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Abstract: 
The morbidity and mortality throughout the world is increasing day by day due to cancer. Several molecular targets 
have been identified and being targeted for treatment of cancer cells. System xc

-, an amino acid antiporter, is one such 
potential target. With the uptake of one molecule of cystine and release of one molecule glutamate, over expressed 
system xc

-manipulates the redox status within cancer cells and protects them. Simultaneously, released glutamate helps 
in growth and metastasis of cancer cells. Few researches have synthesized and screened structurally diverse molecules 
against system xc

- antiporter. Amongst these, few molecules like erastin analogues, amino acid analogues, iso-oxazole 
analogues, hydantoin analogues and sulfasalazine analogues exhibited potent inhibitory activity. It is possible to 
identify desirable molecular properties required for system xc

- inhibition using information from above mentioned 
molecules. In context, we developed different predictive models using above mentioned analogues using SAS software 
using regression and decision tree analysis mainly. The score ranking overlay plots showed moderate to good fit of 
data for the training and validation data sets. These predictive models may further be used for the design and 
development of potent system xc

- inhibitors.  
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INTRODUCTION: 
System xc

- (Sxc
-) antiporter is an amino acid transporter 

localised on several cell types of the human body [1]. 
The basic function of Sxc

- (as observed in several in 
vitro experiments) is to release glutamate from the 
cells with uptake of cystine simultaneously in 
equimolar concentration [2]. By doing so, it 
contributes in preserving redox status of the cell 
through the production of glutathione (GSH) [3]. 
Moreover, in brain, it participates in maintaining 
neural plasticity through release of an excitatory 
neurotransmitter glutamate [4]. Structurally, Sxc

- 

consists of two polypeptide chains, the light chain 
called xCT and the heavy chain called 4F2hc. The key 
role of Sxc

- is performed by the light chain xCT while 
heavy chain helps in trafficking of light chain [5]. 
However, it was observed in one of the in vitro 
experiments that the activity of xCT is lost if heavy 
chain is removed [6]. Since the redox status of cancer 
cells is manipulated by producing GSH in abundant 
quantity to protect the cancer cell, the involvement of 
Sxc

- in such phenomenon can be outlined in cancer 
pathophysiology. It is also evident through several in 
vitro experiments that, Sxc

- is over- expressed in many 
cancer cell lines including glial [7], head and neck [8], 
lung [9], breast [10], gastrointestinal [11], pancreatic 
[12], ovarian [13] and colon [11] cancers. Moreover, 
Sxc- is also being explored for its role in CNS 
disorders like addiction, depression, epilepsy, 
schizophrenia, Parkinson’s disease etc. [1]. Overall, 
Sxc

- is a promising target for the treatment of several 
ailments. 
Pharmacological inhibition of Sxc

- may result in 
disturbed redox status of cancer cells with increased 
reactive oxygen species (ROS) (produced through 
metabolism) inside the cell causing cell death [2]. In 
glioblastoma, the overexpressed Sxc- may release 
elevated glutamate causing excitotoxicity followed by 
the death of neurons [7]. From the studies it was 
observed that, two FDA approved drugs sulfasalazine 
(SSZ) and sorafenib were potent inhibitors of Sxc

 . 
Additionally, erastin also exhibited potent activity 
against Sxc

- [14]. However, the enzymatic breakdown 
of SSZ in stomach, safety issues associated with 
sorafenib and unavailability of in vivo data for erastin 
have created hurdles for these potent inhibitors to 
move into higher phases of drug development. Indeed, 
few researches have synthesized analogues of erastin 
[14] and SSZ [15] and evaluated them against Sxc

- 
which showed equivalent or superior potency. The 
metabolic liability in SSZ, i. e., the diazo group, was 
mitigated by the relatively stable alkyne group. In 
addition, suitable alternative fragments for the distal 
sulfapyridine end were discovered to reduce the 
toxicity of SSZ [15]. On the similar lines, extensive 
structure-activity relationship (SAR) of erastin led to 
the discovery of very potent Sxc

- inhibitors [14]. 
Erastin and its analogues, representing altogether a 
different chemotype (quinazolin-4-one), are more 
drug-like than SSZ. These analogues are likely to 
penetrate blood-brain barrier (BBB) unlike SSZ. 

Overall, erastin series looks more promising over SSZ 
series as Sxc

- inhibitors.  
Several other groups synthesized and evaluated 
isoxazole (ISO) [16-18], hydantoin [19] and amino 
acid [20] analogues for Sxc

- inhibition and reported 
promising inhibitory activities for these molecules. The 
initial work on ISO analogues was based on amino 
methylisoxazole propionic acid (AMPA) and amino-3-
carboxy-5-methylisoxazole propionic acid (ACPA). 
These molecules were competitive inhibitors of Sxc

- 
[16]. The homology model of Sxc

- and the 
computational analysis of the binding mode of 
previously reported isoxazole hydrazide inhibitors was 
elucidated in a subsequent paper [17]. In a related 
paper, Newell, et al. reported diaryl isoxazoles as 
noncompetitive inhibitors of Sxc

- [18]. This was an 
extension of the previous work based on ACPA 
analogues. The lead molecules were the most potent 
inhibitors of Sxc

- discovered so far.  
In an attempt to discover inhibitors for vesicular 
glutamate transporter (VGLUT), Ahmed, et al. tested 
hydantoin analogues for VGLUT and obligate Sxc

- 
inhibition. Majority of the inhibitors were potent 
VGLUT inhibitors whereas only few compounds 
exhibited Sxc

-inhibition slightly over 50%. A similar 
study, Etoga et al., reported confromationally 
constrained amino acid analogues bearing distal 
sulfonic acid reduced glutamate uptake at Sxc

- by 70-
75% with no effect on glutamate uptake at VGLUT. 
These structurally diverse series of Sxc

- inhibitors can 
greatly aid the design and development of more potent 
and selective analogues with the help of conventional 
medicinal and computational chemistry approaches 
such as quantitative structure-activity relationship 
(QSAR) and others.  
The QSAR is a tool to predict the desirable molecular 
properties of molecules required to exhibit biological 
response. Different variables are used in QSAR for the 
prediction of biological activity for the designed 
molecules. This potentially helps in rationalizing the 
synthesis of new molecules. Working on the similar 
lines, we began this study with the aim of 
understanding the structural features and molecular 
properties required for Sxc

- inhibition. Such insights are 
of potential benefit for the design and development of 
newer agents devoid of the problems associated with 
the earlier molecules. We hereby present our efforts in 
this direction to develop a robust QSAR model using 
structurally diverse group of structurally diverse Sxc

- 

inhibitors.  
 
MATERIALS AND METHODS: 
Data set selection 
The data set used in the present study was prepared 
from the published literature on Sxc

- inhibitors. All the 
inhibitors belonging to five series - SSZ analogues 
[14], erastin derivatives [15], isooxazole analogues 
[16-18], hydantoin derivatives [19] and amino acid 
analogues [20] were compiled (Tables 1-5) for the 
QSAR study. The inhibitory activities of all included 
compounds were measured in terms of their ability to 
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inhibit cystine/glutamate uptake at Sxc
-. In case of 

erastin derivatives (Table 1) and SSZ analogues (Table 
5), 50% of inhibitory concentrations (IC50) of 
cystine/glutamate uptake at Sxc

- in the presence of 
respective inhibitors have been reported. While the 
inhibitory activity of isooxazole analogues (Table 4), 
hydantoin derivatives (Table 3) and amino acid 
analogues (Table 2) were reported as % inhibition of 
uptake of cystine/glutamate at Sxc

- considering 100% 
uptake in untreated controls. The respective biological 
activities were transformed into its appropriate form 
where higher value indicate more activity, viz., pIC50) 
for SSZ and erastin inhibitors and logit transforms for 
isoxazole, hydantoin and amino acid analogues for 
QSAR study. Full data set includes total 92 Sxc

