-optimal collision-free paths being computed on-line [153]. Thus, the
challenge mainly lies in properly estimating the geofences according to current legislation.

For example, the drone flight regulation rules in UK define that drones should not be flown within 50m of
people and within 150m of a crowd of over 1000 people, while in Italy it is not allowed for the drone to operate at
a distance less than 50m of human crowds. In Germany, it is prohibitive for a UAV to operate at a distance of
less than 100m from crowds (where an assemblage of more than 12 individuals is defined as a crowd). The term
"over" refers to flight directly above any part of a person. For example, a small UAV that hovers directly above a
person’s head, shoulders, or extended arms or legs, would be an operation over people. Therefore, it is crucial for
a UAV to be capable of detecting crowds or individuals in order to define no-fly zones and proceed to re-planning
its path during flight.

UAV flight regulations for countries across the world are summarized in the supplementary material. It contains
the regulatory body that drafts and then oversees the correct application of regulations, legal requirements about
specific operations in conjunction with the registration policies that shall be followed for different categories of
UAVs, as well as the necessary pilot licenses and flight authorisations required for drone deployment. Moreover,
the possibility of operation outside the visual line of sight is discussed, in the context of flying in the vicinity of
crowds, disaster/military areas, or near main roads, important facilities and state buildings, national parks, natural
reserves, or above residential buildings/areas, as specified by the regulations. Finally, the altitude restrictions are
also considered.

3 UAV FLIGHT SAFETY TECHNOLOGIES

Commercial UAVs regularly employ rudimentary automated functionalities for a number of basic safety-related
tasks, mainly focusing on safer manual piloting and mostly relying on GPS and simple sensors. However, a
multitude of more advanced computer vision-based algorithms and systems that have appeared over the years for
implementing autonomous functionalities can be pivotal in assuring UAV flight and landing safety. Over the past
few years, similar methods that rely on visual processing have started appearing in state-of-the-art commercial
UAVs. This Section first presents a list of basic relevant functionalities commonly found in commercial vehicles
(Subsection 3.1) and, subsequently, a short overview of advanced vision-based methods that can enable and/or
advance such capabilities (Subsections 3.2-3.7). Finally, real-world transferability issues concerning vision-based
algorithms are discussed in Subsection 3.8.

The presented algorithms have been grouped into Subsections according to the application-specific subtask
each one has been designed for: a) potential landing site detection, b) semantic mapping, c) obstacle avoidance, d)
person detection, or e) path planning/tracking for autonomous landing. Additionally, a more general introductory
Subsection on recent semantic image segmentation methodologies is presented, since semantic segmentation can
be applied for solving several of these subtasks.

In addition to the sub-task specific algorithms presented in Subsections 3.2-3.7, a very small number of safety
pipelines, typically based on visual and others sensors, has appeared in the literature. Good examples are [86],
detailed below in Subsection 3.3.2, and [94], discussed in 4.9.4, with the latter one presenting an autonomous vision-
based system for UAVs equipped with bioradars, tasked to assist Urban Search and Rescue (USAR) operations in
post-disaster environments.

3.1 State-of-the-art in Commercial UAVs

UAV manufacturers have taken great lengths to ensure that drones are a safe addition to low-altitude airspace.
An overview of major safety features found in commercial vehicles is provided below [28]:

o Geofencing: It is a GPS-based technology that regulates a UAV’s operation and automatically prevents it
from flying within pre-designated sensitive locations, such as airports, prisons, nuclear power plants, etc.
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Thus, UAV pilots are automatically protected from inadvertently flying in high-risk, sensitive locations
without authorization. These forbidden regions are marked on-map as no-fly zones, in shapes ranging from
simple circles to three-dimensional “bowties", inspired by aviation authorities safety principles.

o Altitude Limit: UAVs are equipped with a functionality that automatically limits the highest possible flight
altitude, according to airspace authorities. These legal altitude limitations are different across regions, but
have been typically defined so as to minimize risks to traditional aircraft operations.

e Remote Identification: This capability consists in automatically determining the location, direction, altitude
and serial number of UAVs flying nearby, as well as in showing on-map the location of their pilots. These
information is useful in regions close to airports or large crowd-gathering events (marathons, parades,
public celebrations, etc.).

o Obstacle Sensing: A typical, safety-related robotics operation. Its purpose is to automatically determine any
rigid obstacles in the immediate flight environment, based on sensor readings, thus permitting automated
corrective maneuvers in case of pilot error. Advanced, vision-based Obstacle Sensing can be found in
state-of-the-art commercial UAVs (e.g., [132]).

® Return to Home (RTH): Automatic navigation back to the take-off position when the battery is about to
be exhausted, or when the UAV is losing contact with the ground control (also known as home location).
Combined with Obstacle Sensing, RTH significantly improves flight safety, even in manual operation
scenarios.

o Airsense: This is a capability present specifically in DJI UAVs. It allows the reception of remote Automatic
Dependent Surveillance-Broadcast (ADS-B) telemetry signals, in order to prevent potential hazards from
nearby vehicles flying at a low altitude, such as helicopters and aircrafts. By automatically alerting the UAV
pilots for their approach, they provide substantially greater awareness of nearby air traffic.

3.2 Semantic Image Segmentation

Semantic segmentation consists in assigning a discrete class label (out of K pre-specified object classes) to each
pixel of an input image. The field advanced significantly during the past decade, mainly by employing supervised
deep Convolutional Neural Networks (CNNs) for semantic per-pixel classification from raw images. CNNs do not
rely on handcrafted algorithms manually endowed with human intuitions, but only on large training datasets and
a training procedure based on error back-propagation coupled with first-order optimization, such as stochastic
gradient descent variants. The training procedure aims at automatically learning both the weights of the filters,
so that they can extract visual concepts from the raw image content, and a suitable classifier. The initial layers of
the network, after they have been trained, typically identify low-level concepts such as edges and details, whereas
the final layers are able to combine low-level features so as to identify complex visual concepts. The neuronal
activations of each convolutional layer constitute an order-3 tensor with two spatial dimensions and a width
dimension, the latter referring to the number of layer output channels. After training, the neuronal weights of
each channel are actually learned convolutional filters. Semantic segmentation CNNs are typically composed of
an encoding and a decoding subnetwork, arranged in a consecutive fashion. The encoder extracts from the input
semantic features with progressively lower spatial resolution, while the decoder receives the final encoder output
and upsamples it. The final output of the decoder is a semantic map, having the same spatial resolution as the
input and as many channels as the supported number of discrete classes.

Fully convolutional networks [75] and dilated convolutions [155] are typically used, for upsampling the
computed abstract feature maps and for enlarging neuronal receptive fields, respectively. Large receptive fields
significantly aid semantic segmentation by enriching local-scale image representation with task-relevant wider
region semantic context, for more accurate per-pixel classification. Grasping global image context while retaining
spatial detail is an important consideration in relevant research, with current DNNs attempting to explicitly
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capture it and properly enhance local image representation, using multi-scale [164], attention-based relational
[157], or network branching approaches [154]. PSPNet (Pyramid Scene Parsing Network) [164] offers a rather
good balance between speed and accuracy, scoring 82.6% and 80.2% on the public datasets PASCAL VOC 2012
and Cityscapes, respectively, when using the typical mean Intersection-over-Union (mloU) evaluation metric and
a ResNet-101 base CNN. Thus, PSPNet was selected to form the backbone of more recent real-time segmentation
networks, such as ICNet [163]. Its main novelty is a PPM (Pyramid Pooling Module) decoder, able to enrich local
image representation with more global context information from larger image regions of various scales. Semantic
information from each image region is aggregated using global average pooling within the region, separately
for each tensor channel. DeepLabV3+ [21] has a structure similar to PSPNet, but relies on the so-called ASPP
module instead of the PPM; the former employs multiple dilated convolutions with different dilation factors, for
achieving the same purpose as the latter. The advantage compared to PPM is that fine spatial information is not
lost, as is the case with global average pooling. The method achieves a maximum mloU accuracy of 87.8% and
82.1% on the PASCAL VOC 2012 and Cityscapes test sets, respectively, when using an Xception base CNN.

Up to now, semantic image segmentation in the context of UAV flight safety has been employed for computer
vision-based landing site detection, semantic mapping and person detection. Relevant application-specific methods
are described below in the following Subsections 3.3, 3.4 and 3.5, respectively.

3.3 Vision-based Outdoor Mapping for Landing Site Detection

Maps play a substantial role and are significant prerequisites for safe UAV navigation in general, but also for
landing site detection specifically, since they contain all knowledge about the terrain in the flight area. A map
may have been constructed a-priori and be relied upon during flight under the assumption of negligible changes
in the environment since the map was originally obtained. Of course, vision-based methods that dynamically
update the existing map during flight offer a significant increase in robustness. In principle, if such vision-based
on-the-fly landing site detection solutions are sophisticated enough, they may entirely ignore a-priori terrain
information, thus making the use of a map redundant. However, if safety is the highest priority, this is not yet a
reliable approach at the current level of technology.

3.3.1  Maps for UAVs. Maps may include 3D terrain information that can be exploited to better navigate and
control the UAV both in normal and emergency situations. Typically, they are represented as 3D occupancy grids.
Two different 3D mapping solutions are worth mentioning: a) Octomap [57], and b) Voxblox [99]. The first one
provides a probabilistic 3D occupancy map compressed in a hierarchical way for memory efficiency. It consists in
a volumetric representation of occupied, free and unknown areas in space, based on octrees. These maps are
usually generated by post-processing data from LiDAR (Light Detection And Ranging) surveying. Voxblox, on
the other hand, provides a field distance map, i.e., for each voxel, the Euclidean distance to the nearest obstacle is
provided.

An alternative source offering terrain information is Digital Elevation Models (DEM) [89], which come in
two forms. The first is Digital Terrain Models (DTM) [92],[146], that include information regarding the height
variations of an area’s bare ground, without any man-made structures or vegetation. The second type is Digital
Surface Models (DSM) [109],[159] providing a representation of the elevation values for exposed ground, road
surfaces, tree crowns, vegetation and buildings. Thus, DSMs include information for both the ground and the
man-made structures, or vegetation, that lie on it. They can be generated by data coming from various sources,
such as LiDAR (Light Detection And Ranging) surveying. DTMs are usually derived by post-processing DSMs.
DSMs and DTMs often come in raster format, i.e., as geo-referenced images where a pixel’s value denotes elevation
of the corresponding location.

UAVs should have the ability to discover landing sites by exploiting terrain information or information from
visual or other types of UAVs sensors, so that they could land safely either in emergency cases (of engine
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malfunction or poor operation) or in normal conditions. Literature concerning landing site detection is discussed
in the following paragraphs.

3.3.2 Landing Site Detection Without Topological Terrain Map Knowledge. In general, landing site detection
methods that do not exploit topological terrain map knowledge can be clearly divided in two eras: a) approaches
mainly relying on traditional image processing, computer vision and machine learning algorithms, and b)
approaches that employ modern Deep Neural Networks (DNNs), typically under the assumption of their on-board
execution (although this is not always the case). DNN-based methods typically perform better, providing more
accurate results, at the expense of increased computational requirements.

In [50], a UAV landing site detection system using mid-level sub-image discriminative patches is described.
Image patch detectors are trained and tuned with several images obtained from Google Maps, weakly labeled as
"Very dangerous”, "Not Recommended", or "Safe". This way, a heatmap of the examined video frame is created.
The final landing sites are defined by thresholding the heatmap. Image patch detection training initially proceeds
by partitioning a training image set in two subsets of positive and negative images, respectively, and extracting
HOG features [24] from 8x8 cells in the patches. K-Means clustering of HOG features into several image clusters
follows. The authors then iteratively train linear Support Vector Machines (SVMs) using the initial image clusters.
Thus, the resulting SVMs constitute detectors for a particular class of the respective image patch label. A tuning
stage follows where various combinations of the system parameters are applied and the system tries to detect
patches in a tuning image set, comparing the results with the actual labels. Final detection of the landing areas
in input video frames is conducted on the output heatmap, describing the level of landing risk in the examined
image regions.

In [27], a vision-based rooftop landing site method includes two methodological stages. The first one is the 3D
reconstruction of the flight environment below the UAV, using dense Structure-from-Motion (SfM). The authors
use a calibrated moving camera with known intrinsic and extrinsic camera parameters, generating the two views
of a scene from different viewpoints instead of using a conventional stereo rig. It achieves scaling from metric
coordinates to world coordinates via additional information, such as pose, and accurate calculation of translation
and rotation in the several captured images, as well as depthmap estimation using temporaly distant viewpoints.
The quality of motion estimation depends on feature extraction from the images (e.g., STAR [8] features and
MSUREF [118] descriptor). Subsequently, a SADS5 stereo correspondence algorithm is employed for calculating
disparity maps [56] which are used for deriving a 3D point cloud modeling the environment below the flying
vehicle. The second stage is the analysis of the scene in order to evaluate landing sites. Areas which are planar,
flat and sufficiently large to allow unobstructed UAV landing/take-off are then identified using the disparity map
variance, evaluated by utilizing a kernel which depends on the disparity value and the altitude of the vehicle.
Finally, the landing confidence of the candidate points is modeled by a Gaussian process whose thresholding
indicates the appropriate landing sites. The system was implemented on a ODROID-U2 processing board and the
landing site detection part was executed at a frequency of 1Hz. The authors conducted two overflights over a one
story building and could successfully identify a valid landing target in over 90 % of the video frames, where at
least a part of the safe landing zone on top of the building was visible in the disparity images. Performance-wise,
the system can avoid 99.7% of dangerous areas (correctness), whilst still detecting 9.3% of the safe landing sites
(completeness).

An aerial image classification system for UAV forced landing site detection task is proposed in [49]. Several
sampled segments of images captured by a UAV camera are utilized in order to extract color and texture feature
vectors which are then classified via a Gaussian Mixture Model (GMM) or an SVM into two categories, "safe" or
"unsafe". The procedure leads to a binary image which indicates the landing areas. Feature extraction involves
color features (HSV) [78] and texture features (HOG and LBP [120]) in specific regions of the images prescribed
by a spoke wheel operator [60], [48].
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The atmospheric and functional state, including fixed wing UAV-body poses, velocities, IMU biases, and the
wind field as measured by sensors like GNSS, IMU, magnetometer, and pressure measurement sensor, are employed
for landing site detection (LSD) in [55]. The specific landing site spot is selected by considering possible risks
(terrain roughness and slope, surrounding obstacles, local wind field) and is based on its texture and geometric
shape, without utilizing any pre-existing knowledge about the local environment. The system consists of a
front-end that segments images and classifies the segments to grass and not-grass classes, using a random forest
method. More promising candidates are then fed into the back-end part that performs 3D reconstruction of the
area and uses terrain slope and roughness along with the classification results to reach the final decision and,
finally, evaluate an approach path.

