
SPP 2171

Implementation of the Thin-Film
Equation on Prestructured,

Switchable Substrates
Using the oomph-lib Library

10th January 2022

Authors: Janik Suer
Moritz Stieneker
Svetlana Gurevich

Institute for Theoretical Physics, University of Münster

https://www.uni-muenster.de/Physik.TP/en/

1 Tutorial: Prestructured Substrate
This tutorial shows how a switchable prestructured substrate for a one and
two-dimensional thin-film model1 can be implemented using the oomph-lib
library[5]. In particular, the case of a moving step wettability profile [4]
was considered. Within this tutorial, the code necessary to reproduce all
the simulations and analysis is explained2. Table 1 gives an overview of
the necessary files. In the accompanying source code, different wettability
prestructures and switching patterns are already implemented, which can
be used with minor adaptions to the supplied source code.

1.1 Theoretical Background

For the local height profile h(x,t) of simple partially wetting liquids on a
surface one can derive a partial differential equation called the thin-film
equation, by using the Navier-Stokes equation with appropriate boundary
conditions and the assumption of small gradients [8, 1, 11, 7]. The thin-film
equation in the non-dimensionalized [6, 3, 10] form can be expressed as

∂th(x,t) = ∇Q(h)∇[P (h,x,t)]. (1)

Here Q(h) = h3 is the mobility resulting from the no-slip boundary condi-
tions and P (h,x,t) is the general pressure, which is equal to the variation of
the free energy F0 with respect to the film height. It is given by:

P (h,x,t) = −∆h−Π(h,x,t) = δF0
δh

, (2)

where the first term −∆h represents the so-called Laplace pressure. This
pressure is a result of the surface tension at the air-liquid interface and is
equal to the difference of pressure inside and outside the droplet (i.e. in the
liquid and gas phase). The second term, Π(h,x,t) is the so-called disjoining-
pressure or Derjaguin pressure. It originates from the interaction between
the liquid and solid surface and therefore also has to include the structure
(i.e. wettability) of the substrate. The disjoining pressure is given by

Π(h,x,t) =
(1
h6 −

1
h3

)
[1 + ρg(x,t)] , (3)

where g(x,t) is the structure-function and ρ is the wettability contrast. The
product of g(x,t) and ρ is the so-called wettability. In general, a higher wet-
tability value results in a smaller contact angle. Hence a lower wettability
results in larger contact angles, i.e. a increased droplet height if the avail-
able volume remains constant. Other forms of the disjoining pressure and

1For an in-depth introduction into the thin-film equation see [8]
2The necessary code is available online: https://doi.org/10.5281/zenodo.5821537.

1

https://doi.org/10.5281/zenodo.5821537

the mobility are possible [1]. To avoid pinned contact lines this modeling
approach uses a so-called precursor film. A thin liquid film which covers the
entire substrate. Other possible solutions to this problem are depicted in
[1].
In the following, we will look at different forms of ρg(x,t) and the effects on
direct time simulations of these wettability profiles.

1.2 Stationary Wettability Pattern

One of the easiest (non-homogeneous) wettability profiles consists of two ar-
eas with different wettabilities. A possible way to obtain these two adjacent
areas of different wettabilities with a smooth transition3 between them is
the logistic function (see [4] for more details):

ρg(x) = ρLW −
ρLW − ρHW

1 + e− x−c
ls

. (4)

Here, ρLW and ρHW correspond to a smaller and higher wettability value
respectively. The constant c determines the x coordinate at which the tran-
sition between these two values occurs4, while ls determines the smoothness
of this transition. That is, a large value for ls corresponds to a smooth
transition, whereas a small value would result in a steep transition. In the
limes ls→ 0 the wettability profile goes over to a simple step function. The
inhomogeneity profile is shown in fig. 1 for different values of ls relative to
the domain size L. One can see how a small ls value results in a function
resembling a simple step function, while for large values the transition area
take up the entire domain. Here, ρ0 is the mean value of ρHW and ρLW.
Therefore it is equal to the wettability value at the steepest slope of ρg(x).
The implementation of this wettability pattern into C++ code is shown in
the following5:

3One could also use discontinuous jumps in theory but for this tutorial we stick to the
continuous case.

4In particular, it determines the position of the steepest slope of the inhomogeneity
profile.

5Note that the variables themselves are defined in the namespace ThinFilm within a
different file (see section 1.4). The namespace is used here to access the parameters.