- 
inhibitors belonging to five chemotypes. A separate 
model was developed for each series containing 
analogous structures.  
Ligand preparation 
The molecular structures of the data set molecules 
(Tables 1-5) were drawn using ChemBioOffice suite 
Ultra v14.0 software (CambridgeSoft Corp., UK). 
Ligand preparation was performed by Schrödinger 
Release 2016-1: LigPrep [21] to assign appropriate 
ionization states, ring conformations, and 
stereoisomers, wherever appropriate, for all inhibitors. 
This was followed by the energy minimization. This 
set of prepared ligands (exported as .sdf file) was used 
for further calculation of molecular descriptors. 
Calculation of descriptors 
 A total of 5253 molecular descriptors belonging to 
various blocks – constitutional, ring, topological, 
connectivity, information, 2D matrix-based, and many 
others – were calculated using Dragon 7.0 software 
[22]. Understanding the calculation and the 
interpretation of these descriptors can be challenging. 
An in-depth reference for understanding the descriptors 
is provided for the reader [23]. The descriptor list for 
each chemical class (Tables 1-5) along with 
appropriately transformed activity values (pIC50, logit, 
etc.) was exported as .xlsx files.  
Model development 
 SAS® Enterprise Miner™ 13.2 was used for 
developing various predictive models – regression and 
decision trees, among others [24]. The .xlsx file 
(containing transformed activity values and 
descriptors) for each chemical class was used as a 
separate data source in SAS® Enterprise Miner™ 13.2. 
All the model development activities were carried out 
on each of these data sources separately. Prior to model 
development, the data sources were examined carefully 
for any inconsistency with the help of ‘StatExplore’ 
node. Descriptors with missing or incomplete values 
were removed, wherever encountered. This was 
necessary since the data errors have significant 
implication on the model development. Variables (here 
descriptors) with missing or incomplete values can 
compromise the predictive power of the developed 
model.  

Various predictive modelling methods were tried for 
each of the data sources. Since the target (here activity) 
is interval target (e. g., pIC50, logit, etc.), appropriate 
settings were used for the corresponding nodes in 
SAS® Enterprise Miner™ 13.2. Further details can be 
found in the Results and Discussion section. The 
model development process involved mostly trial-and-
error with respect to node settings. Figure 1 depicts this 
process for erastin analogues. Similar diagrams for 
other classes are given in Supplementary Information 
section (Figures 1S-4S). The forward arrows indicate 
the process flow. Once the nodes are connected, the 
process is ‘Run’ generating the textual output along 

with several plots and associated statistics. Careful 
examination of the plots, statistics and output indicated 
the model quality – good/acceptable/poor. Further 
trial-and-error with node settings either improved or 
deteriorated the model quality. The good/acceptable 
model resulting from each node (decision tree and 
regression) were compared and the model descriptor 
relevance discussed to understand the factors 
governing activity trends. 
 
RESULTS AND DISCUSSION:  
The QSAR study utilized five chemical series 
exhibiting Sxc

- inhibition. The first series erastin 
analogues included 19 compounds. The most potent 
compound, ERA17 (Table 1), is structurally very 
similar to ERA (Table 1), yet two log units away in 
activity. The authors could systematically explore the 
SAR to arrive at >100-fold gain in potency [14]. 
Strategic placement of aromatic rings and a methyl 
group on the arylalkyl ether substructure in vicinity of 
the quinazolinone core yielded the desired gain in 
potency for Sxc

-. The dataset included pIC50 as interval 
target (activity) along with 5247 interval and 6 nominal 
inputs (variables). Since the number of observations 
(compounds) was 19, the initial investigations were 
carried out using all of them as (DATA Role = Train). 
This was followed by the dataset portioning into 
training and validation sets and further generational of 
validation statistic. This process was followed for the 
remaining series of molecules. 
The first model was based on ‘Regression’ node with 
Stepwise Linear Regression model. Appropriate 
settings were selected in the Properties panel in SAS® 
Enterprise Miner™ 13.2.  The selected model at the 
end of Step 6 included ATS2m (Broto-Moreau 
autocorrelation of lag 2 (log function) weighted by 
mass, Type: 2D autocorrelation), ATS4m (Broto-
Moreau autocorrelation of lag 4 (log function) 
weighted by mass, Type: 2D autocorrelation), 
Eig12_EA_bo_ (eigenvalue No. 12 from edge 
adjacency matrix weighted by bond order,Type:  Edge 
adjacency indices), GATS4s (Geary autocorrelation of 
lag 4 weighted by I-state, Type: 2D autocorrelation), 
JGI5 (mean topological charge index of order 5, Type: 
2D autocorrelation), SsCl (Sum of sCl E-states, Type: 
Atom-type E-state indices) descriptors.  
The final stepwise linear regression model was – 
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Parameter          Estimate        Standard  Error     t Value     Pr > |t| 
      
Intercept           -27.3702       5.0624       -5.41       <.0001 
ATS2m             18.8791       2.4601        7.67       <.0001 
ATS4m             -13.2387       2.3454      -5.64       <.0001 
Eig12_EA_bo_ 2.2390       0.8210        2.73       0.0164 
GATS4s            -2.2594       0.6607       -3.42       0.0041 
JGI5                   331.3      43.3430        7.64       <.0001 
SsCl                   0.0882       0.0219        4.04       0.0012 
 
The model statistics was good with r2 = 0.969, F = 
72.86 and average squared error (ASE) = 0.0306. 
The Score Rankings Overlay: Activity plot (Figure 
2a) showed a good agreement between the mean 
predicted and mean target, indicating a good fit of 
the data. The Effects plot (Figure 2b) listed relative 
contributions of the input variables to the model; 
JGI5 exhibited the largest absolute coefficient 
compared to all other descriptors present in the 
model. 
As seen from the above model, the dominant 
contribution came from 2D autocorrelation 
descriptors. For chemical compounds, 
autocorrelation descriptors are calculated with 
respect to various molecular properties that can be 
represented at the atomic level, molecular surface 
level, etc. ATS2m and ATS4m are Moreau–Broto 
autocorrelation descriptors weighted by atomic 
masses. These descriptors define a set of 
autocorrelation terms defined by topological 
distances for each atom pair two and four atoms 
apart (ATS2 and ATS4, respectively) weighted by 
mass. In other words, all the atom pairs at two and 
four atoms apart along with the atomic masses of 
the constituent atoms contributed positively 
(ATS2m) and negatively (ATS4m) to the activity 
(pIC50). Increase in ATS2m and decrease in ATS4m 
is desirable for increasing pIC50. Erastin and ERA 1 
differ only in having ethyl versus isopropyl ether 
moieties and presence and absence of CH3 group on 
the linker joining quinazoline and piperazine 
groups, respectively (Table 1). This will definitely 
affect both the descriptors. ERA1 was at least two-
fold more potent than erastin (Table 1).  
The third descriptor Eig12_EA_bo_ belongs to 
Edge Adjacency Index category. These descriptors 
are based on a square and symmetric matrix, where 
the rows and column correspond to edges (bonds) 
of the molecular graph. Eig12_EA_bo_, weighted 
by bond order calculated by quantum chemical 
methods, contributed positively to pIC50. Next two 
descriptors - GATS4s and JGI5 were 2D 
autocorrelation descriptors which contributed 
negatively and positively, respectively to the 
activity. Topological charge indices potentially 
evaluate the charge transfer between pairs of atoms, 
thereby global charge transfer in a molecule. Given 
the fact that Sxc

- is an anion transporter, it is no 
surprise that the global charge transfer, represented 

by JGI5, is one of the most important descriptors 
contributing to the activity. The last descriptor SsCl 
is an atom-type E-state index which encodes 
topological and electronic information related to 
particular atom types; here it is Cl atom type. 
ERA14, lacking aromatic –Cl substituent, was 
completely inactive as Sxc