In [91], a traditional image processing-based segmentation algorithm was proposed for dynamic vision-based
landing site detection in UAV emergency scenarios. Segmentation relied on an edge detector and employed
spatial distribution of the edge pixels in a geometry test that attempted to discover visible areas that are large
and clear enough of obstacles. The algorithm did not discriminate between different classes of ground texture,
such as grass or water, since it prioritized discovery of areas without obstacles, using image gradient maps. The
underlying intuition was that the unobstructed areas would present less edge density and, thus, would be suitable
for landing.

In [86], SafeUAV-Net is proposed as an embedded deep CNN-based system for dynamic UAV landing site
detection, relying on computer vision. The neural model is trained on a synthetic aerial 3D dataset obtained from
3D scene reconstruction and designed for depth and safe landing area estimation, using only the RGB video input.
This task is strongly related to semantic image segmentation as the authors predict a categorical class value
for each pixel of the input video frames, which are thus segmented into "safe-landing" and "obstacle" regions
by predicting depth and classifying their depicted plane orientation into three classes: "horizontal", "vertical"
and "other". The goal is to enhance flight safety in urban or suburban areas at high speeds, while relying only
on a limited range of on-board sensors. Evidently, scene semantics are ignored and only ground morphology
is considered. Besides the complete SafeUAV-Net neural architecture (called "SafeUAV-Net-Large"), a faster,
more lightweight variant is also studied (the so-called "SafeUAV-Net-Small"). The former/latter one achieves a
runtime performance, i.e., processing speed, of 35/130 video frames per second (FPS), respectively, when being
executed on the embedded Al compute board NVIDIA Jetson TX2, thus meeting real-time requirements on
actual UAV hardware. A relevant synthetic aerial image dataset is also presented in [86], containing ground-truth
per-pixel annotations for the "horizontal", "vertical" and "other" classes. On this dataset, SafeUAV-Net-Large,
SafeUAV-Net-Small and DeepLabV3+ achieve a mloU of 60.7%, 55.1% and 59.7%, respectively.

3.3.3 Landing Site Detection Employing Topological Terrain Map Knowledge. Landing site detection methods
exploiting a-priori terrain information are actually the most prominent. The authors in [42] detect landing sites for
fixed-wing UAVs in emergency situations by using the average height and height variance inside quadtree-based
DEM partitions. Partitions whose height variance is below a limit are selected as landing sites and merged with
neighboring ones, if they have similar average heights. Moreover, in [14], the authors determine suitable landing
areas on topographical maps for emergency landing of UAVs during flight utilizing surface fitting on coarse
elevation models by using Least Squares Error and slope calculation. In addition, in [61] the authors propose
a system for landing zone selection based on a relatively simple geometric analysis of terrain roughness and
slope. [121] proposes a scheme for selection or validation of landing zones for unmanned helicopters with terrain
assessment, incorporating factors such as terrain/vehicle interaction, wind direction and mission constraints.
In [88], the authors create a system for efficiently and reliably assessing the safety of landing zones covered by
low vegetation, via combining a volumetric occupancy map with a 3D Convolutional Neural Network (CNN).
The CNN architecture is trained from raw occupancy data derived from LiDAR point clouds. Synthetic and
semi-synthetic data (real data where synthetic obstacles have been inserted) were used during the training. The
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Table 1. A comparison of landing site detection algorithms.

Pros Cons
[50] three-category safety labels, validated on a custom dataset instead of a well-known public one,
relies only on RGB camera input relies only on obsolete algorithms/methods
3D-reconstruct10n "f. the flight environment, . . . Structure-from-Motion(SfM) and disparity map creation prone to
[27] relies only on a moving RGB monocular camera instead of requiring a 3D rig, L . .
; . R approximation environment modeling errors
3D point cloud modeling
color and texture features are taken into account
A L only two-category safety labels,
[49] for determining landing sites, . .
. . relies only on obsolete algorithms/methods
relies only on RGB camera input
[55] multimodal functional state checking from a variety 3D reconstruction prone to approximation environment modeling errors,
of sensors, 3D reconstruction of the flight environment relies only on obsolete algorithms/methods
. . only detects unobstructed areas (one-category safety label),
(1] relies only on RGB camera input relies only on obsolete algorithms/methods
lightweight CNN-based,
[36] 3D reconstruction of ﬂight environment, does not extract scene semantics,
relies only on RGB camera input, two-category final safety labels,
three-category plane orientation/geometric labels
[42,[14],[61] exploits a-priory terrain information in the form
[121'] 7| of Digital Elevation Models (DEMs), relies only on obsolete algorithms/methods
simple geometric analysis of terrain roughness and slope
3D CNN-based,
88 takes into account multimodal properties (constraints and increased computational and system complexity, requires LIDAR sensors
P! Y plexity, req
atmospheric conditions)

input of the trained system is a stream of globally registered point clouds in conjunction with a predefined
candidate region of interest. The output is a probabilistic safety prediction indicating the safe landing zones.
The output prediction takes into account mission constraints and objectives, atmospheric conditions and other
factors. When tested on a semi-synthetic dataset, the proposed system managed to achieve an area under curve
(AUC) of 0.95.

A summary of the comparison of landing site detection algorithms is illustrated in Table 1.

3.4 Semantic Mapping

Semantic mapping is an essential component of safe UAV deployment. Semantic information, in the form of
high-level attributes and characteristics, is typically extracted from visual input in the form of class labels having
natural meaning to human (e.g., describing object type, place, size, etc.). These labels are assigned specific
spatial coordinates in a consistent manner and, optionally, semantically annotate a geometric 3D map of the
surrounding area. In certain cases, the process of geometric mapping and semantics extraction are combined into
a unified algorithm, while in other cases the geometric 3D map is pre-existing. In general, the goal is cognitive
comprehension of the outdoors environment where the UAV, moves/flies and operates, in order to understand
the scene below and facilitate better path planning.

The Keyhole Markup Language (KML) is a frequently used tool of semantic annotation. It is a file format used
to display geographic data and to overlay annotations on a map such as Google Earth. KML uses a tag-based
structure with nested elements and attributes and is based on the XML standard.

Map representation (graph-based, 2D/3D, indoors/outdoors), is an important choice in modern semantic maps.
Due to the nature of UAV flight, this overview focuses on outdoor environments.

3.4.1  Outdoors Semantic Mapping for UAVs. To begin with, in [87], a semantic mapping system for scouting
with UAVs is described. The proposed system aims at quickly assessing a large space for significant points of
interest such as survivors in a disaster area, by semantically annotating a 2.5D navigation map with semantic
classes of interest using forward-looking visual cameras and state calculation. This is accomplished by a deep
learning 2D segmentation algorithm combined with a novel mapping procedure for projecting the 2D semantic
class labels onto the 2.5D map grid as 2D annotations. The semantic segmentation part was evaluated on the
MAVCAR dataset (created by the authors using video frames from aerial Youtube sequences) on the task of
identifying / segmenting cars. The method achieved an IoU of 44.9%, 70.1% Precision and 55.5% Recall. Good
field results were also obtained, concerning scouting for cars and collecting high-resolution data if a car was
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found, with the proposed semantic mapping pipeline running on-board a custom aerial platform equipped with
an NVIDIA Jetson TX2 embedded compute board. Moreover, in [19], the authors semantically enhance UAV scene
understanding and awareness by target tracking methods with ontological contextual information, in the form of
a semantic map. This way, object tracking, identification and labeling are sequentially employed for inferring
semantic content. In a similar manner, in [71] semantic maps utilizing UAVs are built, through an online gradient
boost classifier. More specifically, a semantic map of the environment below the flying UAV, is superimposed
upon the navigational maps and combined with specific targets detectors, such as a tree detector, for landing
obstacle avoidance, or a car detector for target localization.

3.4.2 Outdoors Semantic Mapping for mobile robots. Multiple approaches exist for general mobile robot semantic
mapping in outdoor scenarios, which can easily be applied in UAV applications. In [149], the authors introduce
an information fusion scheme for scene understanding, considering image understanding as a two level problem
which consists of object detection and semantic segmentation, specialized in the context of advanced driver
assistance systems for intelligent vehicles. Their solution distinguishes the main components of the image, such
as ground, sky, pedestrians, vegetation, etc. Similarly, [123] presents a method for creating a semantic map
from multi-view street-level imagery, including semantic labels such as car, road and pavement. The method
back-projects onto a ground plane map the street image views aggregated from multiple image samples, relying
solely on a segmentation algorithm for semantic label extraction from the images. A similar segmentation-based
semantic mapping is introduced in [122] assigning a label (e.g., car, pavement, road, etc.) to every voxel of 3D
reconstructed map. This is accomplished by utilizing conditional random fields (CRF) and images from stereo
cameras mounted on a vehicle to construct a 3D semantic model of large-scale urban environments. In [107],
the segmented meshes resulting from the respective point clouds derived by a rotating laser scanner device,
are being classified using a multi-class Gaussian Process (GP). The classifier processes feature vectors extracted
from all mesh segments, while the possibility of detecting new classes during scanning is taken into account
resulting to an active and life-long learning system. In addition, in [131], besides semantic model extraction using
an omnidirectional camera, the authors also extract the spatial structure of street scenes and classify them as
street intersection or non-intersection.

Typically, a single cue (e.g., place or object) is utilized for semantically labeling each map region. For instance,
in [147] semantic mapping is performed by simultaneously solving two problems, i.e., semantic terrain mapping
and semantic activity mapping, with the goal to analyze and semantically label each area with regard to its
navigability. The analysis is approached as a classification problem, using Support Vector Machines (SVMs)
or Hidden Markov Models (HMMs). In [51], a method for 3D outdoors street environment understanding is
presented that unifies and tries to solve simultaneously non-parametric semantic image segmentation and 3D
scene reconstruction from stereoscopic input. The algorithm produces a dense, semantically annotated and
geometrically consistent point cloud, which is then converted into a semantic 3D occupancy grid containing
moving scene objects.

In [36], a multimodal approach is presented that combines a laser sensor with visual camera input. A CRF
model is utilized incorporating visual and laser features in order to classify the laser output into several class
categories (car, wall, tree trunk, foliage, person, grass, and other).

In [16] a semantically annotated topological (instead of geometric) map is constructed on-line, using input
from a camera mounted to a ground vehicle. The semantic image segmentation method in [128] is employed for
extracting semantic labels, while a graph-based approach is proposed for building the topological map. Thus,
each semantic segment/object (e.g., dirt, grass, road) is represented by a node in the topological graph, whose
edges represent the neighborhood of the segments.

A summary of the semantic mapping literature is illustrated in Table 2.
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Table 2. A comparison of semantic mapping algorithms.

Pros Cons
relies only on RGB camera input,

DNN-based, multiple semantic class labels

can be combined with specific target detectors and trackers (object tracking,
tree-car detector), semantic map is superimposed on navigational maps

[87] uses a 2.5D navigation map instead of a fully 3D occupancy map,

[19].[71] relies only on obsolete methods/algorithms

prone to projection errors onto the aggregated image plane views
or 3D reconstructed maps,

has increased computational complexity/requirements

relies on obsolete methods/algorithms for semantics extraction,

[149], [123], | utilizes visual odometry, multiple semantic class labels,
[122], [131] relies only on RGB camera input

[107] multiple semantic class labels requires laser sensor instead of an RGB monocular camera
. . relies on obsolete methods/algorithms for semantics extraction,
[36] multiple semantic class labels X 5
requires laser sensor along with an RGB monocular camera
. . . . L . relies on obsolete methods/algorithms for semantics extraction,
[147] enhanced role of semantic mapping (terrain mapping, activity mapping)

requires laser sensor along with an RGB monocular camera
prone to 3D reconstruction errors,

[51] Exploits 3D occupancy maps relies on obsolete methods/algorithms for semantics extraction,
requires stereoscopic 3D camera

Relies only on RGB camera input,
[16],[128] on-line constructed topological map, only topological map (does not contain ground morphology information)
multiple semantic class labels

3.5 Person Detection

Another aspect of drone flight safety is person detection. Indeed, safe UAV landing requires that the drone detects
any individuals present around the landing area, so as to avoid harming them in case of a malfunction; airspace
above humans should constitute no-fly zone. Thus, the challenging problem of aerial person detection comes into
the forefront. It is highly similar to the more traditional task of pedestrian detection from ground-level images,
but the aerial perspective may induce additional difficulties. The output of a person detection system, as in the
more general object detection case, is a rectangular Region-of-Interest (ROI) tightly enclosing the detected object
image in pixel coordinates.

Early detectors relied on hand-made feature descriptors based on wavelets [103], edges [12], Gabor filter
responses [127] etc. Histogram based-features, such as SIFT and HOG, subsequently became very common due
to their efficiency and performance. In [24], the combination of HOG features and linear SVMs is proposed. In
[140], a selective search approach is presented that relies on spatial pyramid features [70], on dense SIFT vectors
[76] and an additive kernel SVM. Another group of detectors employs local patterns of qualitative gray-level
differences, including Local Binary Patterns (LBP) [10] [142], and Local Ternary Patterns (LTP) [136].

More involved methods proposed for person/pedestrian detection include the Deformable Part Model (DPM)
[39], which handles large pose variations. DPM learned a mixture of local templates for each body part and
attained state-of-the-art results at the time of its introduction. Another effective detector was the Integral Channel
Feature detector (ICF) [29] [32] which relied on oriented gradient and color features (HOG+LUV), selected by
boosted decision forests, and surpassed previous detectors by a large margin. Later improvements on ICF managed
to reduce its computational cost by approximating features across different scales [30] and neighboring windows
[31].

More recently, CNNs have achieved great success in classification and object detection on large-scale datasets,
such as ImageNet [68] and MS-COCO [52]. Early works [58] [161] that used CNNs for person/pedestrian detection
are based on the R-CNN[44] structure, which relies on high-quality externally provided proposals to achieve
good performance. Faster R-CNN [115] also constitutes a similar method, but its object proposals are built using
a deep neural structure, while Fast R-CNN [43] is then employed in order to classify them. In [160], the problems
Faster R-CNN faces for person detection were studied and a novel detector is presented, using a Region Proposal
Neural Network followed by boosted forests on shared, high-resolution convolutional feature maps.

More recent single-stage detectors use an end-to-end system, which means that raw images (without object
proposals) are given to a network, which then both localizes objects and classifies them. YOLO [113] and SSD [74]
are the most promising examples. YOLO comes with its own custom backbone CNN for feature extraction, the
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Table 3. A comparison of person detection algorithms.