2

Figure 1: Logistic step function according to eq. (4) as a wettability profile
with the high and low wettability values ρHW and ρHW, the mean wettability
value ρ0, the domain length L and the smoothness of the transition ls. The
graph shows the wettability profile for three different values of ls.

1 using namespace ThinFilm ;
2 double MyNDProblem <ELEMENT >:: logistic (Vector <double > x, double

t, double rho){
3 return rhoLW - (rhoLW -rhoHW)/(1+ exp (-(x[0] - cpos [0])/ls));
4 }

Listing 1: Implementation a stationary step wettability.

Here, cpos[0] = c and the other variable equal to their counterparts in
eq. (4) .
A droplet placed at the steepest slope of the wettability step experiences a
wettability gradient and thus will move towards the area of high wettability
[9]. It covers an increasingly large area of high wettability and will spread
out since this is energetically favourable.

The initial height distribution of the droplet is given by eq. (5), where χ is
the precursor film height. Equation (5) can be derived by approximating
the droplet as a parabola of height h0 and an initial contact angle θinit which
results in a slope equal to tan(Θinit) at the contact line, i.e. the intersection
of the droplet with the precursor film. The value of h0 is equal to the
maximum film height at t = 0. In order to include the precursor film in
the equation for the initial film height the maximum function is being used,
such that the minimum film height is equal to the precursor film height χ.

3

Figure 2: Height profile of the initial droplet. The slope at the contact line
tan(Θeq) (orange) as well as the contact angle Θeq (green) and initial height
(red) are shown.

A visualization of the initial droplet is shown in fig. 2. For the simulations
presented here the initial conditions were h0 = 1 and Θeq ≈ 44.38°.

h(x,t = 0) = max
(
− 1

4h0
[tan (Θeq) · x]2 + h0, χ

)
(5)

Snapshots of the one-dimensional direct time simulation using this wetta-
bility profile are shown in fig. 3. Figure 3a depicts the initial state of the
droplet, which has not yet experienced the present inhomogeneity profile.
Figure 3b shows the end state of the simulation. The droplet has moved
away from the centre of the transition and into the more wettable area
while also decreasing its height.

1.3 Moving Wettability Pattern

For each stationary pattern one can also construct a moving wettability
pattern, preserving all used parameters whilst also introducing the speed
of the inhomogeneity vinhom as a new parameter. This velocity is inserted
into the the inhomogeneity eq. (4) by applying a transformation to the x
coordinate:

x̃(t) = [(x− vinhom · t) + L/2] %L− L/2. (6)
The reason for the minus sign in eq. (6) is that one wants the inhomogeneity
profile to move towards higher x values for a positive velocity. This trans-

4

a)

−20 −10 0 10 20
x

0.00

0.25

0.50

0.75

1.00

h

−0.80

−0.15

0.50

W
e
tt

a
b

il
it

y

b)

−20 −10 0 10 20
x

0.00

0.25

0.50

0.75

1.00

h

−0.80

−0.15

0.50

W
e
tt

a
b

il
it

y

Figure 3: Snapshots of the direct time simulation of a one-dimensional drop
on a substrate with a stationary logistic function as the wettability. The
parameters for this simulation are L = 50, ls = 1, c = 0, ρLW = 0.5,
ρHW = −0.8. a) initial state droplet placed at the center of the wettability
transition, b) final state of the droplet, spread out over the area with high
wettability.

5

formation takes periodic boundary conditions in x-direction into account for
a domain centered at x = 0 with length L.
The inhomogeneity code is slightly modified and now reads6:

891 using namespace ThinFilm
892 template <class ELEMENT >
893 double MyNDProblem <ELEMENT >:: moving_logistic (Vector <double > x,
894 double t, double rho) {
895 double L = L_nd [0];
896 double x_tilde = x[0] - speed * t - cpos [0];
897 double x_tilde_sign = (x_tilde > 0) - (x_tilde < 0);
898 double remapped_x_tilde = std :: fmod(x_tilde + x_tilde_sign *

L/2, L) - x_tilde_sign * L/2;
899 return rhoLW - (rhoLW -rhoHW)/(1+ exp(- remapped_x_tilde /ls));
900 }

Listing 2: Implementation of the moving step wettability.