- inhibitor (Table 1).   
The regression model was followed by decision tree 
model using ‘Decision Tree’ node. The splitting 

rule – Interval Target Criterion: ProbF was used. 
This setting specifies the method of searching for 
and evaluating candidate splitting rules in the 
presence of an interval target. For constructing 
subtree, Assessment method was chosen with ASE 
as the assessment measure. These settings decide 
how to construct the sub-tree in terms of selection 
methods. The Assessment method chooses the 
smallest subtree with the best assessment value, i.e. 
ASE, in the present selection. The final tree is 
shown in Figure 3. The tree contained seven nodes 
and three splitting rules based on descriptors – R8m 
(R autocorrelation of lag 8 / weighted by atomic 
masses, Type: GETAWAY descriptors), 
SpMax6_Bh_m_ (largest eigenvalue No. 6 of 
Burden matrix weighted by mass, Type: Burden 
eigenvalues) and Eig07_AEA_dm_ (eigenvalue No. 
7 from augmented edge adjacency matrix weighted 
by dipole moment, Type: Edge adjacency indices). 
The splitting rules could clearly segregate the high-, 
moderate and less potent compounds (Figure 3).  
The data was fitted well by the model as seen from 
the Score Rankings Overlay: Activity plot (Figure 
5Sa, Supplementary Information section). The ASE 
for the decision tree model was found to be 0.089. 
The relative importance of the model descriptors 
was found to be R8m = 1.00, SpMax6_Bh_m_ = 
0.6498 and Eig07_AEA_dm_ = 0.2366. Leaf 
Statistics plot depicting the average target value for 
each node is shown in Figure 5Sb (Supplementary 
Information section). The first split was based on 
R8m, a GETAWAY (GEometry, Topology and 
Atomic Weights AssemblY) descriptor calculated 
from the leverage matrix obtained by the centered 
atomic coordinates. The R-GETAWAY is based on 
combination of the molecular influence matrix and 
the geometry matrix to give the influence/distance 
matrix. The observations with R8m <12.5 were 
separated from the observations (more active 
compounds) have value >=12.5. The second split is 
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based on SpMax6_Bh_m_, a BCUT descriptor. 
These descriptors are the eigenvalues of a modified 
connectivity matrix, based on the assumption that 
the lowest eigenvalues contain contributions from 
all the atoms and thus reflect topology of the 
molecule. The splitting value 3.425 correctly 
classified more potent compounds (higher target 
average) from the relatively less potent ones. 
Further spilt of this set of observations was based 
on Edge Adjacency Index, Eig07_AEA_dm_. The 
overall performance of the tree was good.  
Although the ‘Regression’ and ‘Decision Tree’ 

models were capable of pruning the descriptors 
from a larger set, another route to the model 
development via variable selection was attempted. 
The ‘Variable Selection’ node with default settings 

was used for this purpose (Figure 1). The end result 
was inclusion of 16 (out of 5270) variables as 
‘Input’ while the rest were rejected. The resulting 

‘regression model’ contained ATS2m, ATS4m, 
JGI5, SsCl and VE2_H2 descriptors with r2=0.95, 
F= 57.33 and ASE = 0.049. The Score Rankings 
Overlay: Activity plot exhibited good overlap 
between the Mean predicted and Mean Target, 
indicating good fit (data not shown). The decision 
tree had 5 nodes and the final model was based on 
two splitting rules involving variables – ATS4m 
and ATS2m. This model classified the dataset into 
high, moderate and low potencies (data not shown) 
fairly well. Overall, the performance of both the 
models with or without variable selection was good. 
Majority of the important variables belonged to 
type 2D autocorrelation.  
 For model validations and related statistical checks 
on the model quality, the dataset were partitioned 
into training, validation and test sets followed by 
decision tree and regression analysis. The resulting 
decision tree contained five nodes and two splitting 
rules based on CMBL (conjugated maximum bond 
length, Type: Geometrical descriptors) and BID 
(Balaban ID number, Type: Walk and path counts) 

(Figure 4). The relevant plots - Score Rankings 
Overlay: Activity and Leaf Statistics – conveyed 
goodness of fit of the training/validation data with 
ASE = 0.0570 (train), 0.4658 (validation) and 
0.5431 (test) (Supplementary Information section, 
Figure 6S). The first split was based on CMBL 
descriptor, emphasizing the influence of 
geometrical arrangement of different atoms of 
molecules on biological activity. The tree shows 
clear separation of highly active compounds 
(CMBL < 1.411) from less active compounds 
(CMBL ≥ 1.411). Further split with BID indicated 

clear progression of biological activity.  
Similar to decision trees, the regression node was 
used for further model development. The selected 
model was trained in the last step (Step 17). It 
consists of the following variables namely: 
Eig02_AEA_bo_ (Eigenvalue n. 2 from augmented 
edge adjacency mat. weighted by bond order, Type: 
Edge adjacency indices), JGI5 (mean topological 
charge index of order 5, Type: 2D autocorrelations), 
Mor25v (signal 25 / weighted by van der Waals 
volume, Type: 3D-MoRSE descriptors), RDF125i 
(Radial Distribution Function - 120 / weighted by 
ionization potential, Type: RDF descriptors), 
SM13_AEA_dm_ (spectral moment of order 13 
from augmented edge adjacency mat. weighted by 
dipole moment, Type: Edge adjacency indices),  
SM3_B_m_ (spectral moment of order 3 from 
Burden matrix weighted by mass, Type: 2D matrix-
based descriptors), SpAD_B_s_ (spectral absolute 
deviation from Burden matrix weighted by I-State, 
Type: 2D matrix-based descriptors), SpMax_B_e_ 
(leading eigenvalue from Burden matrix weighted 
by Sanderson electronegativity, Type: 2D matrix-
based descriptors) and  TDB09r (3D Topological 
distance based descriptors - lag 9 weighted by 
covalent radius, Type: 3D autocorrelations) with r2 

= 9993, F = 798.31 and ASE = 0.0006. The final 
step wise regression model was 

 
 

Parameter DF     Estimate        Standard   Error        t Value Pr > |t| 
Intercept 1 -57.2796 4.6975 -12.19 <.0001 
Eig02_AEA_bo_ 1 -11.5239 0.7926 -14.54 <.0001 
JGi5 1 106.4 18.1563 5.86 0.0020 
Mor25v 1 -1.5539 0.2142 -7.26 0.0008 
RDF125i 1 -0.00999 0.00226 -4.42 0.0069 
SM13_AEA_dm_ 1 -0.3223 0.0989 -3.26 0.0225 
SM3_B_m 1 9.7648 0.5439 17.95 <.0001 
SpAD_B_s_ 1 0.1632 0.00974 16.77 <.0001 
SpMax_B_e_ 1 10.5497 2.0345 5.19 0.0035 
TDB09r 1 7.6354 1.7013 4.49 0.0065 
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The Score Rankings Overlay: Activity plot (Figure 5a) 
exhibited good agreement between the mean predicted 
and mean target, showing good fit of data. The Effects 
plot (Figure 5b) showed the relative contributions of the 
input variables to the model; JGi5 exhibited the highest 
absolute coefficient amongst all other descriptors in the 
model (106.4). 
From total ten descriptors, five belonged to 2D matrix-
based descriptors and 2 belong to Edge Adjacency 
matrix indicating various molecular structural aspects 
crucial for biological activity. Eig02_AEA_bo_, 
Mor25v, RDF125i and SM13_AEA_dm_ contributed 
negatively while others descriptors of model contributed 
positively. 
The second series included amino acid derivatives. Most 
of these compounds were -amino acids. The most 
active compound AA13 possessed a sulfonic acid group 
at one side and amino acid functionality on the other. 
This series has a steep SAR with respect to the 
stereochemistry (Table 2), emphasizing the importance 
of stricter stereochemical features for transporter 
inhibition. The activity was expressed as logit transform 
of the % inhibition of Glu uptake compared to control at 
25  A total of 5247 interval and 6 
nominal inputs were used for n (number of observations) 
= 17. No validation and/or test data sets were used for 
the analyses. 
The first run utilized ‘Regression’ node and Stepwise 
Linear Regression model. The node was run with default 
settings for other parameters. The resulting model was 
trained in the two steps and included Mor28v (Signal 28 
/ weighted by van der Waals volume, Type: 3D-MoRSE 
descriptors) and RDF065s (Radial Distribution Function 
- 065 / weighted by I-state, Type: RDF descriptors) 
descriptors. The final stepwise linear regression model 
was – 
   