Pros Cons
[103],[12],
[127],[24], . - . )
[1401,[70],[761,[10] simple computer vision methods relies on obsolete methods/algorithms
[142],[136]
[397.(29] ) - _
[32).30].[31] robust and efficient relies on obsolete methods/algorithms
[68],[52],
58], [161
{44%’[[115]] good performance, DNN-based large-scale dataset in training,
[43],[160]
[113],[74],

fi DNN-

[69], [15], E:;igirngr:;:;ﬁ’s increl;)iz:jd;pee d accuracy suffering in comparison to Faster R-CNN
[20] '

DNN-based semantics extraction, . . ..
Bg? RELE multiple semantic class labels, concurrently performs person detection/pose estimation/instance irre]g;:z:;acrfgSE:L::?]ZS:;;] tl:::mg’

segmentation with increased accuracy P P y

so-called DarkNet, while SSD can be plugged on top of conventional CNNs, such as ResNet, Xception, etc. The
end-to-end trainable nature of YOLO and SSD results in significantly increased speed, although accuracy slightly
suffers in comparison to Faster R-CNN. Recent single-stage person detectors are presented in [69], [15] and [20],
with the latter two handling aerial images. [20] studies the impact of the small size of persons and the deformation
of camera’s perspective projection in the overall accuracy of YOLOv2, trying to overcome these problems by using
high-resolution inputs and a novel image preprocessing pipeline, composed of cropping-resizing and projective
geometry-based vanishing point transformations. Evaluation on images with a very high input resolution of
3840 X 2160 pixels, captured using a DJI Phantom 4 UAV, shows that the proposed approach achieves a detection
rate of 49.13% at a very low processing rate of 0.66 FPS (on a desktop NVIDIA Geforce GTX Titan X GP-GPU).
When retaining the same input resolution while simultaneously removing the proposed image preprocessing
stage, vanilla YOLOv2 achieves a corresponding detection rate of 17.33% at 4.34 FPS. In [15], the Okutama-Action
aerial video dataset for human action detection is presented. For evaluating it on person detection tasks, an SSD
detector on top of a VGGNet CNN backbone is implemented, resulting in a test set accuracy of 72.3%, using mean
Average Precision at 0.5 IoU as the evaluation metric.

In general, however, person detection methods for ground vehicles (i.e., pedestrian detectors) are much more
prominent in the literature than algorithms for aerial ones. Semantic image segmentation methods have also been
applied to this end, instead of visual object detectors. For instance, in [105], a bottom-up CNN model is presented
which jointly addresses the problems of person detection, pose estimation, and instance segmentation, using a
unified part-based modeling approach. The proposed PersonLab CNN is trained to detect individual keypoints
and predict their relative displacements, allowing a grouping of keypoints into person pose instances. Once
the keypoints have been localized, a greedy decoding process is used to aggregate them into person instances.
Moreover, the model predicts dense instance segmentation masks for each person associating semantic person
pixels with their corresponding person instance, delivering instance-level person segmentations. In [98], along
with real-time pedestrian detection based on shape and size features of the candidate region, semantic image
segmentation through a CNN with simpler architecture can provide an accurate solution to the pedestrian
detection for an Advanced Driving Assistance Systems (ADAS). Finally, in [73], a pedestrian detector utilizes
semantic image segmentation through a deep learning method to pixel-wise label images into 11 semantic classes
with the HOG+LUV features in order to improve the filtered channel feature based detector.

A summary of person detection algorithms with application on UAV operation along with the advantages and
disadvantages is contained in Table 3.
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3.6 Vision-based Obstacle Avoidance for Safe UAV Navigation

Another crucial component of autonomous UAV flight safety is obviously the avoidance of obstacles, such as
rigid objects, persons and crowd gathering locations, or no-fly zones depicted in the 3D navigation map. This is
a reactive process that adjusts the UAV flight trajectory to render it unobstructed by obstacles or individuals,
by exploiting well-known computer vision approaches for analyzing video input. Such methods, relying on
input data from cameras (or other sensors, such as LiDAR, radar, ultrasonic, IR, etc.), are utilized commonly in
GPS-denied environments, in order to offer efficient UAV navigation by exploiting the video (or other sensors)
analysis results. Since the early 2000s, a number of relevant methods started appearing: Bayesian filter-based
Simultaneous Localization and Mapping (SLAM) approaches [144] [145], fast reactive obstacle avoidance heuristics
[11], stereoscopic vision [18] [54], or optical flow estimation [133] [46] [156], [59].

Two vision-based method categories are of particular note: Visual Simultaneous Localization and Mapping
(Visual SLAM) and Image-Based Visual Servoing (IBVS). Visual SLAM [95] can be used to detect and avoid
obstacles during flight time, by mapping the immediate environment and localizing the drone with respect to
that 3D map. Localization includes an estimation for both the position and the orientation of the UAV-mounted
camera at each time instance. Visual SLAM performs an incremental 3D scene reconstruction based on the
camera feed, using a real-time, on-line variant of Structure-from-Motion algorithms, augmented by visual place
recognition, graph-based map modelling and loop closure modules. The computed map is typically a 3D point
cloud, either sparse, semi-dense or dense, with the first estimated location of the UAV employed as the arbitrary
origin of the map coordinate system. However, since a point cloud cannot distinguish between unobserved
and observed-to-be-empty space, different approaches are typically employed for safe map representation in
autonomous vehicles. The Octomap, previously described in Section 3.3, is a popular choice.

IBVS can be used for sending suitable motion commands to the UAV motors, so as to achieve a specific control
purpose (e.g., avoid an obstacle, land, etc.) in an autonomous manner. In essence, it is a visual feedback control
loop where control laws are formulated directly on 2D image space, without attempting to estimate 3D state. The
goal is to control 3D camera velocity based on the current deviation of the positions (in 2D pixel coordinates) of
on-target landmark point images from pre-specified desired ones. Typically, IBVS requires knowledge of camera
intrinsic parameters and a depth map per video frame, at least in principle. In scenarios such as UAV obstacle
avoidance or landing control, the camera orientation/position on the vehicle may be considered fixed, so that 3D
UAV velocity is the quantity in need of control [124].

Since most of the methods that were presented before 2010 are now obsolete, only more recent approaches are
presented below.

An obstacle avoidance method for low-cost UAVs is proposed in [9], where SURF features are extracted from
the image and utilized for fast processing and detection of obstacles. They are matched against images stored
in a database and, when obstacles are recognised, the avoidance mechanism is triggered with a specific control
law. Another feature-based obstacle avoidance method for small UAVs using monocular vision is [72]. More
specifically, multi-scale-oriented patches (MOPS) are utilized in order to detect the outlines of observable obstacles
via a combination of the spatial coordinates of SIFT interest points, thus perceiving the three-dimensional shape
of the obstacles. This method is most useful in GPS-denied environments where the visual sensor/monocular
camera is the only source of information.

In [85], the authors present a fast, Bayesian filter-based terrain mapping method using a sequential Extended
Kalman Filter (EKF) and visual features extracted from monocular camera images. The feature measurements are
used in the inverse depth parameterization in order to enable fast depth convergence. The converged features
that are stored as a six-element vector consisting of an anchor point, azimuth, elevation and inverse distance to
the feature, are added to the terrain map for the obstacle observation and navigation.
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Table 4. A comparison of vision-based obstacle avoidance methods.

Pros Cons
(9], [72],
[85],[156],
[46],[133], relies only on RGB camera input relies on obsolete methods/algorithms
[100], [11],
[90]
[54], [18] relies only on RGB camera input requires stereoscopic 3D camera
26], [144], . . . . . .
{14]5][ ] applicable in GPS-denied environments requires laser sensor along with an RGB monocular camera
144], [145], . . . . .
{95]] (143] relies only on RGB camera input prone to approximation reconstruction errors
[124], [100], . . R . .
[90] relies only on RGB camera input and known camera intrinsics, | increased complexity of control laws
, relies only on RGB camera input,
[133] Y P
[156]’ [59] 3D map of the flight prone to errors/not robust
’ environment
[46] 3D map of the flight prone to errors/not robust, requires stereoscopic 3D camera
environment

In [46] an optical flow-based obstacle avoidance method is proposed, exploiting the differential algorithm of
Lukas-Kanade [77]. Thus, the perceived 3D structure of the 3D flight environment is estimated jointly with the
video camera image’s depth map. In addition to localizing obstacles, their shape is also determined by taking into
account the direction of flight or maneuvers performed by UAVs. [100] presents a micro-UAV visual servoing
approach for obstacle detection and avoidance through a fuzzy logic controller for automating the collision
avoidance. It is capable of adjusting the UAV heading, keeping the flight trajectory such that obstacles remain to
the side of the camera until they disappear from the field-of-view.

In [90], a novel vision-based collision avoidance controller is proposed that uses a combination of spherical
imaging, properties of conical spirals and IBVS with predictive control. The method exploits the prediction and a
practical implementation of a vision-based control law which is extended to spherical imaging single feature
points, using specifications of conical spiral motion and ensuring collision avoidance. [26] proposes a monocular
vision odometry system based on laser sensor assistance, through estimation of the objects distance in order to
avoid them in indoor environments. This is performed by a combination of template matching for determining the
laser’s point of contact with the observed obstacles and the gray centroid method [148] to obtain the coordinates
of said point in the 2D image.

A summary of vision-based obstacle avoidance methods for safe navigation is contained in Table 4.

3.7 Path Planners for Safe UAV Landing

Path planning and path following, i.e., trajectory generation and tracking in 3D air-space, are essential operations
for UAVs in general. When it comes to safety, besides geo-fencing that considers people and human crowds,
the most important relevant issue is the trajectory followed by the UAV while it attempts to land. Protection of
human lives in case of possible drone malfunctions, or more generally in any scenario where emergency landing
must be executed, requires a systematic and intelligent approach for guiding the UAV towards the landing site.
This can be done either by exploiting the 3D map and UAV/camera 3D pose, or in a reactive, vision-based manner
for GPS-denied environments. In the first case, the 3D coordinates of both the UAV and the desired landing site
need to be known at each time instance, while the actual vehicle control for following the planned path in 3D
space is delegated to a trajectory tracking controller, operating in 3D space and relying on GPS/IMU fusion. In
the second case, the landing site and/or UAV 3D locations may not be known accurately, or at all, while reactively
planning and actually tracking a trajectory are interleaved operations. Relevant methods from both categories,
specially designed for UAV landing, will be presented below.
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3.7.1 Path Planners Exploiting the 3D Map and the UAV/Camera 3D Pose. Firstly, [42] uses two path planners
(Rapidly Exploring Random Tree, or RRT [33], and Particle Swarm Optimization, or PSO [116]) for path planning in
limited time from the current UAV position to the closest detected landing site. RRT is a method that systematically
connects a goal point with a starting reference point while avoiding rigid obstacles, by expanding the nodes
of a tree trajectory generating random points which are uniformly distributed all over the free space. The new
generated points, lying close to the previous nearest points, are added to the tree and create an unobstructed,
collision-free trajectory. Sampling-based path planning variants of this algorithm are Waypoint RRT (WRRT) and
Dynamic RRT (DDRRT) [23], as well as a multiple-robot variant called Rapidly-exploring Random Graphs (RRG)
[64]. Finally, multi-RRT [137] exploits two expanding random trees, one from the starting point and another from
the goal point (possible landing site). In environments with dynamic conditions and multiple moving obstacles,
multi-RRT is more efficient than RRT. When the two expanding trees connect to a random node, a feasible path
is created between the two points.

PSO-based path planning relies on a metaheuristic algorithm, inspired from the behaviour of flocks of birds
[67]. It exploits and evaluates particles which represent possible solution paths. Assuming that the swarm y has
n candidate particles, of known velocities and positions, these attributes are updated according to an iterative
procedure ensuring that each particle connects the start and the end position and is close to the optimal solution
of a cost function minimization problem. Eventually, the PSO finds the best path solution, according to a condition
verification which checks if the candidate particle lies in the terrain or not and computes its respective height.

Additionally, in [27] a trajectory generation method towards a rooftop landing site is proposed. An optimal
polynomial trajectory is computed from the current position to the selected landing site minimizing the angular
velocity and the jerk, estimating concurrently the coefficients of the trajectory B-splines. A second objective
function is calculated in order to maximize the gained information for continued observation of the landing
site point so as to reduce the confidence uncertainty. Finally, an alternative to this information objective is the
minimization of the distance to the landing site, or generally to an interest point/surveillance target. The trajectory
is recomputed online as the perception system provides additional observations and the landing site confidence
evolves with an optimization formula for determining the B-splines coefficients combining the minimum jerk
and maximum information objectives.

3.7.2  Path Planning in a Reactive, Vision-based Manner or in GPS-denied Environments. Reactive vision-based
methods for UAV path planning/tracking have also been proposed, mainly aiming to achieve safe landing. [7]
presents an approach for vision-based UAV landing on a moving platform in GPS-denied environments using
motion prediction. A vision-based control system is proposed, which enables a UAV to track an Unmanned
Ground Vehicle (UGV) and land on it using an integrated vision sensor without external localization systems,
such as GPS sensors. Tracking of the UGV relies on the latter’s presence within the camera Field-of-View (FOV)
and is performed utilizing a 6-DOF controller in cascade form, when the vehicle lies outside the FOV, or a normal
IBVS tracking, when the candidate UGV is back within the visual camera’s FOV.

A similar method for quadrotor landing on a moving target using dynamic IBVS control is described in [124].
A control law is implemented for the quadrotor landing in a flat and textured target plane which is identified by
visual features and may be moving with bounded linear acceleration in any direction. The proposed controller
ensures the convergence to the moving landing point with dense conditions such as bounded, possibly time-
varying and wind-induced force disturbances or measurement errors from the motion of the target plane. The
position and the velocity of the moving platform is given by depicting the centroid of features points (landmarks)
lying on the target plane and the translational optical flow, respectively.

[34] presents an integrated approach to autonomous artificial landpad detection, approach and landing, for a
low-cost quadrotor equipped with a monocular camera. The method exploits a landpad marker’s geometrical
characteristics for detecting it on video. Notably, the landpad need not be located directly underneath the drone.
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Table 5. A comparison of path planners for safe UAV landing.