This sample is taken from my_NDproblem.h. The variable speed is equal to
the variable previously denoted as vinhom.
Direct time simulations of a time dependent wettability profile can show
more involved dynamics then those of stationary ones. In case of the profile
given in listing 2, the droplet still exhibits a initial behaviour analogous to
the one shown in fig. 3. It starts to move away from the point of the steepest
slope and towards the more wettable area, but since the step itself is also
moving7 the droplet will continue to experience a wettability gradient and
therefore keep on moving away from the area of low wettability (see [2]).
Snapshots of the direct one-dimensional time simulation are shown in fig. 4.
In fig. 4a the droplet has not yet reached its equilibrium distance to the
point of maximum steepness and is moving away from this point with a
speed vdrop > vinhom. In fig. 4b the droplet has reached the equilibrium
distance and is moving at the constant speed vdrop = vinhom.
One can imagine that this kind of behaviour will not sustain for any speed
of the inhomogeneity. Once the step has reached a speed larger than some
critical value the droplet will not be able to keep up with the step and fall
behind. Since the inhomogeneity profile away from the point of the steepest
slope is homogeneous (see fig. 1) the droplet will, once it has reached this
area, stop moving.
This behaviour can be analyzed by observing the droplet speed while varying
the inhomogeneity speed and keeping all other parameters constant. The
droplet speed can be measured by looking at the temporal behaviour of
the position of maximum height. This value is saved in the trace.dat file
for each time step. The average velocity between timestep i and j, can be

6The C++ code is not as compact as eq. (6) because we had to account for the sign
sensitive definition of the modulo function.

7We only consider movement into the direction of the more wettable area here.

6

a)

b)

Figure 4: Snapshots of the direct time simulation of a one-dimensional drop
on a substrate with a moving logistic function as the wettability. The pa-
rameters for this simulation are the same as in fig. 3, with the additional
inhomogeneity speed vinhom = 0.01. The initial state is equal to fig. 3a.
Figure 4a shows the droplet moving away from the inhomogeneity step with
a velocity larger than vinhom. Figure 4b shows the final state of the droplet,
moving at a constant speed vinhom.

7

obtained using finite differences:

v̄drop = hmax[j]− hmax[i]
t[j]− t[i] . (7)

With hmax[i/j] and t[i/j], equal to the position of maximum height and
time at time step i/j respectively. In order to obtain the equilibrium drop
velocity, i.e. the drop velocity for infinitely large times, one has to discard
the first time steps, since at the beginning of the simulation the droplet will
be moved by the inhomogeneity step regardless of the speed of the step. It
is reasonable to start measuring once the droplet has reached its equilibrium
distance from the step (see fig. 4b) or is already left behind. The closer the
step speed is to the critical value, while still being larger than it, the longer
the droplet will be moved by the step. Therefore the amount of steps which
need to be discarded becomes increasingly large for step speeds close to the
critical value This will result in deviations of the measured velocity from the
equilibrium speed for finite time simulations as we will see later on.
The script plot_speed_step_vs_speed_drop.py is used to perform and
visualize the analysis of the drop speed. It also contains a routine to plot
the average drop velocity against the speed of the step (cf. fig. 5). The data
used for this plot can be generated by using the scan_parallel.py8 script.
It uses multiple cores to perform direct one-dimensional time simulations of
the problem (see section 1.4). Since we only want to consider one passing of
the inhomogeneity profile, the integration time T has to be restricted such
that the integration stops before the step reaches the domain border. A
possible way, which was used for fig. 5 is:

T = 0.4 · L− c
vinhom

. (8)

In fig. 5 the average droplet velocity v̄drop is plotted against the speed of
the inhomogeneity profile vinhom. It can be seen that the droplets velocity
matches that of the step until a threshold value (which in this case is at
around vinhom = 0.07) is reached. The droplet then stops moving since it
can no longer keep up with the step. As explained the before the finite
time simulations lead to a non vanishing v̄drop for step speeds slightly larger
than the critical one. For increasingly long time simulations this effect will
decrease.

1.4 Implementation details

The files relevant for the implementation of the inhomogeneity step are
given in table 1 together with a short description. The backbone of the time

8One may use the adaptive mesh here, since the domain is large and only needs a high
resolution near the droplet. See section 1.5 for more details on the adaptive mesh.