Parameter Estimat
e     

Standard 
Error     

t 
Valu
e     

Pr > |t| 

Intercept  1.2932 0.1838 7.04 <0.000
1 

Mor28v  -7.9449 1.8694 -4.25 0.0008 
RDF065s -0.00807 0.00365 -2.21 0.0439 

                   
The model statistics was acceptable with r2 = 0.711, F = 
17.21 and ASE = 0.107. The Score Rankings Overlay: 
Activity plat (Figure 6a) showed a poor agreement 
between the mean predicted and mean target, indicating 
a poor fit of the data. This was not surprising given the 
fact that the SAR of this series was so dependent on the 
stereochemistry, i.e., there was astounding difference 
between the uptake inhibitory activities of the 
enantiomers.  
The Effects plot showed the relative contributions of the 
descriptors (input variables) to the model statistics. Here 
1 = Mor28v and 2 = intercept and 3 = RDF065s. 

The descriptor Mor28v belonged to a category of 
geometrical descriptors called ‘3D-MoRSE’, under the 

main category ‘High Conformational Dependence 

(HCD) descriptors. The values of these variables are 
very sensitive to any conformational change in the 
molecule. The application of these and other related 
descriptors can be found in the literature [25]. The 
appearance of Mor28v in the stepwise linear regression 
model was in line with the steep SAR associated with 
this series of molecules. The negative sign of the 
parameter estimate was indicative of increase in activity 
due to decrease in Mor28v. The second variable with 
little contribution to the transporter inhibitory activity (as 
seen from Figure 6b) - RDF065s – was a 3D Radial 
Distribution Function (RDF) descriptor. Various 
advantages associated with RDF descriptors include their 
independent behaviour with respect to molecular size, 
invariance against the rotation or translation of the entire 
molecule and simplicity in interpretation. The smaller 
value of parameter estimate showed its little contribution 
the biological activity. Given the steep-SAR of amino 
acid analogues, no further optimization of this model 
was tried.  
Next a ‘Decision Tree’ node was used. ProbF was used 
as the splitting rule criterion for the interval target. Other 
settings were used as previously mentioned for the 
erastin analogues. The resulting tree contained seven 
nodes and three splitting rules based on SpMAD_B_p_ 
(Spectral mean absolute deviation from Burden matrix 
weighted by polarizability, Type: 2D matrix-based 
descriptors), RDF040s (Radial Distribution Function - 
040 / weighted by I-state, Type: RDF descriptors) and 
J_RG (Balaban-like index from reciprocal squared 
geometrical matrix, Type: 3D matrix-based descriptors) 
(Figure 7). The relevant plots - Score Rankings Overlay: 
Activity and Leaf Statistics – conveyed goodness of fit 
of the training data with ASE = 0.0329 (Supplementary 
Information section, Figure 7S). The relative importance 
of the descriptors was found to be SpMAD_B_p_ = 1.00, 
RDF040s = 0.6059 and J_RG = 0.4102.  
The first split was based on SpMAD_B_p variable (RDF 
category). Like the regression model, the desicion tree 
model also embraced the RDF descriptors, re-
emphasizing the importance of molecular conformation 
for the transporter inhibitory activity. The observations 
with SpMAD_B_p < 1.523 (highly active compounds) 
were clearly separated from low activity compound 
collection with values ≥ 1.523. Both these nodes were 
further split into leaf nodes based on RDF040s and J_RG 
descriptors yielding four leaf nodes with clear gradation 
of biological activity. In summary, the ‘Decision Tree’ 
model was really good with ASE = 0.0329. 
Further, model development using ‘Variable Selection’ 

node followed by ‘Regression’ node yielded similar 

model with ‘Regression’ node alone. This is not 
discussed further. Attempting ‘Polynomial Regression’ 

as well as ‘Regression’ using two-factor interactions 
could not improve model performance. Inclusion of 
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more compounds to fill ‘SAR holes’ may lead to further 

improvement in the model statistics. 
Further, similar to erastin analogues, data partition was 
perfomed followed by regression analysis. The selected 
model is trained in the last step (Step 1) which consists 
of the Mor24s (signal 24 / weighted by I-state, Type: 
3D-MoRSE descriptors) descriptor with r2 = 0.7856, F = 
25.65 and ASE = 0.0446. The final step wise regression 
model was 

                       
Paramete

r 
D
F 

Estimat
e 

Standar
d Error 

t 
Valu

e 

Pr > 
|t| 

Intercept 1 0.4493 0.1034 4.34 0.003
4 

 Mor24s 1 -0.3486 0.0688 -5.06 0.001
5 

The Score Ranking Overlay: Activity plot (Figure 8a) 
showed modeate agreement between the mean predicted 
and mean target, showing moderate poor fit of data. The 
effect plot (Figure 8b) shows contribution of Mor24s in 
model.  This descriptor belongs to 3D-MoRSE category 
indicating the relationship between 3D molecular 
representations of structure based on electron diffraction 
with biological activity. Mor24s contributed negatively 
to the model. The decision tree model could not progress 
beyond root node. Hence, it is not discussed here. 
Hydantoin analogues (series 3) were similarly used for 
QSAR model development process. A variety of 
lipophilic groups, viz., (hetero)aromatic rigns bearing 
polar as well as lipophilic substituents, were placed at 
position 5. The N3-H provided the acidic feature 
required for mimicking the acidic groups in sxc- 
substrate structure. Since these molecules are quite 
lipophilic, they are likely to cross the BBB and reach 
where Sxc

- is located. Majority of the compounds were 
not so effective in inhibiting Glu uptake compared to the 
control. Compound HYD10 (Table 3) showed the 
highest Glu uptake inhibition in the series (51%). 
Moreover, this series has a chiral centre on the hydantoin 
nucleus. The original authors evaluated these compounds 
as racemic mixtures, and not optically pure substances. 
Such a study would have truly helped uncovering the 
activity of the stereoisomers, subsequent SAR and 
design of potent analogues. Another important 
consideration was the lack of truly acidic group which 
could be attributed to this moderate to less potency. 
Nonetheless, this series was important solely from its 
BBB crossing potential. 
The stepwise linear regression model based on the Glu 
uptake as target variable was trained in Step 6 and 
contained six inputs namely, Mor07u (signal 07 / 
unweighted, Type: 3D-MoRSE descriptors), Mor13i 
(signal 13 / weighted by ionization potential, Type: 3D-
MoRSE descriptors), Mor31s (signal 31 / weighted by I-
state, Type: 3D-MoRSE descriptors), P_VSA_LogP_5 
(P_VSA-like on LogP, bin 5, Type: P_VSA-like 
descriptors),  SpDiam_AEA_dm (spectral diameter from 

augmented edge adjacency mat. weighted by dipole 
moment, Type: Edge adjacency indices) and VE1sign_X 
(coefficient sum of the last eigenvector from chi matrix, 
Type: 2D matrix-based descriptors), with r2 = 0.9745, F 
= 133.88 and ASE = 0.079. The final stepwise linear 
regression models was – 

 
Parameter          Estimate        Standard 

Error     
t 
Value     

Pr > |t| 

Intercept -16.1405 1.0693 -
15.09       

<.0001 

Mor07u              -0.1831       0.0318       -5.75       <.0001 
Mor13i              -0.3368       0.0703       -4.79       <.0001 
Mor31s             0.1508       0.0645        2.34       0.0293 
P_VSA_LogP
_5          