Pros Cons
[33],[23] requires external self-localization system (e.g., GPS+IMU) and known
(1 37’] } high accuracy landing spot coordinates, dynamic memory allocation may lead to memory
overflows
requires external self-localization system (e.g., GPS+IMU) and known
[64] supports multiple-robot fleets, high accuracy landing spot coordinates, dynamic memory allocation may easily lead
to memory overflows, supports only 2D map
[116],[67], hich . requires external localization system (e.g., GPS+IMU) and known landing
[42] gh accuracy spot coordinates, stochasticity in the obtained solution
exploits multiple information sources (distance, angular velocity, jerk) for increased
27] accuracy, 3D world coordinates of the landing spot do not need to be known, relies increased complexity due to minimization of multiple cost functions, prone
only on RGB camera input to visually detect landing spot, does not depend on external to errors
self-localization systems (suitable for GPS-denied environments)
does not depend on external self-localization systems (suitable for GPS-denied
[7] environments) relies only on RGB camera input to visually detect landing spot, supports | increased complexity of control laws, prone to errors
moving landing spots (UGV-mounted)
[124], [34] relies only on RGB camera input to visually detect landing spot, requires external self-localization system (e.g., GPS+IMU),
? supports moving landing spots (UGV-mounted) increased complexity of control laws

A SLAM algorithm is utilized in order to on-the-fly map the area near the landpad, so that a proper trajectory for
safe landing can be designed and executed.
Recent literature concerning path planning for safe UAV landing is summarized in Table 5.

3.8 Transferability and Adaptability Issues

Evidently, most advanced computer vision-based methods rely on Deep Neural Networks (DNNs), thus giving rise
to issues of transferability and adaptability of the pretrained DNN models to real-world scenarios. This issue is
especially pronounced when training occurs using simulators (e.g., training data obtained through photorealistic
3D graphics engines) and, subsequently, the model is tested in a real-world environment; the reduced test-stage
accuracy resulting from the differences between the simulated and the real-world data is called the reality gap.
However, this is in fact simply a facet of a larger problem, endemic in all machine learning approaches: model
performance suffers at the inference stage if there is a shift in data distribution between the training and the test
stage. For example, the well-known Cityscape dataset for semantic segmentation may not accurately reflect the
distribution and appearance of semantic classes in other cities, leading to reduced inference accuracy in case
similar distribution shifts take place. Transferability/adaptability issues can be aggravated if a DNN model is
compressed after training, so as to be deployed on embedded computing devices (e.g., on UAV hardware).

The active research field of domain adaptation is an effort to tackle the above-detailed issues. In this paradigm,
a machine learning model is trained in an initial source domain and tested on a different target domain; the two
data domains contain identical semantic information, but the data are distributed differently within them. A good
example would be training a semantic segmentation DNN model in a photorealistic 3D graphics-based simulator
for a specific set of semantic scene/object classes, and then deploying the trained model on a real-world environ-
ment containing the exact same scene/object classes. Domain adaptation methods intervene at the inference/test
stage and actively try to decrease the impact of the cross-domain distribution shift in model accuracy. Algorithmic
strategies such as sample re-weighting [141], or intermediate subspace transformation categories [22, 162] do
not rely themselves on domain adaptation DNNs, but most advanced approaches are in fact DNN-based, such as
discrepancy-based methods [165], generative Adversarial models [65], discriminative adversarial models [152]
and reconstruction-based methods [151]. For instance, in the semantic image segmentation case, [143] proposes
an unsupervised domain adaptation method relying on Generative Adversarial Networks (GANs), where the goal
is to automatically align convolutional (CNN-derived) image features from the source domain with respective ones
from the target domain. The underlying assumption is the availability of a labeled/unlabeled training set for the
source/target domain, respectively. The method attempts to avoid the over-alignment of features corresponding to
background classes, since they typically vary little across domains, while for foreground/object features different
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representations are derived per individual visible object instance; the target-domain instance is forced to align at
the feature level with the most similar one in the source domain. In [101], a two-step domain adaptation approach
is proposed that minimizes the inter-domain and intra-domain gap together, by separating target domain into
an easy and a hard split using an entropy-based ranking function and, generally, utilizing a self-supervised
adaptation method. For the specific case of person/crowd/pedestrian detection tasks, [47] exploits multimodal
information (e.g., RGB, thermal) and utilizes a domain adaptation approach to generate pseudo-annotations in the
source domain. Subsequently, these are updated according to the multispectral detector’s parameters, aligning
visible and infrared image pairs of the target domain. More closely related to the reality gap issue, [129] and [17]
explore pixel-level domain adaptation, while [41] focuses on feature-level domain adaptation. These advances
required a rethinking of the approaches used to solve the simulation-to-reality domain shift problem for robotic
manipulation as well.

4 COMPUTER VISION-BASED UNIFIED UAV SAFE LANDING PIPELINE

In this Section, synergistic exploitation of the above technologies is presented through our example algorithmic
pipeline for UAV safe landing. It consists of a number of modules, where each one implements a computer
vision/machine learning algorithm. We assume that the vehicle is equipped with proper embedded Al compute
boards (e.g., NVIDIA Jetson Xavier, Intel NUC, etc.) and GPS/IMU localization sensors.

Although it is not strictly necessary, easy inter-process communication and synchronization among all modules
may be transparently assured with minimum fuss by relying on the wide-spread Robotic Operating System (ROS)
middleware [111]. Additionally, a 3D flight area map is assumed to be available in Octomap format. Overall, this
is a reasonable platform architecture with fairly common design choices [80] [81] [84] [83], easily assembled by
using only commercial off-the-shelf or open-source HW/SW building blocks. Note that a ROS-based architecture
inherently ensures modularity and software isolation between different modules, thus preventing the existence
of a single point of failure.

The software modules of our example algorithmic pipeline are the following ones:

e Potential Landing Site Detection (PLSD)

e Visual Landing Site Detection Using Semantic Segmentation (VLSD)
e Crowd Detector (CD)

e Semantic Map Region Projector (SRP)

e Semantic Map Manager (SMM)

e Person Detector (PD)

e Simple Path Planner (SPP)

Each of these components is described below. Note that PLSD must run off-line, before UAV deployment and
mission execution, while the other modules are executed on-line and repeatedly, as needed. Actual trajectory
tracking, both for approaching a landing site and for landing itself, can be performed by any off-the-shelf controller
operating in 3D space, since 3D coordinates of both the UAV and the landing sites are assumed known at all
times.

4.1 Potential Landing Site Detection (PLSD)

A simple, but efficient algorithm for UAV potential landing site detection [62] has been adapted as a building
block for our example pipeline. The main aim is to identify (sufficiently) flat and large areas in a topographical
map for UAV safe landing in normal or emergency situations. The method is briefly described below.

DSM and DTM raster files are exploited in order to identify regions containing vegetation, buildings, and
generally the objects upon the bare ground, by simply evaluating the height difference between the DTM and
the DSM model. In addition, flat areas are discovered by evaluating the local terrain slope through the use of an
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image gradient operator on the DEM file and by thresholding the resulting image, in order to keep areas with
small terrain slope. Subsequently, connected components analysis is used on the resulting binary image in order
to find and retain regions whose area is above the minimum potential landing area size.

The final result is a list of sufficiently large map areas with no buildings/vegetation and small terrain slope,
constituting areas which can be characterized as landing zones. Since the method is based on pure image
processing and not machine learning, it foregoes the need for complicated training. The only prerequisite is the
existence of the DSM and DTM height maps, which are available a-priori with sufficient resolution for large parts
of the globe.

Map-based landing site detection can provide only information regarding potential landing sites, based on
terrain geometry. Such landing sites may be precomputed and be available as annotations on the map. Whether
these potential landing sites can actually be used for UAV landing at a certain time instance depends on whether
the site is free from water, people/crowds, or cars, at the actual landing time. Such a check can be done either
manually by the pilot through the drone video feed, or automatically by on-the-fly applying person/crowd/car
detection and semantic segmentation algorithms on the UAV-captured video.

a b [
d e f
a h i

Fig. 1. 8-neighborhood of a DSM.

PLSD input consists of a DSM and a DTM model in raster format, i.e., as a regular grid of elevation values of a
terrain. As discussed in Section 3.3, the DTM (Figure 2aa) depicts just the terrain and no man-made structures or
vegetation, whereas the DSM (Figure 2ab) depicts the terrain along with buildings and vegetation. Due to sensor
inefficiencies during DSM acquisition, relevant files often contain pixels with no value (no elevation information).
As DTM is constructed by post-processing the DSM, these pixels are usually assigned values through some sort
of interpolation. In the context of our example pipeline, DSM pixels with no values are assigned elevation values
from the corresponding pixels of the DTM file. The algorithm consists of the following steps:

1) Detection of man-made structures and vegetation. By subtracting DTM from DSM and applying a threshold
to the outcome, a binary image is derived (Figures 2af, 2be) which marks pixels depicting man-made structures
and vegetation whose height is above a selected (small) threshold.

2) Terrain slope determination (Figures 2ag, 2bd). Subsequently, the local slope of the depicted areas in the
DSM is calculated. According to GIS literature [3], slope is the maximum rate of change in value (elevation) from
a pixel (cell) to its neighbors. The lower the slope value, the flatter the terrain. As far as the slope calculation is
concerned, the rates of change of the surface elevation in the horizontal (3—;) and vertical ( s—;) directions from
the central cell determine the slope. Slope, in degrees, is calculated as [3]:

; _ 180 ‘ dz 2+ dz | (1)
slopegegrees = p arctan Ix ay

The values of the center cell and its eight neighbors determine the horizontal and vertical rates of elevation
change.
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(a) Real-world dataset (b) Synthetic dataset

Fig. 2. Real-world dataset (map1): (a) 3D view of DTM, (b) 3D view of DSM, (c) final map (meaning of colors is explained
in the text) (d) DSM, (e) DTM, (f) binary image of buildings/vegetation, in black, (g) Terrain slope determination via Sobel
operator, (h) binary image of low slope areas, in white, (i) connected components analysis result, Synthetic dataset: (a) 3D
view of map4 (sub-images (d)-(i) refer to this map), (b) 3D view of map5, (c) 3D view of mapé, (d) Terrain slope determination
via Sobel operator, (e) binary image of vegetation, in black, (f) binary image of low slope areas, in white, (g) connected
components analysis result, (h) ground truth information, potential landing sites in white (i) final map (meaning of colors is
explained in the text).

For a neighbourhood such as the one depicted in Figure 1, the rates of change in the x and y direction for cell

"n

e" can be calculated as:
% _(c+2f+i)—(a+2d+g)

2
dx 8 % Xeellsize @
dz (g+2h+i)—(a+2b+c)
- = ®3)
dy 8 * Yeellsize

Essentially, the rates of change in the x and y direction as used in the GIS literature are the horizontal and vertical
derivative approximations generated by the well known Sobel operator [38], scaled by a factor of —8 = cellsize.

3) Sobel operator gradient image thresholding (Figure 2ah, 2bf): After extracting the elevation gradient
magnitude image, it is thresholded in order to classify the DSM pixels in flat or non-flat areas, based on the local
slope. Obviously, near-flat areas are retained as potential landing areas. The thresholding utilizes a predefined
terrain slope threshold, based on slopes which are appropriate for UAV landing.

4) Binary image connected components evaluation (Figure 2ai 2bg): Connected components analysis is applied
on the binary image resulting from the previous step. Connected components with sufficiently large number of
pixels, i.e., of sufficient area, are retained.

5) Creation of the final map (Figures 2a-c, 2b-1): In order to create the final map, image regions that overlap
with buildings and vegetation (found in Step 1) are removed from the large low slope areas found in Step 4. The
final map consists of three categories of pixels:

o Blue pixels: landing zones, i.e., the regions in the DSM map which are characterized from small terrain
slope and large enough area for UAV landing.
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o Light blue pixels: no landing zones, i.e., the regions in the DSM map with large terrain slope or very few
pixels (small area).
o Yellow pixels: no landing zones due to buildings and vegetation.

4.2 Visual Landing Site Detection Using Semantic Segmentation (VLSD)

Using semantic segmentation, 2D image regions corresponding to ground areas that are most likely suitable
for landing (such as grass, or pavement) can be identified and discriminated from areas unsuitable for landing
(such as trees, people, water, or buildings). Such a semantic segmentation CNN may be executed separately
per video frame, with different accuracy/speed trade-offs. In our example UAV safe landing pipeline, PSPNet
was adopted and properly adapted. Instead of complex encoding/base feature extracting networks (pretrained
on the ImageNet dataset for whole-image classification) that are typically used, such as ResNet [53] or VGG
[130], we coupled the PSPNet network layers with a MobileNetV2 base feature extractor [119], enhanced with
dilated convolutions. This resulted in a relatively fast implementation at a low accuracy penalty. Additionally, the
base feature extraction network was pruned by removing 5 intermediate convolutional layers, so as to speed-up
execution during inference, resulting in a lightweight variant of the full MobileNetV2+PSPNet network.

The ADE20K semantic scene parsing dataset was selected for training [166]. It is a large dataset containing
K = 150 distinct object classes from both indoors and outdoors environments, including all important classes
relevant to the landing site detection task. Since the 150 discrete object classes of ADE20K are not necessary
for potential landing site detection, they were manually clustered into 11 classes, relevant to outdoor UAV
flight: Landing Area, Building, Background, Man-Made Structures, Vegetation, Sky, People/Animals, Vehicles,
Light, Man-Made Objects, Water. Reducing the number of discrete classes simplifies the problem and allows
the segmentor to generalize better. To achieve a good accuracy/speed trade-off during inference, each input
image was resized so that the short edge length (in pixels) is 180px, while the aspect ratio was preserved under
the constraint that the longer edge length cannot be greater than 1000 pixels. The network was trained for 220
epochs. The learning rate and the batch size were set to 0.01 and 8, respectively.

Despite the care taken for implementing a VLSD module that can be as fast as possible on embedded Al
compute hardware, there is no actual need for it to run either continuously or with near-real-time performance. It
may be used for verifying actual potential landing site eligibility from a single video frame, once the site becomes
visible on the UAV-mounted camera.

4.3 Crowd Detector (CD)

A recent human crowd detection module from [138] [139], able to rapidly extract fairly accurate 2D crowd
heatmaps from video frames captured by a UAV-mounted camera, has been adapted for use in our example
pipeline. The underlying algorithm is a very lightweight Fully Convolutional Neural Network (FCNN), satisfying
computational and memory limitations of on-board UAV execution, that can effectively distinguish between
crowded and non-crowded image areas. The network is trained using a novel generic regularization approach for
supervised learning, based on the Graph Embedding Framework, applicable to different deep neural architectures
for classification tasks.

The module operates in the following manner. First the current video frame/image is fed to the CNN, which
(thanks to its fully convolutional nature) essentially segments the input into overlapping, spatially arranged
patches and assigns a probability of human crowd existence to each one. Thus, the image is "mapped" into a 2D
semantic heatmap denoting the estimated probability of crowd depiction in each location within the input video
frame. The 2D input is fully spatially aligned with the 2D output, since the convolutional neural layers preserve
spatial information due to the arrangement of the activations, as opposed to fully connected layers that discard it.