8

Figure 5: Average droplet velocity v̄drop plotted against the speed of the
inhomogeneity profile vinhom. All parameters except the drop velocity are
the same as in fig. 4.

simulations is file 5. Within this file the jacobian and residual are calculated.
In both calculations the inhomogenity is included. For the jacobian this
looks as follows:

261 double inhom = get_inhomogenity (x, time , rho);
262 double modulation = 1 + inhom;

Where the function get_inhomogenity() returns the wettability value and
is equal to the term ρg(x,t) in eq. (3). The exact form of get_inhomogenity()
is defined in file 1 through the function pointer inhomfctpt. The ac-
tual function it points to can either be set by using the constructor (ei-
ther of the one or the two dimensional problem) or using the function
set_inhomogenity(), which takes a string as an argument. The possible ar-
guments for this function are listed in line 654−671 of file 1. The relevant ar-
gument for the previously discussed inhomogeneity is "moving_logistic".
The function pointer then points at the moving_logistic() function al-
ready shown in listing 2.
In the one- as well as in the two-dimensional case the boundary conditions
in x-direction are periodic. For the y-direction we have chosen the natural
boundary conditions of the Finite Element method, the Neumann boundary
conditions.
For a simple time simulation, one can use the run.py file. It consists of
three parts:

1. Initializing the problem using the init_problem() function provided
by scan_basics.py. Here all parameters (ρHW, ρLW, ls, etc.) may be

9

Table 1: C++ and Python scripts used for performing the simulations and
analysis.

Number Filename Description
1 my_NDproblem.h N dimensional problem with wettabil-

ity pattern c of 4 uses 5, derivation of 4
2 my_1Dproblem.h one dimensional derivation of 1
3 my_2Dproblem.h two dimensional derivation of 1
4 my_generic_problem.h general problem class
5 prestructured_tfe element for prestructured surfaces

_element.h derivation of pde_elements.h
6 libprestructured python bindings for simulations

_1Dtfe.cpp of 1D prestructured surfaces
7 libprestructured 2D version of 6

_2Dtfe.cpp
8 scan_basics.py convenient python functions for

direct 1D time simulations uses 6
9 scan_basics2D.py 2D version of 8
9 run.py Short script for performing single

direct time simulations uses 2, 6, 8
10 scan_parallel.py parallely performs multiple

direct time simulations uses 2, 6, 8
11 plot1D_fancy.py parallel plotting of each created .dat file
12 plot_speed_step Calculates the v̄drop and plots it

_vs_speed_drop.py against vstep

10

handed over to the function as keyword arguments.

2. Performing the actual integration9. This can be done by:

• integrate_until_steady(), which integrates the problem until
the adaptive step size has reached dt_max10,

• integrate(n) or integrate_for_time(T) which take the num-
ber of integration steps n or the integration time T as arguments
to specify how long the problem should be integrated.

All functions are defined in file 4. For each time step a .dat file is
created and saved within the dat folder of the temporary output folder
("out" by default). Also one line is written into the trace.dat file
(in the output folder) which includes different measured quantities for
example the current free energy and position of the maximum.

3. Cleaning up and plotting. The temporary output folder is moved into
the finalfolder, together with the scipts used for the simulations
and the parameters saved in the params.json file. Also the .dat files
in finalfolder are plotted using plot1D_fancy.py.

Using the run.py file one can obtain the pictures shown in figs. 3 and 4. For
the moving case the file should look like the following:

5 import libprestructured_1Dtfe as TFElib
6 from parameter_scanning . scan_basics import *
7 from datetime import datetime
8

9 SCRIPTNAME = "run.py"
10 SCAN_BASICS_DIR = " parameter_scanning "
11

12 problem = init_problem (L = 50, N = 512, rhoHW = -0.8, rhoLW =
0.5, ls = 1.0, speed = 0.01 , inhomogenity =
" moving_logistic ")

13 problem . set_elements_to_equilibrated ()
14 problem . integrate_for_time (1200)
15

16 timestamp = datetime .now (). strftime ("%Y%m%d-%H%M%S")
17 finalfolder = f" out_1D_run_ { timestamp }"
18 tidy_up (problem , finalfolder ,SCRIPTNAME , SCAN_BASICS_DIR)
19 # Plot output directly
20 os. system ("./ plotting_scripts / plot1D_fancy .py "+ finalfolder)

9In order to use a moving wettability pattern the elements must first be set to equili-
brated. This can be done using the function set_elements_to_equilibrated() defined
in file 1.

10The variable is defined in file 4 and can also be set in the python script.