0.0375      0.00201       18.63       <.0001 

SpDiam_AEA
_dm_    

2.8973       0.1828       15.85       <.0001 

VE1sign_X                0.5453       0.1272        4.29       0.0003 
  
The Score Rankings Overlay: Activity plot (Figure 9a) 
exhibited moderately poor agreement between the mean 
predicted and mean target, hinting some issues with data 
fitting. The Effects plot (Figure 9b) showed the relative 
contributions of the input variables to the model; 
SpDiam_AEA_dm_ exhibited the highest absolute 
coefficient amongst all other descriptors in the model 
(2.8972).  
 Of the six descriptors, three belonged to 3D-MoRSE 
category, emphasizing higher conformational 
dependence of the target variable. Since the original set 
of compounds was racemic mixtures, both the 
enantiomers of each compound were considered in the 
QSAR analyses. The enantiomers resulting from each 
compound were assigned the same activity as the 
racemic mixture. This was done to avoid any bias 
towards a particular enantiomer during descriptor 
calculations and subsequent model development process. 
Other three descriptors belonged to Edge Adjacency 
Matrix, 2D Matrix and P_VSA-like descriptors category, 
featuring various molecular structural aspects essential 
for activity. The P_VSA descriptors were used in QSAR 
studies of acridines previously [26]. These surface 
descriptors are based on atomic contributions to van der 
Waals surface area, logP (octanol/water), molar 
refractivity and partial charge and can be computed from 
the connection table. No 3D alignment is required for 
calculation of these descriptors. Their utility lies in 
efficiently describing ligand-receptor interactions. 
P_VSA_LogP_5 contributed positively to the target 
variable (as seen from its estimate). Other two 
descriptors - SpDiam_AEA_dm_ and VE1sign_X also 
contributed positively to the Glu uptake inhibition 
activity (target variable).  
Further analysis using ‘Decision Tree’ node yielded a 

tree with nine nodes (Figure 10) based on four 
descriptors - SM09_EA_ri_ (spectral moment of order 9 
from edge adjacency matrix weighted by resonance 
integral, Type: Edge adjacency indices), SpMAD_D_Dt 
(spectral mean absolute deviation from distance/detour 
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matrix, Type: 2D matrix-based descriptors), BIC0 (Bond 
Information Content index (neighbourhood symmetry of 
0-order, Type: Information indices) and GATS5m 
(Geary autocorrelation of lag 5 weighted by mass, Type: 
2D autocorrelations). As seen from the leaf nodes, the 
descriptors could separate active compounds from less 
active or inactive compounds impressively. 
 The decision tree model could fit the data well as seen 
from the Score Rankings Overlay: Activity plot (Figure 
8Sa, Supplementary Information section). The ASE for 
this model was 0.0076 based on all the molecules. The 
relative importance of the model descriptors was found 
to be SM09_EA_ri_ = 1.00, SpMAD_D_Dt = 0.4412, 
GATS5m = 0.2961 and BIC0 = 0.0796. Leaf Statistics 
plot depicting the average target value for each node is 
shown in Figure 8Sb (Supplementary Information 
section). The first split was based on SM09_EA_ri_, an 
Edge Adjacency Index, which exhibited cutoff at 9.843; 
molecules with SM09_EA_ri_ <9.843 were least active 
(average target value 0.122) while others were highly 
active (average target value 0.8436 (Figure 10). Further 
splits based on other three descriptors yielded crystal 
clear separation of various target levels.  
For model validation, the data were partitioned into 
training and validation set followed by decision tree, 
regression and polynomial regression analysis. In case of 
decision tree model (Figure 11), it contained five nodes 
and two splitting rules based on SM10_EA_ri_ (spectral 
moment of order 10 from edge adjacency mat. weighted 
by resonance integral, Type: Edge Adjacency 
Descriptors) and E1m (1st component accessibility 
directional WHIM index / weighted by mass, Type: 
WHIM descriptors). The relevant plots – Score Rankings 
Overlay: Activity and Leaf Statistics – exhibited best fit 
of test/validation data with ASE = 0.0150 (training)/ 
0.0365 (validation) (Supplementary Information Section, 
Figure 9s). The first split was based on SM10_EA_ri_ 
descriptor, emphasizing the influence of square and 
symmetric matrix of the molecules on biological activity. 
The tree showed clear separation of highly active 
compounds (SM10_EA_ri_ ≥ 10.953) from least active 
compounds (SM10_EA_ri_< 10.953). Further split with 
E1m showed clear graduation of activity.   
Further, Regression node was used for the partitioned 
data. The selected model was trained in last step (Step 
5). It consists of following variables: Intercept, ATSC3p 
(Centred Broto-Moreau autocorrelation of lag 3 
weighted by polarizability, Type: 2D autocorrelations), 
P_VSA_LogP_5 (P_VSA-like on LogP, bin 5, Type: 
P_VSA-like descriptors), R7i_ (R autocorrelation of lag 
7 / weighted by ionization potential, Type: GETAWAY 
descriptors), RDF070s (Radial Distribution Function - 
070 / weighted by I-state, Type: RDF descriptors) and 
RDF080v (Radial Distribution Function - 080 / weighted 
by van der Waals volume, Type: RDF descriptors) with 
r2 = 9773, F = 128.89 and ASE = 0.2437. The final step 
wise regression model was 
 
 
 

 
 
 

                         
Parameter DF Estimate Standard 

Error 
t 
Value 

Pr > |t| 

Intercept 1 0.1803 0.2171 0.83 0.4193 
ATSC3p 1 0.2150 0.0332 6.48 <.0001 
P_VSA_Lo
gP_5 

1 0.0613 0.00443 13.82 <.0001 

R7i_ 1 -17.5993 1.8506 -9.51 <.0001 
RDF070s 1 0.00552 0.00174 3.17 0.0063 
RDF080v 1 -0.3252 0.0345 -9.43 <.0001 
 
The Score Ranking Overlay: Activity plot (Figure 12a) 
exhibited moderate agreement between the mean 
predicted and mean target, showing moderate fit of data. 
The Effects plot (Figure 12b) shows the relative 
contribution of the input variables to the model: R7i_ 
exhibited the highest absolute contribution amongst all 
other descriptors in the model (-17.5993). 
Out of five variables, two belonged to RDF descriptors 
category which is restricted to distance ranges or specific 
atom types to signify specific information in a certain 3D 
structure space, for example, to explain sterical 
hindrance or structure/activity properties of a molecule. 
R7i_ belongs to GETAWAY descriptors which are 
derived from Molecular influence matrix (matrix 
representation of molecule). Therefore, it may be said 
that specific activity demands upon influence of 
molecular matrix. It was observed from the above model 
that, R7i_ and RDF080v contributed negatively while 
other descriptors contributed positively.  
The fourth series comprised of isoxazole analogues, 
representing the relatively lipophilic versions of the 
sulfasalazine and other acidic compounds. The imine 
functionality mimicked the azo linkage present in SSZ. 
Other pharmacophoric points such as aromatic ring 
feature and H-bond acceptor at the proximal end (-
COOH group) represented by the isoxazole N and O 
compensated the possible interactions SSZ might have 
with the antiporter. The glutamate uptake inhibitory 
activity was well spread from highly potent compounds 
to moderately and less potent compounds (Table 4). 
The first model was built using ‘Regression’ node 

(stepwise linear regression with default settings). The 
final model was trained in step No. 6 and consisted of 
CATS2D_08_AL (CATS2D Acceptor-Lipophilic at lag 
08, Type: CATS 2D), Eig05_EA_ed_ (eigenvalue n. 5 
from edge adjacency mat. weighted by edge degree, 
Type: Edge adjacency indices), GATS1i (Geary 
autocorrelation of lag 1 weighted by ionization potential, 
Type: 2D autocorrelations),   
Gu (total symmetry index / unweighted, Type: WHIM 
descriptors), Mor05u (signal 05 / unweighted, Type: 3D-
MoRSE descriptors) and R8m (R autocorrelation of lag 8 
/ weighted by mass, Type: GETAWAY descriptors). The 
model statistics were r2 = 0.9149, F =50.16 and ASE = 
0.04699.  
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Parameter          Estimat

e        
Standar
d Error     

t 
Value     

Pr > 
|t| 

Intercept -6.0378 1.3102 -4.61       <.000
1 

CATS_08_A
L             

-0.1536       0.0171       -9.00       <.000
1 

Eig05_EA_ed
_            

-0.3492       0.0728       -4.80       <.000
1 

GATS1i              2.1024       0.6000         3.50      0.001
6 

Gu                              
14.2005      

3.9080        3.63       0.001
1 

 