The fully convolutional nature of the proposed model is essential both for handling input images of arbitrary
dimension and for estimating the heatmap. Additionally, it keeps computational and memory requirements low,
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thus permitting execution on-board a UAV, given that a CNN without fully connected layers has a drastically
decreased number of model parameters.

The proposed CNN model contains six convolutional layers. The network accepts RGB images of size 128x128x3.
The output of the last convolutional layer is fed to a Softmax layer which produces a distribution over the 2 classes
of Crowd and Non-Crowd. Each convolutional layer except for the last one is followed by a Parametric Rectified
Linear Unit (PReLU) activation layer, which learns the parameters of the rectifiers, since it has been proven to
enhance the classification performance, while max-pooling layers follow the first and the fifth convolutional
layers.

Regularization is essential in deep learning for enhancing generalization ability, since deep neural networks are
prone to overfitting due to their high capacity. Thus, in the employed algorithm, a multiple-loss training approach
is used that combines the Graph Embedding (GE) framework [150] with CNNs, in the form of a regularizer term
for classification purposes. This approach is described below.

Considering a deep neural architecture for classification purposes with a softmax loss, one or multiple additional
loss layers are attached which impose certain constraints, motivated by the GE algorithms. The Euclidean loss
(sum of squares) layer can be easily employed to implement them, although more sophisticated losses may also
be defined.

Given a set of N input images X = {X;,i = 1,..., N}, let y* be the corresponding representations of the feature
space generated by a specific deep neural layer, L, as the corresponding projection of training data in the GE
concept. Then, the softmax loss is defined as:

1 N K
L=~ D > lulog(pie). 0)
i=1 k=1

where K is the number of classes, I; € {0, 1} is a binary indicator with a value of 1 if the class label k is the
correct classification for sample i, and p; x is the predicted softmax probability that the sample i belongs to class

k.

The Euclidean loss for a target representation #; determined by a specific GE algorithm is defined as:

N
Le= = Y llyt -t )
2N i=1 l

The Euclidean loss layer acts as a regularizer, transfusing the ideas of GE in deep learning. It can be attached
to all layers of the deep neural architecture, to individual layers, as well as to combinations of layers. For a deep
model of Ny, layers, the total loss in the regularized training scheme is computed by summing the above losses0 :

NL
L=L+ ) nil, (©)
i=1

where parameter n; € [0, 1] controls the relative importance of the Euclidean loss of each deep layer; n; = 0
implies that no regularizer is attached to the i-th layer.

Different regularizers, motivated by different GE approaches, can be simultaneously applied to a deep neural
layer. Discriminant Analysis (DA) and Minimum Enclosed Ball (MEB) regularizers are specific instances of this
framework, introduced and described in detail in [139]. Training is performed in the typical manner for feed-
forward neural networks, using error back-propagation and Stochastic Gradient Descent on the Crowd-Drone
dataset [63]. This dataset includes Youtube videos depicting crowded events (e.g.marathon, festival, parade,
political rally, protests, etc). and non-crowded generic drone videos. Non-crowd images (e.g. cars, buildings, bikes,
etc.) from the senseFly-Example-drone and the UAV123 datasets are also included. Crowd regions are manually
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annotated in the extracted frames. The dataset includes a total of 5,920 crowded regions and an equal number of
non-crowded images.

4.4  Person Detector (PD)

Person detection is a vital part of any autonomous system regarding human safety [135]. Although crowd detectors
can achieve exceptional results in detecting dense crowds, they mostly fail in detecting sparse individuals; therefore,
employing the CD module for this task is not advisable. Additionally, person detection should be accurate in its
analysis, running constantly in the background and performing as close to real-time as possible. Thus, employing
the VLSD for solving this task as well, via semantic segmentation, is highly suboptimal, since VLSD runs slow on
embedded Al hardware and is only really necessary when a landing site is approached (i.e., very sporadically). As
a result, an additional Person Detector module was added to our example UAV safe landing pipeline, exclusively
for detecting individuals from aerially captured video frames/images.

This task poses challenges due to the small size of objects/persons (especially in high flight altitudes), as well as
due to unforeseen and wide-ranging variations in illumination, camera orientation, etc. An off-the-shelf one-stage
CNN-based object detector was selected for powering the relevant module of our example pipeline, since these
detectors are faster and more computationally efficient compared to two-stage approaches [115][43].

YOLOv3[112] was selected and adapted for use in our example pipeline, since it has proven to be suitable
for embedded Al applications [97]. The network was adapted to receive as input, images with a resolution of
608 X 608 pixels. The deployed model was pre-trained on the MS-COCO [52] dataset.

4.5 Semantic Map Region Projector (SRP)

The Semantic Map Region Projector (SRP) is a crucial module of our example pipeline. It is responsible for
back-projecting the 2D crowd heatmaps onto the 3D volumetric map handled by the Octomap. Such a heatmap is
produced every time the CD module analyzes a video frame captured by UAV’s camera.

The process is composed of the following stages:

First, all the necessary information is gathered and synchronized with the currently received heatmap, based
on accompanying timestamps. This information, including the UAV position, gimbal orientation and camera
intrinsic parameters (e.g., focal length), must match the moment that the original video frame was captured.

By applying thresholding on the heatmap in order to retain only image locations with high probabilities of
crowd existence, the heatmap is converted into a binary image where groups of adjacent pixels with a value of
1 (white) represent 2D regions occupied by crowd. Next, a contour following algorithm is applied in order to
extract the contours of this image, resulting in a new binary image indicating the boundaries (white pixels) of the
crowd regions as 2D polygons. If necessary, the resulting polylines are simplified while maintaining their shape,
according to the Ramer-Douglas-Peucker algorithm [35]. The latter receives a curve composed of line segments
and outputs a similar one with fewer points.

By traversing the points (pixels) of the regions’ boundaries in a counter-clockwise manner, ray casting is
performed [45], [117]. This contour image lies on the focal plane of the UAV camera which has the following
known parameters (specific to the moment the corresponding video frame was captured):

e a) the location of the center of projection (COP) in the 3D world (derived from the UAV location).
e b) the camera orientation (derived from the gimbal state).
e ¢) the distance of the focal plane from the COP (the camera focal length).

Thus, one can cast a ray from each of the boundary contour points towards the voxels of the Octomap (as shown
in Figure 3). This results in finding the occupied voxel hit by each ray, leading to the evaluation of the X, Y, Z
terrain coordinates where each of the contours’ points is projected, as the Octomap is coordinates-referenced.
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By this procedure, and since the 2D boundary contour points are traversed sequentially, the points of the 3D
boundary contour (polyline) are extracted.

4.6 Semantic Map Manager (SMM)

The Semantic Map Manager (SMM) is a module of our example pipeline with the following responsibilities. Firstly,
it receives from the SRP the crowd gathering locations on the 3D map (see Section 4.5). As the drone moves, and
its camera “sees" new terrain areas, the newly generated polygonal lines are merged with previous ones using
the union operator.

Subsequently, the constantly updated geometric annotations are stored in an internal data layer (as ROS
messages, in our implementation) that will be exported as KML files. These can be used for drone navigation
and control purposes, as well as for post-flight manual visual inspection by human personnel. In the presented
pipeline, they are employed for storing the coordinates of the Earth surface locations that form the points of the
polyline, delineating a crowd area.

cop

Fig. 3. Ray casting procedure for crowd heatmap contours projection onto the 3D occupancy grid of Octomap as semantic
annotations.

4.7 Simple Path Planner (SPP)

Each path planned for a UAV must be safe, i.e., it has to ensure the lack of collisions with obstacles. Moreover,
each path should also avoid no-fly zones (e.g., private areas, crowds, people, etc.) and not exceed the limits of a
pre-defined geo-fencing area. In our example pipeline, the Simple Path Planner (SPP) module takes care of these
tasks in an on-line manner.

In order to compute an obstacle-free path to the preferred closest landing site, SPP receives as input the available
geometric map (an Octomap file in our implementation) and the semantic map, containing geo-referenced
annotations of flight area limits, no-fly zones and 3D crowd polylines; the latter are continuously being extracted
through the collaboration of CD, SRP and SMM.

SPP computes routes modeling the environment as a grid: the entire pre-defined area is bounded by a rectangle
and then segmented into smaller quadrangular zones, limitations according to a given grid resolution. Each
zone represents a cell of the grid. If a cell contains any vertex of a no-fly zone, or is just outside the geo-fencing
area, that cell is set as an obstacle cell; otherwise the cell is set as free. The underlying path planning algorithm
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searches a route to the destination without using obstacle cells. Horizontal, vertical and diagonal movements
between adjacent free cells are allowed. The grid search is carried out by an A" algorithm [37], i.e., a heuristic
search algorithm formulated for weighted graphs. It searches within a graph with weighted edges the optimal
path between two different nodes that minimizes the cost (planar distance, in this case) between them. Exhaustive
search is avoided by relying on a heuristic.

4.8 The overall synthesis

The pipeline’s operation is achieved through the synergy of the different modules described above, that must
remain functional during the entire flight duration. The UAV camera constantly sends video frames to the
Crowd/Person Detector modules (C/PD). SRP receives the 2D crowd heatmaps and person ROIs from C/PD
and outputs all known crowd regions and person locations in 3D space, including the ones that have just been
discovered. The SMM receives all crowd/person 3D annotations and updates the 3D area map used for navigation
accordingly. It also has access to annotations regarding potential landing zones, pre-discovered off-line by the
PLSD module before mission start. If the need for landing arises, the SPP plans a path to a known potential landing
site, using the stored 3D area map and the vehicle’s localization sensors. As soon as the target site becomes visible
on the UAV camera, its actual eligibility for landing is verified via the VLSD module and, in case it is found to be
unsuitable, a new path is requested from the SPP. The overall process is detailed below, divided into temporal
stages which are actually interleaved to a limited degree:

Stage 1: The 3D map of the flight area (in Octomap form), along with the geo-referenced potential landing
sites derived from PLSD, becomes available to the SMM. Computing both of them (off-line, before flight) requires
the DSM and DTM height maps, which are publicly available with sufficient resolution for large parts of the
globe. In a real-world scenario these maps may be outdated (e.g., an area’s vegetation growth is highly volatile,
even in a short time span).

Stage 2: During flight, the UAV constantly collects information about the presence of visible human crowds
(using the CD module) or visible individual people (using the PD module), so as to avoid flying over them. However,
once a safe landing spot is requested, the UAV must maintain a even higher awareness of its environment as far
as people/crowds are concerned. Thus, it periodically hovers and rotates the camera’s gimbal at multiple pitch
angles scanning for visible people/crowds located either far-away or near-by. This information initially takes the
form of 2D crowd heatmaps and person ROISs (in pixel coordinates), which are on-the-fly transformed into 3D
annotated regions/locations in geo-referenced 3D coordinates by the SRP. Then, they are stored on-line by the
SMM along with the 3D area map, thus updating it with current semantic annotations.

Stage 3: When the need for landing arises, the SPP constructs on-line a route towards the closest approachable
known safe landing zone, using the 3D semantic annotations projected onto a 2D map. The flight controller is
ordered to follow the planned route and, as soon as the landing zone becomes visible via the camera, its actual
eligibility for landing is evaluated using the VLSD module. At all times during this process a new route may
be requested by the SPP, in order to: (a) avoid newly identified no-fly zones, consisting of air-space near/above
human crowds or individuals, or (b) select a different landing site site (among the ones pre-computed by PLSD),
if the originally selected one is not judged by the VLSD to be actually eligible.

Stage 4: As the UAV flies towards a safe landing zone, it may dynamically perceive a nearby individual
person/crowd. If the vehicle’s position at that moment lies within the no-fly zone defined by the person/crowd,
the UAV cancels the current trajectory, dismisses the remaining part of the planned path and immediately flies to
the closest point outside the no-fly zone. Once this point has been reached, a new path to that target landing site
is requested by the SPP.

, Vol. 1, No. 1, Article . Publication date: .



Computer Vision for Autonomous UAV Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example

4.9 Pipeline Performance Evaluation

To evaluate our example UAV safe landing pipeline, a set of realistic simulations were created. A combination
of AirSim [125] and ROS was used to that end. A large-scale (568 X 379m?) realistic countryside environment
(shown in Fig. 6) was populated with people and employed for the evaluation process. In order to adapt the
CNN-based modules of the example pipeline to the visual differences between real-world data and the simulated
world, the VLSD model was first fine-tuned for 20 epochs, using 600 images collected from the AirSim simulator
and manually annotated. The learning rate and the batch size were again set to 0.01 and 8, respectively. Similarly,
the PD CNN module was fine-tuned on a mixed dataset, consisting of manually collected images from aerial
views and synthetic images generated using AirSim. No fine-tuning was performed for the CD model.

The NVIDIA Jetson Xavier embedded Al compute board was selected for executing the overall pipeline. A
series of 15 independent missions (flight and landing) were simulated, using different randomly generated UAV
starting points. Thus, each mission was conducted in a different part of the simulated environment with different
characteristics in terms of terrain morphology and the presence of people in the area, ensuring testing under a
variety of conditions. In all cases, the UAV had access to the DTM and the DSM of the simulated environment.
With the modules described above operating in synergy, the UAV would fly from its starting point towards the
closest safe landing spot, avoiding no-fly zones and, finally, land on it. In certain cases, the vehicle would have to
on-line re-plan its path and land on a different landing site, since the original would be deemed as ineligible. The
overall system was able to run steadily on NVIDIA Jetson Xavier with the most demanding modules, namely the
PD and VLSD modules, achieving 9.5 FPS and 0.82 FPS respectively. In addition, the average number of times that
a path was requested from SPP in a single mission was 1.53. This evaluation was performed using only individual
people and the PD module, but similar results were obtained using human crowds and the CD module.

Performance of our example UAV safe landing pipeline was evaluated using the minimum lateral (on-ground
projection) distance of the UAV trajectory waypoints from any person location in the terrain of the flight
environment as a metric, as shown in Figure 4a. High minimum distance ensures the avoidance of flying over
humans and, thus, the overall safety of the autonomous landing process. Based on [134], the minimum legitimate
lateral flight distance from individual people for several countries, including UK, Italy and Australia, is 30-50m.
Thus, we set the minimum acceptable lateral distance to 50m. In our evaluation setup, relying on the vision-
based detection of individuals from the PD in a scenario taking place at a mountainous environment populated
with people, the mean minimum UAV-to-person distance along the actual UAV trajectory (averaged over all 15
independent missions) is 69.4637m, as shown in Figure 4a for several safe landing cases. Therefore, the minimum
is exceeded on average by almost 20 meters.