11

Changing the speed to zero will give the plots shown in fig. 3.
For plots like the one shown in fig. 5 one could perform one each simulation
i.e. one for each value of vinhom or use the scan_parallel.py file, which
uses multiprocessing to scan the parameters given in the parameter_sets
array. While all other parameters are the same as in section 1.5 the speed
is chosen to be:

28 speed_array = np. linspace (0.001 ,0.06 ,20)

The script performs one run.py for each parameter set (without the plot-
ting). The final output is a folder named according to the current date
and time out_1D_parameter_scan_YYYYMMDD_hhmmss. Within this direc-
tory, one folder exists for each parameter scan including the same data as
the ones created by run.py. In order to obtain a plot like the one in fig. 5
the script plot_speed_step_vs_speed_drop has to be executed with the
final parameter scan directory as an argument. The resulting plot is then
saved in a folder named result within the output directory.

1.5 Extension to Two Dimensions

For the extension of the one-dimensional case to two dimensions, one can use
mostly the same code, i.e. my_NDproblem.py, since the contained base class
MyNDProblem includes all the general code needed for arbitrary dimensions.
The derived classes My1DProblem and My2DProblem inherit this code. The
addition they provide is the code which is unique to the respective dimen-
sion. The change of the problem class now requires an adaptation of the
used python bindings libprestructured_2Dtfe.cpp, the utility functions
scan_basics2D.py as well as the run run2D.py, scan scan_2D_parallel.py
and plotting plot2D_fancy.py scripts in python. All the code looks anal-
ogous to the one used before. Since we now handle a two-dimensional sub-
strate, one has to provide two domain lengths Lx, Ly and number of nodes
Nx, Ny.
Two snapshots of the two-dimensional problem are shown in fig. 6. The
initially placed droplet is again given by a formula analogous to eq. (5) but
since we are now considering a two-dimensional substrate the coordinate of
the second dimension y is included as:

h(x,y) = − 1
4h0

tan (Θeq)2 ·
√
x2 + y2 + h0. (9)

Figure 6a is the initially placed droplet (eq. (9)), whereas fig. 6b is the
state of constant droplet speed vdrop = vinhom. One can clearly see that the
droplet is deformed and the curvature towards the low wettability area has
decreased.
For the two dimensional case, the use of the adaptive mesh is very helpful.
The number of nodes and distribution is adapted to the needed accuracy

12

in the given region. For this, the time step is performed and the error
approximated if the error lies between max_error and min_error the node
distribution is kept, otherwise it is adapted11. The values for the mesh
errors are set in my_2Dproblem.cpp and can also be set when calling the
constructor or the init_problem() function of the scan_basics_2D.py file.
The number of refinements to be performed for each time step can be set
with the variable nrefinements, which is also accessible outside the problem
construction. The run2D.py file used for the simulation in fig. 6 looks like
follows:

1 import libprestructured_2Dtfe as TFElib
2 from parameter_scanning . scan_basics2D import *
3 from datetime import datetime
4

5 SCRIPTNAME = "run2D.py"
6 SCAN_BASICS_DIR = " parameter_scanning "
7

8 problem = init_problem (Nx=32, Ny = 32, Lx = 20, Ly = 20,
9 speed = 0.02 , rhoHW = -0.8, rhoLW = 0.5, nrefinements =1,

10 max_error = 10**(-3) , min_error =10**(-4) ,
11 inhomogenity = " moving_logistic ")
12 problem . set_elements_to_equilibrated ()
13 problem . integrate_for_time (400)
14 timestamp = datetime .now (). strftime ("%Y%m%d-%H%M%S")
15 finalfolder = f" out_2D_testrun_ { timestamp }"
16 tidy_up (problem , finalfolder ,SCRIPTNAME , SCAN_BASICS_DIR)
17 # Plot output directly
18 os. system ("./ plotting_scripts / plot2D_fancy .py "+ finalfolder)

11If the error is larger max_error the integration is repeated with higher accuracy. For
an error smaller than min_error the integration is accepted and the mesh is adapted for
the next step.

13

a)

b)

Figure 6: Snapshots of a direct time simulation of a two-dimensional drop on
a substrate with a moving logistic function as the wettability. The parame-
ters are Nx = 32, Ny = 32, Lx = 20, Ly = 20, vinhom = 0.02, ρHW = −0.8,
ρLW = 0.5, nrefinements= 1, max_error= 10−3, min_error= 10−4. The
nodes of the mesh are shown as black dots. The dark patch on the left side
of the droplet in b) corresponds to a higher mesh resolution in this area.

14

Bibliography
[1] Daniel Bonn et al. “Wetting and spreading”. In: Reviews of Modern

Physics 81 (2 2009), pp. 739–805. issn: 0034-6861. doi: 10.1103/
RevModPhys.81.739. url: https://link.aps.org/doi/10.1103/
RevModPhys.81.739.