Mor05u                       
-0.6855       

0.0868       -7.90       <.000
1 

 

R8m     1.4926       0.5740         2.60      0.014
7 

The score ranking overlay: activity plot exhibited 
moderate agreement between mean predicted and mean 
target, indicating average fit of data (Figure 13a). 
Moreover, the effects plot (Figure 13b) listed relative 
contribution of input variables to the model where Gu 
showed highest contribution amongst other descriptors 
present in the model. The descriptor Gu belongs to 
WHIM symmetry/WHIM index under the main category 
of WHIM descriptors. The values for this descriptor is an 
indicator of geometric mean of the directional 
summaries (Value 1 indicates central symmetry). A per 
the model statistic, Gu contributed positively to the 
glutamate uptake inhibition activity. Next descriptor is 
GATS1i which belongs to 2D autocorrelations category 
of descriptors.  In this descriptor, the Geary coefficient is 
a distance type function which exhibits different physio-
chemical properties calculated for each atom. Here, in 
this case this property is ionisation potential. GATS1i 
displays a positive sign in model statistic indicating 
decrease in ionisation potential causes increased 
inhibition of glutamate uptake by Sxc

-. The next 
descriptor is R8m from GATWAY descriptor category. 
As mentioned earlier in the text that the value of this 
descriptor is based on combination of molecular 
influences matrix and the geometry matrix to give 
influence/distance matrix.  R8m displayed a positive sign 
indicating increase in influence/distance matrix results in 
improvement in inhibition of Sxc

- by isooxazole 
derivatives. Another descriptor with comparatively less 
contribution in model generation is Mor05u from 3D 
MoRSE descriptors under the main category of 
geometrical descriptors. These descriptors provide 
information by means of 3D atomic coordinates. In this 
case, Mor05u unweighted 3D MorSE descriptor showing 
negative sign in model and thus indicates high inhibition 
of glutamate uptake by Sxc

- with increase in Mor05u 
values. Eig05_EA_ed_ belongs to Edge Adjacency index 
category. As mentioned earlier, these descriptors are 
based on a square and symmetric matrix, where the rows 
and column correspond to edges (bonds) of the 
molecular graphs. Eig05_EA_ed_, weighted by edge 
degree contributed negatively to inhibition of glutamate 
uptake by Sxc

-. The last descriptor from this model is 

CATS2D_08_AL belongs to CATS2D descriptors. 
These descriptors give information about topological 
distance between any pair of pharmacophore point types 
used. In this case, the estimate value of 
CATS2D_08_AL is negative indicating decrease in the 
value of this descriptor is associated with improved Sxc

- 
inhibition potential.    The ‘Decision Tree’ model using 

default settings contained a total of 9 nodes (5 leaf 
nodes) based on four descriptors, viz., CATS2D_08_AL 
(CATS2D Acceptor-Lipophilic at lag 08, Type: CATS 
2D), VR2_G (normalized Randic-like eigenvector-based 
index from geometrical matrix, Type: 3D matrix-based 
descriptors), E1e (1st component accessibility directional 
WHIM index /weighted by Sanderson electronegativity, 
Type: WHIM descriptors) and RDF105s (Radial 
Distribution Function - 105 / weighted by I-state, Type: 
RDF descriptors) (Figure 14). Similar to previous 
decision tree models, this model classified different 
grades of uptake inhibitory activities.  
The decision tree model exhibited good fit of data as 
depicted in Score Rankings Overlay: activity plot 
(supplementary information section, Figure10Sa). The 
model ASE was found to be 0.06931. Leaf statistic plot 
depicting the average target value for each node is 
shown in figure 10Sb (supplementary information 
section). The first split was based on CATS2D_08_AL 
with the cut off at 7.5; molecules with 
CATS2D_08_AL< 7.5 were highly active while others 
were least active. Both this nodes were again split into 
leaf nodes based on VR2_G and E1e. Molecules with 
VER2_G ≥ 1.0135 were found to be potent compared to 

other molecules. Moreover, compounds with E1e < 
0.571 were highly active compared to remaining 
molecules. VR2_G was further split in to two leaf nodes 
based on RDF105s.  The Overall performance of tree 
was good.   
Next, the data were portioned in to training and 
validation set followed by decision tree, regression and 
polynomial regression analysis. In case of decision tree, 
it contained five nodes and two splitting rules based on 
CATS2D_07_AL (CATS2D Acceptor-Lipophilic at lag 
07, Type = CATS2D) and RDF025p (Radial Distribution 
Function - 025 / weighted by polarizability, Type: RDF 
descriptor) (Figure 15). The relevant plots – Score 
Rankings Overlay: Activity and Leaf Statistics – 
exhibited best fit of test/validation data with ASE = 
0.0958 (training)/ 0.3812 (validation) (Supplementary 
Information Section Figure 11s). The first split was 
based on CATS2D_07_AL descriptors emphasizing 
effect of topological distance between any pair of 
pharmacophore point types on biological activity. The 
tree showed clear separation of highly active compounds 
(CATS2D_07_AL < 3.5) from least active compounds 
(CATS2D_07_AL ≥ 3.5). Further split was based on 
RDF025p descriptors showed good performance of 
overall tree.  
The regression model was also developed for the 
isooxazole series using partitioned data. The selected 
model is the model trained in the last step (Step 7). It 
consists of the following descriptors:  CATS2D_08_AL 
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(CATS2D Acceptor-Lipophilic at lag 08, Type = 
CATS2D), CATS3D_07_LL (CATS3D Lipophilic-
Lipophilic at lag 0, Type = CATS 3D),  Gu (total 
symmetry index / unweighted, Type: WHIM 
descriptors),  RDF090s (Radial Distribution Function - 
090 / weighted by I-state, Type: RDF descriptors), 
SM4_B_m_ (spectral moment of order 4 from Burden 
matrix weighted by mass, Type: 2D matrix-based 
descriptors),  TDB01u (3D Topological distance based 
descriptors - lag 1 unweighted, Type: 3D 
autocorrelations) and  VE1_Dz_p_ (coefficient sum of 
the last eigenvector from Barysz matrix weighted by 
polarizability, Type: 2D matrix-based descriptors) with 
r2 = 9831, F = 141.62 and ASE = 0.0099 (training) and 
0.5082 (Validation).  

The final step wise regression model was 
Parameter D

F 
Estima
te 

Standar
dError 

t 
Value 

Pr > |t| 

Intercept 1 -1.4399 1.7963  -0.80 0.4339 
CATS2D_
08_AL 

1 -0.1564 0.0152 -10.26 <.0001 

CATS3D_
07_LL 

1 0.0803 0.0207 3.89 0.0012 

Gu 1 -
14.202
2 

2.9574 -4.80 0.0002 

RDF090s 1 -0.0134 0.00210 -6.39 <.0001 

SM4_B_m
_ 

1 1.8088 0.3236 5.59 <.0001 

TDB01u 1 -
26.453
3 

4.7804 -5.53 <.0001 

VE1_Dz_p
_ 

1 -0.9867 0.1918 -5.14 <.0001 

The Score Ranking Overlay: Activity plot showed good 
(Figure 16a) agreement between the mean predicted and 
mean target, showing good fit of data. The effects plot 
(Figure 16b) shows the relative contribution of input 
variables to the model: TDB01u showed the highest 
absolute contribution amongst all other descriptors in 
model (-26.4533). 
TDB01u and Gu contributed most in this model which 
belongs to 3D autocorrelations and WHIM descriptors 
category respectively. TDB01u is 3D autocorrelation 
descriptors emphasizing on influence of topological and 
geometric distances on biological activity. WHIM 
descriptors explain impact of molecular 3D information 
regarding molecular size, shape, symmetry, and atom 
distribution on biological activity. Both the above 
descriptor contributed negatively to the model. 
Moreover, CATS2D_08_AL, RDF090s and VE1_Dz_p_ 
also contributed negatively. CATS3D_07_LL and 
SM4_b_m_ contributed positively. 
Sulfasalazine analogues were also tried for the model 
development. However, due to lack of number of 
molecules no acceptable model could be developed and 
hence not reported here. 
 