The graph in Figure 4a depicts the minimum lateral distance of the UAV trajectory waypoints from people,
varying over time. The straight horizontal lines of the graph represent the time required for executing Stage 2
of the pipeline. Note that, rarely, the minimum drone-to-person distance falls below the minimum acceptable
threshold for brief intervals (e.g., in mission 3). This may occur as an individual person or a crowd could not be
detected until that point in time, e.g., due to visual occlusions. However, as soon as the person/crowd is detected,
the UAV automatically moves away from it (Stage 4), if necessary, and a new path is requested from SPP.

4.9.1 Ablation Study. An ablation study was conducted to determine the efficiency and the relative importance
of individual pipeline components. Figure 4b depicts the minimum lateral distance of UAV trajectory waypoints
from undetected people, over time, if person/crowd detection (Stage 2) is disabled. As it can be inferred from these
plots, the minimum lateral distance achieved is heavily decreased in comparison to Figure 4a. Evidently, C/PD is
the most important module of the described safety pipeline, as expected, since the vehicle may fly near people
without it. On the other hand, omitting only the VLSD does not incur severe negative impact, since the PLSD is
still employed for determining possible landing sites in terms of ground morphology; the only loss is that any
rigid obstacles/water/cars that may lie on the pre-identified landing spots are not visually detected, thus there is
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an increased risk of inappropriate landing. SPP or SMM-SRP cannot be omitted, since they are fundamental to
the pipeline’s operation.

4.9.2 Example missions. Four example missions are visualized in Figure 7. In all of them, the UAV constantly
detects people while it is flying and projects their 2D ROIs on the 3D navigation map as annotations. When it
needs to land, it plans a trajectory to the closest a-priori known landing site utilizing the SPP and avoiding people.
The trajectory consists in a smooth path of waypoints. Once the UAV is close to its target landing site, its actual
eligibility for landing is evaluated using the VLSD module.

Mission A is a simple example mission. The SPP provides a path towards the closest known landing site E;
(Figure 7b). Following that path, the UAV flies from point S to point E (Figure 7a) and lands safely, since the VLSD
module has evaluated the validity of the site.

The PD\CD modules and their successful utilization is shown in Mission B. The SPP provides a path from point
S to point E; at the start of the mission (Figure 7d). While the UAV reaches E;, a human presence is detected
at point H,. The UAV redefines its no-fly zones and perceives that it is currently flying within one. The UAV
dismisses the rest of the path and flies towards the closest fly-zone (Stage 4). Then, the SPP provides a new path
from point S, to point E; (Figure 7e). Finally the UAV follows that path and lands safely, since the VLSD has
evaluated the validity of the site. The UAV trajectory in this corresponding mission is visualized in (Figure 7c).
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Fig. 4. [a]Minimum UAV-to-person distance (in meters) vs Mission time (in seconds), [b]Minimum UAV-to-person distance
(in meters) vs Mission time (in seconds) with Stage 2 disabled.

Mission C and Mission D are two example missions where the use of the VLSD module is evident. In these
missions, we simulate the case where the DSMs are outdated and several potential landing sites, computed by the
PLSD module, are in fact sites occupied with water, vegetation or buildings; thus the UAV should avoid landing
on them. In Mission C, the SPP provides a path from point S; to point E; at the start of the mission (Figure 7g).
Once the UAV reaches E;, the VLSD module rejects its validity, as a tree is located on that point. The annotations
regarding the landing-sites are redefined and the SPP module computes a path to a different landing site E,
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(Figure 7h). The UAV follows that path and lands safely, since the VLSD has evaluated the validity of the site. The
UAV trajectory during Mission C is visualized in (Figure 7f). Similarly, in Mission D, the SPP provides a path
towards a landing site, but, once reached, the latter is judged by the VLSD module as occupied by water and,
therefore, as unsuitable (Figures 7j, 7k). Subsequently, SPP is called again and finally, the UAV lands successfully
on point E. The UAV trajectory during Mission D is visualized in (Figure 7i).

Table 6. A comparison of required runtimes. Performance of our on-line modules was measured on an embedded Al computer
(NVIDIA Jetson Xavier) while reported figures for [94]/[86] refer to execution on regular desktop computer/NVIDIA Jetson
TX2, respectively. PLSD is the only component of the pipeline presented here that is being executed off-line/pre-flight, on a
desktop computer.

On-line | Off-line | FPS/Hz
PLSD v 0.68
VLSD v 0.82
C/PD v 9.5
SRP+SMM v 19
SPP v 1.53
SafeUAV-Net-Large [86] v 35
SafeUAV-Net-Small [86] v 130
[94] v 5.76

4.9.3 Response Time Study. Embedded AI compute boards, such as the popular Jetson Xavier, are incapable of
executing all pipeline functionalities in real-time, due to their limited computational resources. Thus, on-the-
fly running all of the presented components on current commercial UAV hardware in real-time is impossible.
However, the demanding PLSD module can be executed off-line, at the pre-flight stage and on conventional
hardware; no real-time requirements are imposed to it. Using PLSD to process the map of the simulated region we
employed for the experimental evaluation (with an area of 568 X 379m?) required 1.456 sec (corresponding to 0.68
Hz), on a typical desktop computer. Moving on to the on-board pipeline components, the most computationally
demanding module proved to be VLSD, which achieves a performance of 0.82 FPS on a Jetson Xavier. The example
pipeline is designed to only rarely require activation of the VLSD module and does not depend on its real-time
on-board execution. In fact, a processing rate of approximately 1 FPS, or even less, is adequate given the rather
low speed of typical multicopters and the role of the VLSD in the overall pipeline; analyzing a few images of each
pre-identified landing site, as the UAV approaches it, is enough to judge whether it is indeed suitable for landing
or not.

On the other hand, the critical C/PD modules were jointly measured to perform at a rate of 9.5 FPS on a Jetson
Xavier, which is obviously lower than real-time, but adequate given typical multicopter flying speeds. Moreover,
output frequency of our multithreaded SMM+SRP implementation was measured at approximately 19Hz on
average. Although the input frequency to SMM is equal to the output frequency of C/PD (9.5Hz), the SMM
implementation publishes a new overall crowd map as soon as a new crowd polygon has been evaluated/projected,
i.e., it publishes multiple crowd maps per processed video frame (if more than one crowds are visible in the scene).
Finally, the Simple Path Planner (SPP) is executed on-board a Jetson Xavier at a rate of 1.53Hz. This frequency
permits normal operation, since SPP is only sporadically executed according to the pipeline design, thus no
near-real-time requirements are imposed to it. These findings are summarized in Table 6.

, Vol. 1, No. 1, Article . Publication date: .



« Kakaletsis et al.

4.9.4 Pipeline Comparison Study. There are no publicly presented, comprehensive vision-based UAV safety
pipelines such as the example of this paper, since most relevant literature is only concerned with specific subtasks.
Still, for comparison purposes, [86] (briefly described in Subsection 3.3.2) was selected to be juxtaposed against
our example pipeline. The main advantage of the latter one is the presence of the C/PD, VLSD and SPP modules,
which act jointly to heavily increase safety and robustness in case of human presence and obstacles in the area.
However, since [86] is limited to depth and binary semantic map estimation (with the two semantic classes
being “obstacle” and “safe") using a lightweight, embedded CNN, it runs significantly faster than our complete
pipeline, whose computational complexity increases along with its capabilities. Moreover, our example pipeline
needs a-prior known area morphology DSM/DTM maps for the off-line PLSD module to be executed, while [86]
performs a task similar to PLSD, but in an on-line manner and in unknown areas.

More similar to the presented example pipeline is [94], which still however is significantly different. It builds
the area map dynamically and on-the-fly, but it requires a stereoscopic camera in order to be able to do that. In
contrast, our example pipeline relies on pre-existing and a-priori known DSM/DTM maps, but only demands a
conventional monocular RGB camera mounted on the UAV during flight. [94] also employs an on-board path
planner for computing trajectories towards safe landing sites, but actual landing site identification relies only
on geometrical properties (e.g., flatness) and not on semantics. In contrast, the example pipeline presented here
pre-identifies candidate landing sites using geometric properties at an off-line stage (via the PLSD module) and
refines this list using on-the-fly semantic properties identified during flight (via the vision-based VLSD module).
Finally, [94] does not employ at all a vision-based module similar to our C/PD, because it presupposes that the
UAV is equipped with a bioradar. In contrast, our pipeline relies only on a monocular RGB camera. With regard
to runtime requirements, [94] demands 173.4ms per video frame (corresponding to 5.76 FPS) when running on a
desktop computer (Intel Core 17 CPU). In contrast, our complete example pipeline is executed at a rate of 0.82 FPS
on a Jetson Xavier, when taking into account all of its on-board components. However, the pipeline presented
here is heavily modular and, thus, the most critical components (C/PD) can independently run and update the 3D
map at a rate of 9.5 FPS on a Jetson Xavier.

VisualLanding Site
Detection Using Crowd Detection Aerial Person

Semantic (CD) Detection (APD)
Segmentation (VLSD)

Potential Landing
Site Detection
(PLSD)

Semantic Map
Region Projector
(SRP)

Semantic Map Simple Path Planner
Manager (SMM) {SPP)

Fig. 5. Overview of the presented UAV safe landing pipeline example.

Fig. 6. Countryside environments used in simulations.
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UAV’s trajectory Trajectories provided from the SPP
-
(b)
-
(d)
-
®) (h)
) (k) 0)

Fig. 7. Each row represents a separate UAV mission. The first column depicts the UAV’s trajectories, while the rest depict the
trajectories provided from the SPP ordered based on the time they were requested. In each Subfigure, the UAV’s starting
locations are marked with the letter "S", the UAV’s target locations are marked with the letter "E", the detected people are

marked with the letter "H", the pre-computed landing sites from Stage 1 are colored in light-green, areas surrounded by
water are highlighted as light-blue and the detected no-fly zones (humans or borders) are colored in dark-blue.
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5 CONCLUSIONS

During the last decade, adoption of UAVs with autonomous functionalities has been steadily increasing. This is
due to their numerous applications in transport, surveillance, mapping, manufacturing, healthcare, agriculture,
infrastructure inspection, media production, etc. Successful deployment of such autonomous systems involves
tackling a number of challenging tasks, while concurrently assuring human safety. A subset of these tasks,
including UAV obstacle avoidance, localization, mapping, landing site detection, target detection/tracking, etc., can
be addressed successfully by using computer vision/machine learning methodologies, provided that they respect
constraints and limitations inherent to embedded systems, such as real-time operation, limited available computing
resources, need for robustness in real-life scenarios, etc. The aim of this overview was to provide a coherent
coverage of these methods under the unifying premise of UAV flight/landing safety assurance. Additionally, an
example computer vision-based autonomous UAV safe landing algorithmic pipeline was presented and evaluated
in simulation, using actual embedded Al compute hardware. Autonomous flight and landing safety is maximized
by on-line extraction of rich scene semantics. Results indicate successful, real-time operation with automatic
conformance to safety regulations.

, Vol. 1, No. 1, Article . Publication date: .



« Kakaletsis et al.

REFERENCES

[1] 2016. The Air Navigation Order. (2016). http://www.legislation.gov.uk/uksi/2016/765/made

[2] 2016. ANACOM - Regulamento n. 1093/2016, de 14 de dezembro. (2016). https://www.anacom.pt/render.jsp?contentld=1401209

[3] 2017. ArcMap: How Slope works. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-slope-works.htm.
Accessed: 14/12/2017.

[4] 2020. Drones-Trabajos areos-Compaas o empresas-AESA-Agencia Estatal deSeguridad Area - Ministerio de Fomento. (2020). http:
/Iwww.seguridadaerea.gob.es/langcastellano/ciasempresas/trabajos/rpas/default.aspx

[5] Apr. 2017. Verordnung zur Regelung des Betriebs von unbemannten Fluggerten. 17 (Apr. 2017), 6831. http://www.bgbl.de/xaver/bgbl/
start.xav?startbk=BundesanzeigerBGBl&jumpTo=bgbl11750683.pdf

[6] Mar. 2017. FFD, Fdration Franaise de Drone (FFD), Nouveau guide DGAC , Activits Particulires, v1.2 (10 Janvier 2017). (Mar. 2017).
/guide-dgac-activites-particulieres-v1-2/

[7] R. Acuna, D. Zhang, and V. Willert. 2018. Vision-based UAV landing on a moving platform in GPS denied environments using motion
prediction. In Proceedings of the Latin American Robotic Symposium, Brazilian Symposium on Robotics (SBR) and Workshop on Robotics in
Education (WRE).

[8] M. Agrawal, K. Konolige, and M. R. Blas. 2008. Censure: Center surround extremas for realtime feature detection and matching. In
Proceedings of European Conference on Computer Vision, (ECCV). Springer.

[9] W. G. Aguilar, V. P. Casaliglla, and J. L. Polit. 2017. Obstacle avoidance for low-cost UAVs. In Proceedings of the IEEE International
Conference on Semantic Computing (ICSC).

[10] T. Ahonen, A. Hadid, and M. Pietikainen. 2006. Face description with local binary patterns: Application to face recognition. IEEE
Transactions on Pattern Analysis & Machine Intelligence 12 (2006), 2037-2041.

[11] S. Ahrens, D. Levine, G. Andrews, and J. P. How. 2009. Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied
environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

[12] Y. Amit and D. Geman. 1999. A computational model for visual selection. Neural computation 11, 7 (1999), 1691-1715.

[13] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena. 2013. Contextually guided semantic labeling and search for three-dimensional
point clouds. The International Journal of Robotics Research 32, 1 (2013), 19-34.

[14] M. Aydin and E. Kugu. 2016. Finding smoothness area on the topographic maps for the unmanned aerial vehicle’s landing site estimation.
In Proceedings of the IEEE International Conference on Digital Information and Communication Technology and its Applications (DICTAP).

[15] M. Barekatain, M. Marti, H.F. Shih, S. Murray, K. Nakayama, Y. Matsuo, and H. Prendinger. 2017. Okutama-action: an aerial view
video dataset for concurrent human action detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW).

[16] F.Bernuy and J. Ruiz del Solar. 2015. Semantic mapping of large-scale outdoor scenes for autonomous off-road driving. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV) Workshops. IEEE.