[2] Manoj K. Chaudhury and George M. Whitesides. “How to Make Wa-
ter Run Uphill”. In: Science 256.5063 (1992), pp. 1539–1541. issn:
0036-8075. doi: 10.1126/science.256.5063.1539. url: https:
//science.sciencemag.org/content/256/5063/1539.

[3] Sebastian Engelnkemper. “Nichtlineare Analyse physikochemisch getriebener
Entnetzung - Statik und Dynamik”. PhD thesis. WestfälischeWilhelms-
Universität Münster, 2017.

[4] Josua Grawitter and Holger Stark. “Steering droplets on substrates us-
ing moving steps in wettability”. In: Soft Matter 17.9 (2021), pp. 2454–
2467. doi: 10.1039/D0SM02082F.

[5] Matthias Heil and Andrew L. Hazel. “oomph-lib – An Object-Oriented
Multi-Physics Finite-Element Library”. In: Fluid-Structure Interac-
tion. Ed. by Hans-Joachim Bungartz and Michael Schäfer. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 19–49. isbn: 978-
3-540-34596-1.

[6] Christoph Honisch et al. “Instabilities of Layers of Deposited Molecules
on Chemically Stripe Patterned Substrates: Ridges versus Drops”. In:
Langmuir 31.38 (Sept. 2015), pp. 10618–10631. issn: 0743-7463. doi:
10.1021/acs.langmuir.5b02407. url: https://ir.nctu.edu.tw/
handle/11536/128271.

[7] Vladimir S. Mitlin. “Dewetting of Solid Surface: Analogy with Spin-
odal Decomposition”. In: Journal of Colloid and Interface Science
156.2 (1993), pp. 491–497. issn: 0021-9797. doi: https://doi.org/
10.1006/jcis.1993.1142. url: https://www.sciencedirect.com/
science/article/pii/S0021979783711422.

[8] Alexander Oron, Stephen H. Davis, and S. George Bankoff. “Long-
scale evolution of thin liquid films”. In: Reviews of Modern Physics 69
(1997), pp. 931–980. issn: 0034-6861. doi: 10.1103/RevModPhys.69.
931.

[9] R. Shankar Subramanian, Nadjoua Moumen, and John B. Mclaugh-
lin. “Motion of a Drop on a Solid Surface Due to a Wettability Gra-
dient”. In: Langmuir 21.25 (2005), pp. 11844–11849. doi: 10.1021/
la051943i.

15

https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://link.aps.org/doi/10.1103/RevModPhys.81.739
https://link.aps.org/doi/10.1103/RevModPhys.81.739
https://doi.org/10.1126/science.256.5063.1539
https://science.sciencemag.org/content/256/5063/1539
https://science.sciencemag.org/content/256/5063/1539
https://doi.org/10.1039/D0SM02082F
https://doi.org/10.1021/acs.langmuir.5b02407
https://ir.nctu.edu.tw/handle/11536/128271
https://ir.nctu.edu.tw/handle/11536/128271
https://doi.org/https://doi.org/10.1006/jcis.1993.1142
https://doi.org/https://doi.org/10.1006/jcis.1993.1142
https://www.sciencedirect.com/science/article/pii/S0021979783711422
https://www.sciencedirect.com/science/article/pii/S0021979783711422
https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1021/la051943i
https://doi.org/10.1021/la051943i

[10] Walter Tewes et al. “Comparing kinetic Monte Carlo and thin-film
modeling of transversal instabilities of ridges on patterned substrates”.
In: The Journal of Chemical Physics 146.9 (2017), p. 094704. issn:
0021-9606. doi: 10.1063/1.4977739. eprint: https://doi.org/10.
1063/1.4977739.

[11] U Thiele. Thin film evolution equations from (evaporating) dewetting
liquid layers to epitaxial growth. 2010. doi: 10.1088/0953-8984/22/
8/084019.

16

https://doi.org/10.1063/1.4977739
https://doi.org/10.1063/1.4977739
https://doi.org/10.1063/1.4977739
https://doi.org/10.1088/0953-8984/22/8/084019
https://doi.org/10.1088/0953-8984/22/8/084019

	Tutorial: Prestructured Substrate
	Theoretical Background
	Stationary Wettability Pattern
	Moving Wettability Pattern
	Implementation details
	Extension to Two Dimensions