CONCLUSION: 
In conclusion, our work reports of predictive model 
development and validation using SAS. Regression and 
decision tree generated models for all the series showed 
good predictive power as confirmed from validation 
data. Hence, above models may be used in future for 
design of novel system xc

- inhibitors for the treatment of 
variety of cancer cells.   

 
 
 
 

 
Figure 1. SAS® Enterprise Miner™ 13.2 Diagram depicting the model development for erastin analogues. Each 

box represents a ‘node’ and the ‘arrows’ connect various nodes completing the process flow for a 
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particular task, e.g., Regression (2) model development contains File Import, StatExplore, Variable 
Selection and Regression (2) nodes. 

a)  

 
b)  

 
Figure 2.  Plots resulting from stepwise linear regression model for erastin analogues. a) Score Rankings 

Overlay: Activity plot demonstrating good agreement between mean predicted and mean target and 
b) effects plot showing relative contributions of the input variables to the model; Here 1 = JGI5, 2 
= intercept, 3 = ATS2m, 4 = ATS4m, 5= GATS4s, 6 = Eig12_EA_bo_ and 7 = SsCl. 
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Figure 3.  Decision tree model for erastin analogues with seven nodes. The splitting rules are based on three 
descriptors R8m, SpMax6_Bh_m_ and Eig)7_AEA_dm_. 

 
 
Figure 4: Decision tree model validation for erastin analogues with five nodes. The splitting   rules are based on 

two descriptors CMBL and BID. 
 

  
b) 

  
Figure 5: Plots resulting from regression validation model for erastin analogues. a) Score Rankings Overlay: 

Activity plot demonstrating moderately good agreement between mean predicted and mean target 
and b) effects plot showing relative contributions of the input variables to the model; Here 1 = GI5, 
2 = Intercept, 3 = Eig02_AEA_bo_, 4 = SpMax_B_e_, 5 = SM3_B_m_, 6 = TDB09r, 7 = Mor25v, 
8 = SM13_AEA_dm_, 9 = SpAD_B_s_ and 10 = RDF125i. 
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a) 

 
b) 

 
 
Figure 6.  Plots resulting from stepwise linear regression model for amino acid analogues. a) Score Rankings 

Overlay: Activity plot demonstrating good agreement between mean predicted and mean target and 
b) effects plot showing relative contributions of the input variables to the model; Here 1 = Mor28v, 
2 = intercept, 3 = RDF065s. 

 
 
Figure 7.  Decision tree model for amino acid analogues with seven nodes. The splitting rules are based on 

three descriptos SpMAD_B_p, RDF040s and J_RG. 
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b) 

 
Figure 8: Plots resulting from regression validation model for Amino acid analogues. a) Score Rankings 

Overlay: Activity plot demonstrating moderately moderate agreement between mean predicted and 
mean target and b) effects plot showing relative contributions of the input variables to the model; 
Here 1 = Intercept and 2 =  Mor24s. 

 
a) 

 
b) 

 
 
Figure 9. Plots resulting from stepwise linear regression model for hydantoin analogues. a) Score Rankings 

Overlay: Activity plot demonstrating moderately poor agreement between mean predicted and 
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mean target and b) effects plot showing relative contributions of the input variables to the model; 
Here 1 = intercept, 2 = SpDiam_AEA_dm, 3 = VE1sign_X, 4 = Mor13i, 5 = Mor07u, 6 = Mor31s 
and 7 = P_VSA_LogP_5 

 
 
Figure 10.  Decision tree model for hydantoin analogues with nine nodes. The splitting rules are based on four 

descriptors SM09_EA_ri_, SpMAD_D_Dt, BIC0 and GATS5m 
 

 
Figure 11: Decision tree model validation for hydantoin analogues with five nodes. The splitting rules are 

based on two descriptors SM10_EA_ri_ and E1m 
 



IAJPS 2017, 4 (05), 1141-1167                             Patel et al                                    ISSN 
2349-7750 

 
w w w . i a j p s . c o m  

 

Page 1156 

 
 

a) 

 
 
b) 

 
Figure 12: Plots resulting from regression validation model for hydantoin analogues. a) Score Rankings Overlay: 

Activity plot demonstrating moderately moderate agreement between mean predicted and mean 
target and b) effects plot showing relative contributions of the input variables to the model; Here 1 

= R7i_, 2 =  RDF080v, 3 = ATSC3P, 4 = Intercept, 5 = P_VSA_LOGP_5 and 6 = RDF070v. 
a) 

 
b) 

 
Figure 13: Plots resulting from stepwise linear regression model for isooazole analogues. a) Score Rankings 

Overlay: Activity plot demonstrating moderately poor agreement between mean predicted and 
mean target and b) effects plot showing relative contributions of the input variables to the model; 
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Here 1 = Gu, 2 = Intercept, 3 = GATS1i, 4 = R8m, 5 = Mor05u, 6 = Eig05_EA_ed_ and 7 = 
CATS2D_08_AL. 

 
 
Figure 14: Decision tree model for isooxazole analogues with nine nodes. The splitting rules      are based on 

four descriptors CATS2D_AL, VR2_G, E1e, RDF105s 
 

 
Figure 15: Decision tree model validation for isooxazole analogues with five nodes. The splitting rules are based 

on two descriptors CATS2D_07_AL and RDF025p. 
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a) 

 
b) 

 
Figure 16. Plots resulting from regression validation model for isooxazole analogues. a) Score Rankings 

Overlay: Activity plot demonstrating moderately moderate agreement between mean predicted and 
mean target and b) effects plot showing relative contributions of the input variables to the model; 
Here 1 =TDB01u, 2 =  Gu, 3 = SM4_B_m, 4 = Intercept, 5 = CATS2D_08_AL, 6 = VE1_Dz_p_, 
7 = CATS3D_07_LL and 8 = RDF090s. 
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Table 1:  Chemical structures and Sxc- inhibitory activity of erastin analogues [14] 
Sr. No. Code Structure IC50 pIC50 

1 Erastine N
N

O
O

N N
O

O

Cl

 

0.20 6.698 

2 ERA 1 N
N

O
O

N N
O

O

Cl

 

0.09 7.04 

3 ERA 2 N
N

O
O

N N
O

O

Cl
F

 

0.14 6.85 

4 ERA 3 N
N

O
O

N N
O

O

Cl
H2N

 

0.54 6.26 

5 ERA 4 
 

N
N

O
O

N N
O

O

Cl
Cl

 

0.042 7.37 

6 ERA 5 N
N

O
O

N N
O

O

Cl
Cl

 

0.074 7.13 

7 ERA 6 N
N

O
O

N N
O

O

Cl
O O

 

0.15 6.82 

8 ERA 7 N
N

O
O

N N
O

O

Cl

 

0.56 6.25 

9 ERA 8 
N

N
O

O
N

O O Cl
 

>10 4.69 
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10 ERA 9 N
N

O
O

N N
O

Cl

 

0.57 6.24 

11 ERA 10 N
N

O
O

N N

O

Cl

 