[17] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. 2017. Unsupervised pixel-level domain adaptation with Generative
Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18] J. Byrne, M. Cosgrove, and R. Mehra. 2006. Stereo based obstacle detection for an unmanned air vehicle. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

[19] D.Cavaliere, V. Loia, A. Saggese, S. Senatore, and M. Vento. 2017. Semantically enhanced UAVs to increase the aerial scene understanding.
IEEE Transactions on Systems, Man, and Cybernetics: Systems 49, 3 (2017), 555-567.

[20] Y.-C.Chang, H.-T. Chen, ].-H. Chuang, and I.-C. Liao. 2018. Pedestrian Detection in Aerial Images Using Vanishing Point Transformation
and Deep Learning. In Proceedings of the IEEE International Conference on Image Processing (ICIP).

[21] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. 2018. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV).

[22] S.Chen, L. Han, X. Liu, Z. He, and X. Yang. 2020. Subspace distribution adaptation frameworks for domain adaptation. IEEE Transactions
on Neural Networks and Learning Systems 31, 12 (2020), 5204-5218.

[23] A.B. Curtis. 2008. Path planning for unmanned air and ground vehicles in urban environments. (2008).

[24] N. Dalal and B. Triggs. 2005. Histograms of oriented gradients for human detection. In Proceedings of the IEEE International Conference
on Computer Vision & Pattern Recognition (CVPR).

[25] R.de Nijs, S. Ramos, G. Roig, X. Boix, L. Van Gool, and K. Kithnlenz. 2012. On-line semantic perception using uncertainty. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[26] X. Deng and Q. Zeng. 2013. Research on laser-assisted odometry of indoor UAV with monocular vision. In Proceedings of the IEEE
International Conference on Cyber Technology in Automation, Control and Intelligent Systems.

[27] V.R Desaraju, N. Michael, M. Humenberger, R. Brockers, S. Weiss, and L. H. Matthies. 2014. Vision-based Landing Site Evaluation and
Trajectory Generation Toward Rooftop Landing. In Robotics: Science and Systems.

[28] DJI. 2021. Protecting The Skies In The Drone Era, Elevating Safety. (2021).

, Vol. 1, No. 1, Article . Publication date: .


http://www.legislation.gov.uk/uksi/2016/765/made
https://www.anacom.pt/render.jsp?contentId=1401209
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-slope-works.htm
http://www.seguridadaerea.gob.es/lang castellano/cias empresas/trabajos/rpas/default.aspx
http://www.seguridadaerea.gob.es/lang castellano/cias empresas/trabajos/rpas/default.aspx
http://www.bgbl.de/xaver/bgbl/start.xav? startbk=Bundesanzeiger BGBl&jumpTo=bgbl117s0683.pdf
http://www.bgbl.de/xaver/bgbl/start.xav? startbk=Bundesanzeiger BGBl&jumpTo=bgbl117s0683.pdf
/guide-dgac-activites-particulieres-v1-2/

[29]
[30]
[31]
(32]
(33]
[34]

[35]

(36]
[37]

(38]
(39]

[40]
[41]
[42]

[43]
[44]

[45]
[46]

[47]
(48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]

[58]

Computer Vision for Autonomous UAV Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example

P. Dollar, R. Appel, S. Belongie, and P. Perona. 2014. Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence 36, 8 (2014), 1532-1545.

P. Dollar, R. Appel, and W. Kienzle. 2012. Crosstalk cascades for frame-rate pedestrian detection. In Proceedings of European Conference
on Computer Vision (ECCV). Springer.

P. Dollar, S. Belongie, and P. Perona. 2010. The fastest pedestrian detector in the west. (2010).

P. Dollar, Z. Tu, P. Perona, and S. Belongie. 2009. Integral channel features. (2009).

Y. Dong, C. Fu, and E. Kayacan. 2016. RRT-based 3D path planning for formation landing of quadrotor UAVs. In Proceedings of the IEEE
International Conference on Control, Automation, Robotics and Vision (ICARCV).

S. Dotenco, F. Gallwitz, and E. Angelopoulou. 2014. Autonomous approach and landing for a low-cost quadrotor using monocular
cameras. In Proceedings of the European Conference on Computer Vision (ECCV). Springer.

D. H Douglas and T. K. Peucker. 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its
caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10, 2 (1973), 112-122.

B. Douillard, D. Fox, F. Ramos, et al. 2008. Laser and Vision Based Outdoor Object Mapping.. In Robotics: Science and Systems, Vol. 8.
F. Duchon, A. Babinec, M. Kajan, P. Betio, M. Florek, T. Fico, and L. Juri$ica. 2014. Path planning with modified a star algorithm for a
mobile robot. Procedia Engineering 96 (2014), 59-69.

R.O. Duda and P.E. Hart. 1973. Pattern Classification and Scene Analysis. Wiley.

P.F. Felzenszwalb, D. A. McAllester, D. Ramanan, et al. 2008. A discriminatively trained, multiscale, deformable part model. In Proceeding
of the IEEE Conference on Computer Vision and Pattern Recognition CVPR.

S. Friedman, H. Pasula, and D. Fox. 2007. Voronoi Random Fields: Extracting Topological Structure of Indoor Environments via Place
Labeling. In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI).

A.-]J. Gallego, J. Calvo-Zaragoza, and R. B. Fisher. 2020. Incremental unsupervised domain-adversarial training of neural networks.
IEEE Transactions on Neural Networks and Learning Systems (2020).

M. Garg, A. Kumar, and PB. Sujit. 2015. Terrain-based landing site selection and path planning for fixed-wing UAVs. In Proceedings of
the IEEE International Conference on Unmanned Aircraft Systems (ICUAS).

R. Girshick. 2015. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

R. Girshick, J. Donahue, T. Darrell, and J. Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

A.S. Glassner. 1989. An introduction to ray tracing. Elsevier.

Z. Gosiewski, J. Ciesluk, and L. Ambroziak. 2011. Vision-based obstacle avoidance for unmanned aerial vehicles. In Proceedings of the
IEEE International Congress on Image and Signal Processing, (ICISP).

D. Guan, X. Luo, Y. Cao, J. Yang, Y. Cao, G. Vosselman, and M. Ying Yang. 2019. Unsupervised domain adaptation for multispectral
pedestrian detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

X. Guo, D. Dean, S. Denman, C. Fookes, and S. Sridharan. 2011. Evaluating automatic road detection across a large aerial imagery
collection. In Proceedings of the IEEE International Conference on Digital Image Computing: Techniques and Applications, (DICTA).

X. Guo, S. Denman, C. Fookes, L. Mejias, and S. Sridharan. 2014. Automatic UAV forced landing site detection using machine learning.
In Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA).

X. Guo, S. Denman, C. Fookes, and S. Sridharan. 2016. A robust UAV landing site detection system using mid-level discriminative
patches. In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR).

H. He and B. Upcroft. 2013. Nonparametric semantic segmentation for 3D street scenes. In Proceedings of the IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS).

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, (CVPR).

L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. 2011. Autonomous obstacle avoidance and maneuvering on a
vision-guided MAV using on-board processing. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
T. Hinzmann, T. Stastny, C. Cadena, R. Siegwart, and I. Gilitschenski. 2018. Free LSD: Prior-free visual landing site detection for
autonomous planes. IEEE Robotics and Automation Letters 3, 3 (2018), 2545-2552.

H. Hirschmiiller, P. R. Innocent, and J. Garibaldi. 2002. Real-time correlation-based stereo vision with reduced border errors. International
Journal of Computer Vision 47, 1-3 (2002), 229-246.

A.Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. 2013. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots 34, 3 (2013), 189-206.

J. Hosang, M. Omran, R. Benenson, and B. Schiele. 2015. Taking a deeper look at pedestrians. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

, Vol. 1, No. 1, Article . Publication date: .



« Kakaletsis et al.

[59] S.Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts. 2005. Combined optic-flow and stereo-based navigation of urban canyons
for a UAV. In Proceedings of the IEEE/RS] International Conference on Intelligent Robots and Systems.

[60] J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka. 2007. Road network extraction and intersection detection from aerial images by
tracking road footprints. IEEE Transactions on Geoscience and Remote Sensing 45, 12 (2007), 4144-4157.

[61] A.E.Johnson, A. R. Klumpp, J. B. Collier, and A. A. Wolf. 2002. LiDAR-based hazard avoidance for safe landing on Mars. Journal of
Guidance, Control, and Dynamics 25, 6 (2002), 1091-1099.

[62] E.Kakaletsis and N. Nikolaidis. 2019. Potential UAV landing sites detection through Digital Elevation Models analysis. In Proceedings of
the European Signal Processing Conference (EUSIPCO), Satellite Workshop: Signal Processing, Computer Vision and Deep Learning for
Autonomous Systems. IEEE.

[63] E.Kakaletsis, M. Tzelepi, P. I. Kaplanoglou, C. Symeonidis, N. Nikolaidis, A. Tefas, and I. Pitas. 2019. Semantic map annotation through
UAV video analysis using deep learning models in ROS. In Proceedings of the International Conference on Multimedia Modeling (MMM).
Springer.

[64] R.Kala. 2013. Rapidly exploring random graphs: motion planning of multiple mobile robots. Advanced Robotics 27, 14 (2013), 1113-1122.

[65] Q. Kang, S. Yao, M. C. Zhou, K. Zhang, and A. Abusorrah. 2020. Effective Visual Domain Adaptation via Generative Adversarial
Distribution Matching. IEEE Transactions on Neural Networks and Learning Systems (2020).

[66] 1. Karakostas, I. Mademlis, N. Nikolaidis, and I. Pitas. 2020. Shot type constraints in UAV cinematography for autonomous target
tracking. Information Sciences 506 (2020), 273-294.

[67] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks
(ICNN).

[68] A.Krizhevsky, L. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep Convolutional Neural Networks. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS).

[69] W. Lan, J. Dang, Y. Wang, and S. Wang. 2018. Pedestrian Detection Based on YOLO network model. In Proceedings of the IEEE
International Conference on Mechatronics and Automation (ICMA).

[70] S. Lazebnik, C. Schmid, and J. Ponce. 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[71] B.Le Saux and M. Sanfourche. 2013. Rapid semantic mapping: Learn environment classifiers on the fly. In Proceedings of the IEEE/RST
International Conference on Intelligent Robots and Systems.

[72] J.-O. Lee, K.-H. Lee, S.-H. Park, S.-G. Im, and J. Park. 2011. Obstacle avoidance for small UAVs using monocular vision. Aircraft
Engineering and Aerospace Technology 83, 6 (2011), 397-406.

[73] T.Liu and T. Stathaki. 2017. Enhanced pedestrian detection using deep learning based semantic image segmentation. In Proceedings of
the IEEE International Conference on Digital Signal Processing (DSP).

[74] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. 2016. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision (ECCV). Springer.

[75] J. Long, E. Shelhamer, and T. Darrell. 2015. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[76] David G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 2 (2004),
91-110.

[77] B.D. Lucas and T. Kanade. 1981. An iterative image registration technique with an application to stereo vision. In Proceedings of the
International Joint Conference on Artificial Intelligence, (IJCAI).

[78] J.-Q. Ma. 2009. Content-based image retrieval with HSV color space and texture features. In Proceedings of the IEEE International
Conference on Web Information Systems and Mining.

[79] I Mademlis, V. Mygdalis, N. Nikolaidis, M. Montagnuolo, F. Negro, A. Messina, and L. Pitas. 2019. High-level multiple-UAV cinematog-
raphy tools for covering outdoor events. IEEE Transactions on Broadcasting 65, 3 (2019), 627-635.

[80] I Mademlis, V. Mygdalis, N. Nikolaidis, and I. Pitas. 2018. Challenges in autonomous UAV cinematography: an overview. In Proceedings
of the IEEE International Conference on Multimedia and Expo (ICME).

[81] I. Mademlis, N. Nikolaidis, A. Tefas, I Pitas, T. Wagner, and A. Messina. 2018. Autonomous unmanned aerial vehicles filming in
dynamic unstructured outdoor environments. IEEE Signal Processing Magazine 36 (2018), 147-153. Issue 1.

[82] I. Mademlis, N. Nikolaidis, A. Tefas, I. Pitas, T. Wagner, and A. Messina. 2019. Autonomous UAV cinematography: a tutorial and a
formalized shot type taxonomy. Comput. Surveys 52, 5 (2019), 105.

[83] L Mademlis, P. Nousi, C. Le Barz, T. Gongalves, and L. Pitas. 2019. Communications for autonomous Unmanned Aerial Vehicle fleets
in outdoor cinematography applications. In Proceedings of the EURASIP European Signal Processing Conference (EUSIPCO) Satellite
Workshop: Signal Processing, Computer Vision and Deep Learning for Autonomous Systems.

[84] 1. Mademlis, A. Torres-Gonzalez, J. Capitan, R. Cunha, B. Guerreiro, A. Messina, F. Negro, C. Le Barz, T. Gongalves, A. Tefas, and 1.
Pitas. 2019. A multiple-UAV software architecture for autonomous media production. In Proceedings of the EURASIP European Signal
Processing Conference (EUSIPCO) Satellite Workshop: Signal Processing, Computer Vision and Deep Learning for Autonomous Systems.

, Vol. 1, No. 1, Article . Publication date: .



(85]
(86]
(87]
(88]

(89]
[90]

[91]

[92]
[93]

[94]
[95]

[96]
[97]

(98]

[99]
[100]
[101]
[102]
[103]
[104]

[105]

[106]
[107]
[108]
[109]
[110]

[111]

Computer Vision for Autonomous UAV Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example

D. Magree, J. G. Mooney, and E. N. Johnson. 2013. Monocular visual mapping for obstacle avoidance on UAVs. In Proceedings of the
IEEE International Conference on Unmanned Aircraft Systems (ICUAS).

A. Marcu, D. Costea, V. Licaret, M. Pirvu, E. Slusanschi, and M. Leordeanu. 2018. SafeUAV: Learning to estimate depth and safe landing
areas for UAVs from synthetic data. In Proceedings of the European Conference on Computer Vision (ECCV).

D. Maturana, S. Arora, and S. Scherer. 2017. Looking forward: A semantic mapping system for scouting with micro-aerial vehicles. In
Proceedings of the IEEE/RS] International Conference on Intelligent Robots and Systems (IROS).

D. Maturana and S. Scherer. 2015. 3D convolutional neural networks for landing zone detection from LiDAR. In Proceedings of IEEE
International Conference on Robotics and Automation (ICRA).

D. F. Maune. 2007. Digital Elevation Model technologies and applications: the DEM users manual. ASPRS Publications.

A. Mcfadyen, L. Mejias, P. Corke, and C. Pradalier. 2013. Aircraft collision avoidance using spherical visual predictive control and
single point features. In Proceedings of the IEEE/RST International Conference on Intelligent Robots and Systems.