3.7 5.43 

12 ERA 11 
 

N
N

O
O

N N
NH

Cl

O
 

0.53 6.27 

13 ERA 12 
 

N
N

O
O

N N
O

F

O
 

1.2 5.92 

14 ERA 13 N
N

O
O

N N
O

O

Cl

 

2.6 5.58 

15 ERA 14 N
N

O
O

N N
NH

O
 

>10 4.69 

16 ERA 15 N
N

O
O

N N
O

O

Cl

 

0.042 7.37 

17 ERA 16 
N

N
O

O
N N

O

O

Cl

Br  

0.0094 8.02 

18 ERA 17 
 

N
N

O
O

N N
O

O

Cl

 

0.0035 8.45 

19 ERA 18 

N
N

O
O

N N
O

O

Cl

O  

0.013 7.88 
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Table 2: Chemical structures and Sxc- inhibitory activity of amino acid analogues [20] 
Sr. 
No Code Structure %   glutamate uptake 

inhibition 
Logit 
values 

1 AA 1 S S

O OH

NH2

 

31 -0.347 

2 AA 2 S

O OH

NH2

 

27 -0.432 

3 AA 3 N
H

O OH

N

N
H

O

 

4 -1.380 

4 AA 4 
Br

S

O OH

NH2

 

17 -0.689 

5 AA 5 NH

O

OH
O

HO

 
73 0.432 

6 AA 6 
S

H
N

O

OH  
47 -0.052 

7 AA 7 C

NH2

S
HO

O

O
OHO

 

10 -0.954 

8 AA 8 
C NH2

OH

O

BrS
O

O

HO  

17 -0.689 

9 AA 9 C
HO

O
S
O

O
HO

NH2  

2 -1.690 

10 AA 10 C
HO

O
S
O

O
HO

NH2  
45 -0.087 

11 AA 11 
S

S

O OH

NH2
O

O OH  

68 0.327 

12 AA 12 
S

S

O OH

O

O OH

NH2

 
45 -0.087 

13 AA 13 
 

S
S

H2N
O

OH

O

O
HO

 

74 0.454 

14 AA 14 
S

O

OH

NH2  

17 -0.689 

15 AA 15 
S

O

O
O

OH

NH2  

43 -0.122 
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Table 3: Chemical structures of hydantoin analogues along with respective biological activity [19] 
 

Hydantoin derivatives 

SR 
no Code Structure 

% of glu  
Uptake 

inhibition 

Logit 
transforms 

1 HYD 1 
N
H

NH

O

O
N

 

10 -0.954 

2 HYD 2 N
H

NH

O

O

 

17 -0.689 

3 HYD 3 
N
H

NH

O

O

N

 

13 -0.826 

4 HYD 4 N
H

NH

O

O

 

47 -0.052 

5 HYD 5 N
H

NH

O

O

 

19 -0.630 

6 HYD 6 
N
H

NH

O

O
O

O  
7 -1.123 

7 HYD 7 
N
H

NH

O

O

S  
13 -0.826 

8 HYD 8 
N
H

NH

O

O

S

S  

15 -0.753 

9 HYD 9 
N
H

NH

O

O

S  
34 -0.288 

10 HYD 10 
N
H

NH

O

O

S

O  
51 0.017 

11 HYD 11 
N
H

NH

O

O

N

N
H  

18 -0.659 

12 HYD 12 
N
H

NH

O

O
N

 
5 -1.279 

13 HYD 13 
N
H

NH

O

O

SBr  
35 -0.269 

14 HYD 14 
N
H

HN

O

O

N
H

NH

O

O

 
15 -0.753 

15 HYD 15 N
H

H
N

O
O

S

N
H O

O

 

49 -0.017 
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16 HYD 16 N

H
N

O

O

N NH

O

O  
20 -0.602 

17 HYD 17 
N

H
N

O

O

N
NHO

O  

8 -0.954 

 
Table 4: Chemical structures of iso-oxazole analogues along with respective biological activity [16-19] 
 

Sr. 
No. Code Structure 

% [3H] glu 
uptake 

inhibition 

Logit 
transforms 

1 ISO 1 
N

NH
O

F3C

CF3
O

N
OH

O

 

10 -0.954 

2 ISO 2 N
NH

O

O
N

OH

O

 

17 -0.689 

3 ISO 3 

O

O
NH

N

O
N

HO

O

 

32 -0.327 

4 ISO 4 N
NH

O

O
N

OH

O

 

32 -0.327 

5 ISO 5 
N

NH
O

O
N

OH

O

F

F  

42 -0.140 

6 ISO 6 
N

NH
O

O
N

OH

O

HO

 

48 -0.035 

7 ISO 7 N
NH

ONHO

O

F3C

F3C

 

86 0.788 

8 ISO 8 N
NH

O
NHO

O

F3C

F3C

 

94 1.195 

9 ISO 9 N
NH

O
NHO

O

F3C

F3C

 

86 0.788 
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10 ISO 10 N
NH

O
NHO

O

F3C

CF3

 

94 1.195 

11 ISO 11 
N OO

N
N

F3C

 
86 0.788 

12 ISO 12 N
NH

NO2
O2N

ON  

55 0.087 

13 ISO 13 
N

O
O

N
N

F3C

F3C

 

18 -0.659 

14 ISO 14 

N OO

N
N

Cl

Cl

 

11 -0.908 

15 ISO 15 
N

H
N

O
N

OH

O

 

44 -0.105 

16 ISO 16 
N

H
N

O2N
O

N

OH

O

 

78 0.550 

17 ISO 17 N
H
N

O2N

NO2

O
N

OH

O

 

55 0.087 

18 ISO 18 

N O
O

N
N

F

 

14 -0.788 

19 ISO 19 

N O
O

N
N

 

26 -0.454 

20 ISO 20 

N O
O

N
N

O2N

 

15 -0.753 

21 ISO 21 
NH2

OH
O

N O

HO

O  

8 -1.061 

22 ISO 22 O

NH2

OH
O

N
O

HO

O  

2 -1.690 
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23 ISO 23 
NH2

O
N

HO

O

HO
O

 

30 -0.368 

24 ISO 24 
NH2

O
NHO

O

OH

O

 

53 0.052 

25 ISO 25 
NH2

O
NHO

O

OH

O

 

63 0.231 

26 ISO 26 
N

NH
H2N

O

O
N

HO

O

 

9 -1.005 

27 ISO 27 

O

O
N

O

N
HN

S
O

 

4 -1.380 

28 ISO 28 N
NH

N+

-O
O

N+

-O

O

ONHO

O

 

28 -0.410 

29 ISO 29 
N

NH
O

NH

O
N

HO

O

 

24 -0.501 

 



IAJPS 2017, 4 (05), 1141-1167                             Patel et al                                    ISSN 
2349-7750 

 
w w w . i a j p s . c o m  

 

Page 1167 

Table 5: Chemical structures of sulfasalazine and its analogues along with respective biological activity 
[15] 
Sr. 
No. Code Structure IC50 

(µM) pIC50 

1 (S)-4-
carboxyphenylglycine 

NH2

OH
O

HO

O

 

15 4.82 

2 SSZ 
HO

O

HO

N
N

S
O

O

H
N N

 

30 4.52 

3 SSZ 1 

HO
O

HO S
O

O
NH

N

 

30 4.52 

4 SSZ 2 
O

O

HO

S
O

O H
N N

 

900 3.04 

5 SSZ 3 
HO

O

HO

S
O

O H
N N

 

70 4.15 

6 SSZ 4 
HO

O

HO

S
O

O H
N N

 

700 3.15 

7 SSZ 5 
HO

O

S
O

O

H
N N

 

75 4.12 

8 SSZ 6 

HO
O

S
O

O
NH

N

 

920 3.03 

9 SSZ 7 

N

NHS
O

O

HO
O

 

70 4.15 

10 SSZ 8 HO

O

HO

N
N

 

200 3.69 

11 SSZ 9 
HO

O

HO
 

150 3.82 

12 SSZ 10 

OH
O

 

270 3.56 

 