L. Mejias and D. Fitzgerald. 2013. A multi-layered approach for site detection in UAS emergency landing scenarios using geometry-based
image segmentation. In Proceedings of the IEEE International Conference on Unmanned Aircraft Systems (ICUAS).

C. L. Miller and R. A. Laflamme. 1958. The Digital Terrain Model-: Theory & Application. MIT Photogrammetry Laboratory.

N. Mitsou, R. de Nijs, D. Lenz, J. Frimberger, D. Wollherr, K. Kithnlenz, and C. Tzafestas. 2012. Online semantic mapping of urban
environments. In Proceedings of the International Conference on Spatial Cognition (ICSC). Springer.

M. Mittal, R. Mohan, W. Burgard, and A. Valada. 2019. Vision-based autonomous UAV navigation and landing for urban search and
rescue. arXiv preprint arXiv:1906.01304 (2019).

R. Mur-Artal, J. M. M. Montiel, and J.D. Tardos. 2015. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions
on Robotics 31, 5 (2015), 1147-1163.

F. Nex and F. Remondino. 2014. UAV for 3D mapping applications: a review. Applied Geomatics 6, 1 (2014), 1-15.

P. Nousi, I. Mademlis, I. Karakostas, A. Tefas, and L. Pitas. 2019. Embedded UAV real-time visual object detection and tracking. In
Proceedings of the IEEE International Conference on Real-time Computing and Robotics (RCAR).

A. Nurhadiyatna and S. Lon¢ari¢. 2017. Semantic image segmentation for pedestrian detection. In Proceedings of the IEEE International
Symposium on Image and Signal Processing and Analysis.

H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. 2017. Voxblox: Incremental 3D euclidean signed distance fields for on-board
MAV planning. In Proceedings of IEEE/RSF International Conference on Intelligent Robots and Systems (IROS).

M. A. Olivares-Mendez, L. Mejias, P. Campoy, and I. Mellado-Bataller. 2012. Quadcopter see and avoid using a fuzzy controller. In
Uncertainty Modeling in Knowledge Engineering and Decision Making. World Scientific, 1239-1244.

F. Pan, L. Shin, F. Rameau, S. Lee, and I. S. Kweon. 2020. Unsupervised intra-domain adaptation for semantic segmentation through
self-supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

D. Pangercic, B. Pitzer, M. Tenorth, and M. Beetz. 2012. Semantic object maps for robotic housework-representation, acquisition and
use. In Proceedings of the IEEE/RST International Conference on Intelligent Robots and Systems (IROS).

C. Papageorgiou and T. Poggio. 2000. A trainable system for object detection. International Journal of Computer Vision 38, 1 (2000),
15-33.

C. Papaioannidis, I. Mademlis, and L. Pitas. 2021. Autonomous UAV safety by visual human crowd detection using multi-task Deep
Neural Networks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

G. Papandreou, T. Zhu, L.-C. Chen, S. Gidaris, ]J. Tompson, and K. Murphy. 2018. Personlab: Person pose estimation and instance
segmentation with a bottom-up, part-based, geometric embedding model. In Proceedings of the European Conference on Computer Vision
(ECCV).

F. Patrona, I. Mademlis, A. Tefas, and L Pitas. 2019. Computational UAV cinematography for intelligent shooting based on semantic
visual analysis. In Proceedings of the IEEE International Conference on Image Processing (ICIP).

R. Paul, R. Triebel, D. Rus, and P. Newman. 2012. Semantic categorization of outdoor scenes with uncertainty estimates using multi-class
Gaussian process classification. In Proceedings of the IEEE/RST International Conference on Intelligent Robots and Systems.

R. Polastro, F. Corréa, F. Cozman, and J. Okamoto. 2010. Semantic mapping with a probabilistic description logic. In Proceeding of the
Brazilian Symposium on Artificial Intelligence. Springer.

G. Priestnall, J. Jaafar, and A. Duncan. 2000. Extracting urban features from LiDAR digital surface models. Computers, Environment and
Urban Systems 24, 2 (2000), 65-78.

A. Pronobis and P. Jensfelt. 2012. Large-scale semantic mapping and reasoning with heterogeneous modalities. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng. 2009. ROS: an open-source Robot
Operating System. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open Source
Robotics.

[112] Joseph R. and Ali F. 2018. YOLOV3: an incremental improvement. ArXiv abs/1804.02767 (2018).

, Vol. 1, No. 1, Article . Publication date: .



« Kakaletsis et al.

[113] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You Only Look Once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[114] E.Remolina and B. Kuipers. 2004. Towards a general theory of topological maps. Artificial Intelligence 152, 1 (2004), 47-104.

[115] S. Ren, K. He, R. Girshick, and J. Sun. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Advances in Neural Information Processing Systems (NIPS).

[116] V.Roberge, M. Tarbouchi, and G. Labonté. 2012. Comparison of parallel genetic algorithm and particle swarm optimization for real-time
UAV path planning. IEEE Transactions on Industrial Informatics 9, 1 (2012), 132-141.

[117] Scott D. Roth. 1982. Ray casting for modeling solids. Computer graphics and image processing 18, 2 (1982), 109-144.

[118] Z. Saishang, C. Yifu, Z. Min, X. Zhong, and L. Can. 2015. MSURF: A new image matching algorithm which combines homography and
SUREF algorithm. In Proceedings of the IEEE International Conference on Geoinformatics.

[119] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. 2018. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[120] A.Satpathy, X. Jiang, and H.-L. Eng. 2014. LBP-based edge-texture features for object recognition. IEEE Transactions on Image Processing
23,5 (2014), 1953-1964.

[121] S. Scherer, L. Chamberlain, and S. Singh. 2012. Autonomous landing at unprepared sites by a full-scale helicopter. Robotics and
Autonomous Systems 60, 12 (2012), 1545-1562.

[122] S. Sengupta, E. Greveson, A. Shahrokni, and P. HS. Torr. 2013. Urban 3D semantic modelling using stereo vision. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).

[123] S. Sengupta, P. Sturgess, L. Ladicky, and P. HS. Torr. 2012. Automatic dense visual semantic mapping from street-level imagery. In
Proceedings of the IEEE/RST International Conference on Intelligent Robots and Systems.

[124] P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre. 2016. Landing of a quadrotor on a moving target using dynamic
image-based visual servo control. IEEE Transactions on Robotics 32, 6 (2016), 1524-1535.

[125] S. Shah, D. Dey, C. Lovett, A. Kapoor, and W. Burgard. 2017. AirSim: High-fidelity visual and physical simulation for autonomous
vehicles. In Proceedings of the Field and Service Robotics Conference.

[126] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fugaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani. 2019.
Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 7 (2019), 48572-48634.

[127] L. Shams and J. Spoelstra. 1996. Learning Gabor-based features for face detection. In Proceedings of the World Congress in Neural
Networks. International Neural Network Society.

[128] J. Shotton, J. Winn, C. Rother, and A. Criminisi. 2006. Textonboost: Joint appearance, shape and context modeling for multi-class object
recognition and segmentation. In Proceedings of the European Conference on Computer Vision (ECCV). Springer.

[129] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. 2017. Learning from simulated and unsupervised images
through adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[130] K.Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014).

[131] G. Singh and J. KoSecka. 2012. Acquiring semantics induced topology in urban environments. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

[132] Skydio. [n.d.]. Skydio R1. https://robots.ieee.org/robots/skydior1/.

[133] M. V. Srinivasan, S. Thurrowgood, and D. Soccol. 2006. An optical system for guidance of terrain following in UAVs. In Proceedings of
the IEEE International Conference on Video and Signal Based Surveillance.

[134] C. Stocker, R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen. 2017. Review of the Current State of UAV Regulations. Remote Sensing 9
(2017), 459.

[135] C. Symeonidis, I. Mademlis, N. Nikolaidis, and I. Pitas. 2019. Improving neural Non-Maximum Suppression for object detection by
exploiting interest-point detectors. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[136] X.Tan and W. Triggs. 2010. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions
on Image Processing, (TIP) 19, 6 (2010), 1635-1650.

[137] Y.-J. Tsai, C.-S. Lee, C.-L. Lin, and C.-H. Huang. 2015. Development of flight path planning for multirotor aerial vehicles. Aerospace 2, 2
(2015), 171-188.

[138] M. Tzelepi and A. Tefas. 2017. Human crowd detection for drone flight safety using Convolutional Neural Networks. In Proceedings of
the EURASIP European Signal Processing Conference (EUSIPCO). IEEE.

[139] M. Tzelepi and A. Tefas. 2019. Graph-embedded Convolutional Neural Networks in human crowd detection for drone flight safety.
IEEE Transactions on Emerging Topics in Computational Intelligence (2019).

[140] J. RR. Uijlings, K. EA. Van De Sande, T. Gevers, and A. WM. Smeulders. 2013. Selective search for object recognition. International
Journal of Computer Vision 104, 2 (2013), 154-171.

[141] R. Vogel, M. Achab, S. Clémencon, and C. Tillier. 2020. Weighted empirical risk minimization: Sample selection bias correction based
on importance sampling. arXiv preprint arXiv:2002.05145 (2020).

, Vol. 1, No. 1, Article . Publication date: .


https://robots.ieee.org/robots/skydior1/

[142]

[143]

[144]
[145]
[146]

[147]
[148]

[149]
[150]

Computer Vision for Autonomous UAV Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example

X. Wang, T. X. Han, and S. Yan. 2009. A HOG-LBP human detector with partial occlusion handling. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV).

Z. Wang, M. Yu, Y. Wei, R. Feris, J. Xiong, W.-M. Hwu, T. S. Huang, and H. Shi. 2020. Differential treatment for stuff and things: A
simple unsupervised domain adaptation method for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Y. Watanabe, P. Fabiani, and GL. Besnerais. 2010. Towards a UAV visual air-to-ground target tracking in an urban environment. In
Proceedings of the International Congress of the Aeronautical Sciences (ICAS).

Y. Watanabe, C. Lesire, A. Piquereau, P. Fabiani, M. Sanfourche, and G. Le Besnerais. 2010. The onera ressac unmanned autonomous
helicopter: Visual air-to-ground target tracking in an urban environment. In American Helicopter Society 66th Annual Forum (AHS
2010).

R. Weibel and M. Heller. 1993. Digital terrain modelling. Oxford University Press.

D. F. Wolf and G. S. Sukhatme. 2008. Semantic mapping using mobile robots. IEEE Transactions on Robotics 24, 2 (2008), 245-258.

W. Xian, M. Qinwei, M. Shaopeng, and W. Hongtao. 2011. A marker locating method based on gray centroid algorithm and its
application to displacement and strain measurement. In Proceedings of the IEEE International Conference on Intelligent Computation
Technology and Automation, (ICICTA).

P. Xu. [n.d.]. Information fusion for scene understanding. Ph.D. Dissertation. Université de Technologie de Compiégne.

S.Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. 2007. Graph embedding and extensions: A general framework for dimensionality
reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1 (2007), 40-51.

[151] J. Yang, W. An, S. Wang, X. Zhu, C. Yan, and J. Huang. 2020. Label-driven reconstruction for domain adaptation in semantic segmentation.

In Proceedings of the European Conference on Computer Vision (ECCV). Springer.

[152] J. Yang, H. Zou, Y. Zhou, and L. Xie. 2021. Robust adversarial discriminative domain adaptation for real-world cross-domain visual

[153]
[154]

[155]
[156]

[157]
[158]

[159]
[160]

[161]
[162]
[163]
[164]

[165]

[166]

recognition. Neurocomputing (2021).

L. Yang, J. Qi, J. Xiao, and X. Yong. 2014. A literature review of UAV 3D path planning. In Proceedings of the World Congress on Intelligent
Control and Automation (WCICA).

C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. 2018. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV).

F. Yu and V. Koltun. 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015).

C. Yuan, F. Recktenwald, and H. A. Mallot. 2009. Visual steering of UAV in unknown environments. In Proceedings of the IEEE/RST
International Conference on Intelligent Robots and Systems (IROS).

Y. Yuan, X. Chen, and J. Wang. 2019. Object-Contextual Representations for Semantic Segmentation. arXiv preprint arXiv:1909.11065
(2019).

H. Zender, O M. Mozos, P. Jensfelt, G-JM Kruijff, and W. Burgard. 2008. Conceptual spatial representations for indoor mobile robots.
Robotics and Autonomous Systems 56, 6 (2008), 493-502.

L. Zhang. 2005. Automatic Digital Surface Model (DSM) Generation from Linear Array Images. Institute of Geodesy and Photogrammetry.
L. Zhang, L. Lin, X. Liang, and K. He. 2016. Is faster R-CNN doing well for pedestrian detection?. In Proceedings of the European
Conference on Computer Vision (ECCV). Springer.

S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele. 2016. How far are we from solving pedestrian detection?. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Y. Zhang and B. D. Davison. 2020. Domain adaptation for object recognition using subspace sampling demons. Multimedia Tools and
Applications (2020), 1-20.

H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. 2018. ICNet for real-time semantic segmentation on high-resolution images. In Proceedings of
the European Conference on Computer Vision (ECCV).

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. 2017. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

S. Zhao, X. Yue, S. Zhang, B. Li, H. Zhao, B. Wu, R. Krishna, J. E. Gonzalez, A. L. Sangiovanni-Vincentelli, S. A. Seshia, et al. 2020. A
Review of Single-Source Deep Unsupervised Visual Domain Adaptation. IEEE Transactions on Neural Networks and Learning Systems
(2020).

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. 2017. Scene Parsing through ADE20K Dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

, Vol. 1, No. 1, Article . Publication date: .



	Abstract
	1 Introduction
	2 Current UAV Flight Regulations
	3 UAV Flight Safety Technologies
	3.1 State-of-the-art in Commercial UAVs
	3.2 Semantic Image Segmentation
	3.3 Vision-based Outdoor Mapping for Landing Site Detection
	3.4 Semantic Mapping
	3.5 Person Detection
	3.6 Vision-based Obstacle Avoidance for Safe UAV Navigation
	3.7 Path Planners for Safe UAV Landing
	3.8 Transferability and Adaptability Issues

	4 Computer Vision-based Unified UAV Safe Landing Pipeline
	4.1 Potential Landing Site Detection (PLSD)
	4.2 Visual Landing Site Detection Using Semantic Segmentation (VLSD)
	4.3 Crowd Detector (CD)
	4.4 Person Detector (PD)
	4.5 Semantic Map Region Projector (SRP)
	4.6 Semantic Map Manager (SMM)
	4.7 Simple Path Planner (SPP)
	4.8 The overall synthesis
	4.9 Pipeline Performance Evaluation

	5 Conclusions
	References

